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Abstract 
 

Differential flatness, a property of some dynamic 

systems which has been recognized only recently, has 

made possible the development of new tools to control 

complex nonlinear dynamic systems. Many dynamic 

non linear systems have been proved to be 

differentially flat. In this paper, it is shown that the 

inertial position coordinates of an aircraft can be 

considered as differential flat outputs for its flight 

guidance dynamics. Since this differential flatness 

property is implicit, a neural network is introduced, as 

a numerical device, to deal with the inversion of the 

guidance dynamics. Then, once conveniently 

structured and trained, a neural network is able to 

generate in real time directives to conventional 

autopilot systems so that a reference trajectory can be 

tracked. Numerical results relative to the training of 

the neural network and to trajectory tracking are 

displayed and discussed.  

 

1. Introduction 
 

The sustained increase of air transportation over the 

last decades has led to traffic saturated situations, then 

new maneuvering capabilities are needed for civil 

aviation aircraft to ensure safety as well as efficiency 

in air transportation operations. Differential geometry 

has allowed the development of new approaches for 

the control of nonlinear systems. Their applicability to 

flight dynamics, which are essentially nonlinear, 

appears of interest since previous flight control 

functions have been mainly based on empiricism and 

cumbersome gain scheduling linear control laws. 

Differential flatness, a concept introduced by the 

school of Fontainebleau (Fliess, et al. 1995), has 

provided new opportunities to design advanced control 

and supervision schemes for non linear systems. 

According to this theory, given a desired trajectory for 

a flat output, it becomes quite easy to derive the 

corresponding input. Some authors have already given 

insight into the differential flatness of aircraft flight 

dynamics (Lavigne, et al. 2003; Martin, 1992; Lu, et 

al. 2004). None of them has considered specifically the 

flatness property of the flight guidance dynamics for a 

perty of flight 

n a numerical tool for 

tions. 

nalytically, and 

another one where these causal relationships are 

int

rigid aircraft and its potential applications to trajectory 

tracking. 

 In this communication, first a proof of the implicit 

differential flatness of flight guidance dynamics is 

displayed. To make this property valuable for real time 

applications, a feed-forward neural networks structure 

is proposed to invert the flight guidance dynamics. 

Issues related with the effective training of such a 

structure are discussed and numerical results, relative 

to a reference aircraft model are displayed. These 

results show that the proposed approach allows the 

identification of the flatness pro

guidance dynamics, resulting i

new trajectory tracking applica

 

2. Differential Flatness 
 

Here two definitions of differential flatness are 

introduced: one relative to systems for which causal 

relationships of interest are displayed a

roduced through implicit functions.  
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Definition 1: A general nonlinear system whose 

dynami are given by: cs 

UXFX , nX R ,
mU R  (1) 

re whe F is a smooth mapping, is said explicitly flat 

with respect to the output vector Z , if Z  is an 

thm order vector which can be expressed analytically as 

a function of the current state, the current input and its 

ivatives and also suder ch as the state and the input 

vectors can be expressed analytically as un n of  a f ctio

Z  and its derivatives. 

here exiThen t G , UG  and 

ZG  such as: 

sts smooth mappings X

p
Z UUXGZ ,,,   (2-a) 

)(
,,,

q
X ZZZGX   (2-b) 

1
,,,

q
U ZZZGU  (2-c) 

 

where p and q are integer numbers. Vector Z  is called 

a flat output for the nonlinear system. Although there 

is no systematical way to determine the flat output, the 

co

 in many situations, the 

co

ctice the aerodynamic 

co

Definit

mponents of the flat output usually possess some 

physical meanings. 

The explicit flatness property is of particular 

interest for the solution of a control problem when a 

physically meaningful flat output can be related with 

its objectives: for instance,

ntrol problem can be formulated as a flat output 

trajectory tracking problem. 

However, for many systems, no complete analytical 

models are available to describe their full dynamics. 

Some of their components make use of input-output 

numerical devices derived both from theory and from 

experimental data. In these cases, the available theory 

provides in general the main mathematical properties 

of these implicit functions while experimental data is 

used to build accurate input output numerical devices. 

This happens for instance when flight dynamics 

modeling is considered either for control or simulation 

purposes, since in pra

efficients are obtained through interpolation across 

large sets of look-up tables. 

ion 2: A nonlinear system given by  general  a

implici h order state representation: t nt

0),,( UXXF , 
nRX , 

mRU  (3) 

where F  is a regular implicit mapping with respect to 

X , is said implicitly flat over an interior non-empty 

domain mnR  if it is possible to find an mth order 

vector Z -a) 

condition: 

 which meets condition Eq.(1), Eq.(2 and 

0),,,,,(
r

ZZZUXG   (4) 

ere G is locally invertible over  with respect to wh  

X  and U  where r  is an integer. Again, vector Z  is 

said to be a flat output. 

The local invertibility of G  is guaranteed if the 

determinant of the Jacobian of G  is not zero according 

to the theorem of implicit functions, i.e. if: 

0
,

det
UX

  

In this case, given a trajectory of the flat output

G
(5) 

Z , 

it is possible to map it numerically into the input space 

to derive corresponding control signals, so that one of 

the more interesting properties of differentially flat 

.

systems is still maintained. 

 

3  Flight Guidance Dynamics 
 

In this study, only the guidance dynamics of 

transportation aircraft, i.e. the temporal trajectory 

followed by its center of gravity, are considered. 

It is assumed that the aircraft is equipped with a 

basic autopilot which deals efficiently w ast 

dynamics and controls its a

ith its f

ttitude angles ,,  as 

well as its thrust regime . 

It is also supposed that their yaw damper can 

achieve perfect coordinated-turn motion, so that  is 

supposed to remain very small. 

Here the flight variables ,  and  are taken as 

the inputs for the guidance dynamics as well as the 

outputs for the fast dynamics around the aircraft body 

frame when controlled by a basic auto pilot. 

igure 1 displays thF e resulting structure for the 

whole flight dynamics.  
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Figure 1. Aircraft Flight Dynamics Structure 

 

Equations (6-a, 6-b and 6-c) express, in steady wind 

conditions, the flight guidance dynamics in the 

cs reference frame (Lu, et al

191191



xa wVx coscos   (6-a) 

ywaVy cossin

wVz

 (6-b) 

za sin   (6-c) 

with: 

2)( zwz  22 )()( yxa wywxV

 (7) 

m

mgTD
Va

sinsincoscos

 (8) 

coscos

amV

mgTL coscoscossinsinsincos

 the bank angle 

 (9) 

 

In coordinated-turn maneuver, the heading rate is 

related to  through the following 

relation: 

tan/ Vg    (10) 

The drag force D  and lift force L  e respectively 

considered to be func ns of altitude

ar

tio z , airspeed aV  

and angle-of-attack . While the thrus T can be 

sidered to be fun ons

t 

con cti  of e altitud z , airspeed 

aV and engine regime  .  

),,(),,,(,,, 1NVzTTVzLLVzDD a  (11) 

For local guidance purposes, the flight-path angle 

 is usually taken as the control parameter. Once the 

bank angle is considered to be small enough, the angle-

: of-attack can be expressed in

   (12) 

s of the Flight Guidance 

ynamics 

uat ons 6-a, 6-b and 6-c) are 

expressed as: 

Vz /sin 1

xy /tan 1
  (14) 

 

4. Flatnes

D
 

shown how, starting from the knowledge 

of tx , ty  and tz , it is possible to express 

successively all the guidance variables as a function of 

them and their derivatives. By rearranging the 

kinematical eq

Here it is 

ions (Equati

  (13) 

 

The state variables aV , and , obviously can be 

functions of the inertial position of aircraft while the 

control variables satisfy the following relations: 

0
coscoscossinsinsincos

amV

mgTL

  (15-b) 

0tan
V

g
  (15-c) 

where  can be replaced by a function of ,  and 

 given in Equation (12). 

The following notations are adopted for the position 

of the center of gravity of the aircraft and for the 

guidance inputs: 
T

zyxZ ,,  and   1,, NU  (16) 

Once the variables in Eq.(15-a), Eq.(15-b) and 

Eq.(15-c) are replaced by their expressions in Z   and 

its first two derivatives, these equations can be 

rewritten as: 

0),,,(
1

UZZZGN
                 (17-a) 

0),,,( UZZZG                   (17-b) 

0),,,( UZZZG                   (17-c) 

These implicit functions are locally invertible with 

respect to the input vector since for normal flight 

conditions the determinant of their Jacobian is not zero 

(Lu, et al. 2004): 

0

1

1

1

111

N

GGG

N

GGG

N

GGG NNN

 (18) 

Then, TzyxZ ),,(  is a flat output vector for the 

considered flight guidance dynamics. The time 

evolution of these flat outputs represents the trajectory 

followed by the center of gravity of the aircraft. Then 

according to the above theory, from the knowledge of 

this trajectory, it should be possible to find the 

corresponding inputs. 

 

5. Neural Identification of Implicit Flatness 
 

As a consequence of the above flatness property, 

given a smooth reference trajectory for the flat 

outputs such as: 

T
cccc zyxZ ,, , tt ,0  (19) 

0

The corresponding reference input values at the 

instant t, 
T

cccc tNtttU are solutions of 

the set of equations: 

coscossinsincoscos

m

mgTD
Va

(15-a) 

1,,
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0))(),(),(),((
1

tUtZtZtZG ccccN (20-a) 

0))(),(),(),(( tUtZtZtZG cccc  (20-b) 

0))(),(),(),(( tUtZtZtZG cccc  (20-c) 

where )(tZ c
, )(tZ c

 and )(tZ c
 are the current 

parameters. 

In general, it will be very difficult to get an on-line 

numerical solution to this set of implicit equations, so 

it is useful to get an adequate numerical device to solve 

it. This adequacy can be specified mainly in terms of 

complexity and accuracy.  

The differential flatness property of a dynamical 

system points out, in a reverse way, the causal 

relation existing between its inputs and its 

eventually flat outputs. 

Since Neural Networks are particularly well 

adapted to reproduce causal relations, even in the 

case of very complex systems, it appears of interest 

to try to build a neural network with this objective. 

Once correctly trained, the neural network should be 

an input-output device where the inputs are provided 

by the tracked trajectory; while the outputs of the 

neural network are the nominal flight control 

parameters (see Figure 2).  
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Figure 2. Reference input generator by 
Neural-networks 

 

Multilayer neural networks (MLNN) have been 

shown to be able to perform general function 

approximation through the selection of a neural 

network structure associated to a learning process 

(Haykin, 1994). The selection of the structure and of a 

learning algorithm strongly depends on empirical rules 

while numerous candidate neural networks structures 

and learning algorithms are available. 

In order to achieve an acceptable accuracy and a 

sufficient generalization capability, a large amount of 

training data is necessary. Here the training data is 

composed of sets of trajectories for Z  and U  which 

can be provided from either flight test data or even 

from commercial flight data in which maneuvers are 

performed manually or by the autopilot engaged in a 

basic attitude-holding mode so that no guidance loop 

are active at that time (Mora-Camino, 1993). 

Since for modern aircraft onboard navigation 

systems are able to estimate with good accuracy the 

current aircraft position, inertial speed and wind speed, 

their records can be used as a basis for the training of 

the neural network. 

 

6. Validation Results 
 

A simulation model of a light aircraft, the Navion 

(Schmidt, 1998) with a piston-propeller engine and a 

basic controller for attitude holding has been used for 

the generation of training data and for validation 

purposes. 

Preliminary simulation results have been obtained 

in the case of maneuvers in the vertical plane. 

In this study, the conventional Error-Back-

Propagation neural network with only one hidden layer 

has been selected to perform the inversion of flight 

guidance dynamics, although many other neural 

network structures (Quiroga Rodriguez, 2005) have 

been investigated. 

Figure 3 displays some of the trajectories which 

have been considered to generate training data. 
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Figure 3. A set of training trajectories 

 

The structure of the retained neural network 

comprises seven inputs nodes, about 30 neurons in the 

hidden layer with a hyperbolic tangent activation 

function, and three output nodes with linear transfer 

functions. The seven inputs are altitude, three 

components of inertial velocity and three components 

of inertial acceleration. The three outputs are the pitch 

, the roll  and  , the engine regime. 

Figure 4 and figure 5 display examples of training 

performances for different structures and sizes of the 

training data base. 

193193



0 10 20 30 40 50
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Performance ( 8350 pts )

Iteration

M
e
a

n
-S

q
u
a
re

-E
rr

o
r

10 neurones
20 neurones
30 neurones

 
Figure 4. Training performance with 

different number of neurons in the hidden 
layer 
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Figure 5. Training performance for different 
sizes of the training data base 

Once the weightings of a neural network have 

been optimized, the training of the neural network 

must be validated using an independent validation 

data base. Table 1 displays an example of validation 

data performances. There L(E) is the total mean 

square error of the neural network for a given inter 

neurons weighting pattern and computed either over 

training data or validation data. S is the number of 

neurons in the hidden layer and n is the number of 

effective connections between neurons. 

 

Table 1. Example of training and validation 
data 

S n 
L(E) 

training 

L(E)  

Validation 

1

5 
271 

44,15 10  33,87 10  

1

7 
322 

43,99 10  32,72 10  

1

8 
349 

43,42 10  
31,20 10  

1

9 
377 

42,59 10  
31,75 10  

2

5 
566 

41,85 10  
33,52 10  

A relevant validation of the neural network is 

obtained when in nominal conditions (nominal flight 

model, no wind variation), the outputs of the neural 

networks are submitted as reference values to an 

autopilot operating in basic modes (attitude angles 

and engine regime tracking). Figure 6 displays the 

corresponding simulation structure while figures 7 

and 8 show the resulting reference and response 

trajectories of the simulated aircraft.  
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Figure 6. Open loop flight simulation 
structure 
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Figure 7. Example of open loop performance 
for flight trajectories 

It happens that the resulting control structure is 

open loop and to react appropriately to the effect of 

external perturbations as well as to the drift caused by 

modeling errors, a closed loop must be introduced in 

the control structure so that robustness is achieved. In 

(Lu et al, 2006), this issue is tackled, showing that the 

neural inversion guidance dynamics provides a sound 

basis to design an efficient 4D trajectory tracking 

systems for aircraft. 

 

7. Conclusion  
 

This paper has shown how neural networks can be 

used to take profit of the implicit differential flatness 

property of aircraft flight guidance dynamics. 
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Differential flatness is a characteristic shared by 

many non linear systems and in the case of complex 

systems, this property may appear in an implicit way. 

In this study, to make this property valuable for real 

time trajectory tracking, a feed-forward neural 

networks structure has been proposed to invert the 

flight guidance dynamics. 

The performed numerical experiments show that, 

adopting classical neural networks structures and 

learning schemes, it is possible to achieve this 

objective. 

This approach allows an adequate identification of 

the inverse input-output relations associated to the 

flatness property of flight guidance dynamics. This 

results in a useful numerical tool for new trajectory 

tracking applications. 

However many questions such as the definition of a 

minimum set of trajectories generating adequate 

training data, the search for more efficient dynamics 

inversion neural network structures, the setting of a 

clear balance between the neural inversion accuracy 

and the amount of feedback control effects, and the 

generation of efficient reference trajectories, remain 

open for further research work. Note, considering this 

last question, that neural networks can also contribute 

significantly to the definition of optimal reference 

trajectories (Mora-Camino et al, 2000). 
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