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I. INTRODUCTION

For more than forty years, global air traffic has never ceased to increase. The current traffic control systems are reaching their structural limits, so that the traffic growth might reduce the safety level of the airspace. Thus, new methods and concepts are to be set up in order to adapt to future traffic, as advocated by research programmes such as SESAR 1 [START_REF]SESAR Concept of Operations[END_REF] in Europe or NextGen in the US. Therefore, in this paper, we propose a model for speed regulation in order to avoid a maximum number of conflicts. This work is built upon the conflict model presented in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF] and uses small speed regulations like in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF] to avoid conflicts.

A standard day of traffic within the european airspace is made of approximately 30,000 flights. Each flight follows a flight plan described as a sequence of waypoints that the aircraft will fly over. The aim of this project is to avoid the air space conflicts in advance by the use of slight modifications of flight speeds, or equivalently by constraining fly over times on waypoints (RTA 2 ), in order to decrease the controllers' workload. Our model assumes that a conflict between two flights that follow intersecting trajectories can only happen on a common waypoint of their routescatching-up flights are handled by considering multiple waypoints. After a first potential conflict detection step, resulting in a combinatorial optimization problem that generalizes the one presented in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF], the RTAs are computed by a centralized system so as to avoid as many conflicts as possible and 1 Single European Sky ATM Research 2 Requested Time of Arrival to optimize operating costs. Then they are transmitted to aircraft during the flight to modify their flight plans. To take uncertainties into account, the problem would be iteratively solved over a rolling horizon (typically 20-30 min) as presented in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF].

This combinatorial optimization problem could be solved by state-of-the-art techniques such as Constraint Programming as in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF] or Local Search as in [START_REF] Allignol | Optimized Flight Level Allocation at the Continental Scale[END_REF].

II. SEPARATION CONSTRAINTS

As in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF], this model is designed to take into account the functionalities of future Flight Management Systems (FMS) in the SESAR context, which will be able to dynamically accommodate several RTAs on the waypoints of their trajectories with an accuracy of a few seconds. Its output is therefore a set of RTAs for each flight involved in a potential conflict within the time window of the resolution, trying to minimize the number of actual conflicts and their durations.

In this context, the trajectory of a flight i is represented by a sequence of 3D points and associated times corresponding to the waypoints of its route indicated by the flight plan:

ω k i , θ k i , k ∈ [1, n i ]
where the θ k i i,k are the decision variables and n i the number of waypoints of flight i. Furthermore, we note:

• σ k i , the curvilinear abscissa (or oriented length along the trajectory) of each waypoint k of flight i;

• v k i (for all k ∈ [1, n i -1]
), the speed, considered constant, between waypoints ω k i and ω k+1 i .

DISCRETIZATION OF TRAJECTORIES

Following the conflict model presented in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF], potential conflicts between two flights i and j are detected by pairwise checks on the points of a discretization of each trajectory, with a grain fine enough to ensure that even the shortest potential conflicts will be taken into account, as described in [START_REF] Barnier | Trajectory deconfliction with constraint programming[END_REF] for example. We note:

(p k ′ i , t k ′ i ), k ′ ∈ [1, m i ]
the discretization of the trajectory of flight i consisting of a sequence of m i 3D points p k ′ i and associated times t k ′ i , as illustrated in 1.

Similarly to the waypoints, we note s k ′ i the curvilinear abscissa of each point p k ′ i . These abscissae can be easily
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Figure 1: Projection in the horizontal plane of the trajectories of flights i and j, which are in potential conflict at their common waypoint

ω k i = ω l j . Point p k ′ i is in potential conflict with points p l ′ j and p l ′ +1 j .
computed by adding the distances between the previous points of the trajectory:

s k ′ i = k ′ -1 l ′ =1 dist(p l ′ i , p l ′ +1 i )
providing that the turning points of the trajectory, i.e. the waypoints ω k i , are included in the discretization points p k ′ i . A similar relation would be true for the abscissae σ k i of the waypoints (as they indeed are the turning points), but only during cruise, as the waypoints are too distant from each other to approximate the vertical profile of the descent or climb phase precisely enough.

CONFLICT DETECTION

Two points p k ′ i and p l ′ j of flight i and j are in potential conflict if their horizontal and vertical distances both violates the separation norm (usually 5 NM horizontally and 1000 ft vertically), as depicted in figure 1 for the horizontal plane. For two such points, there would be an actual conflict between flights i and j if they are located at these points at the same time. To avoid a conflict, it is therefore necessary that:

∀k ′ ∈ [1, m i ] , ∀l ′ ∈ [1, m j ] , dist H (p k ′ i , p l ′ j ) < 5 N M ∧ dist V (p k ′ i , p l ′ j ) < 1000 f t =⇒ t k ′ i = t l ′ j (1)
where dist H is the distance in the horizontal plane and dist V in the vertical plane.

For intersecting trajectories, we assume, as in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF], that successive potentially conflicting points are all located in the vicinity of the same waypoint. As the speed is considered constant between two consecutive waypoints, it is possible to translate these conflict inequations 1 to their closest waypoint, such that the conflict constraints can be expressed as a temporal separation at this waypoint.

The resolution will therefore consist in regulating the speed of these flights (through the issuing of RTAs at the waypoints only) so as to avoid conflicts, i.e. ensure that the corresponding inequation θ k i = θ l j holds for all the neighbouring pairs of potentially conflicting points p k ′ i and p l ′ j . However, catch-up conflicts along the same route portion (or if the angle of intersecting trajectories is very low) cannot be considered local to a single waypoint. Thus, all potentially conflicting points located between waypoints ω k-1 i and ω k+1 i are reported to a potential conflict associated with ω k i . Several such conflicts will then be defined at each successive waypoints as long as the flights follow the same route.

We can now define a generalized (intersecting or catchingup) potential conflict between two flights i and j as the set of conflicting pairs of trajectory points around a single waypoint:

C kl ij = {(k ′ , l ′ ) ∈ [1, m i ] × [1, m j ] , s.t. p k ′ i and p l ′ j are in potential conflict near ω k i = ω l j , and σ k-1 i < s k ′ i < σ k+1 i , σ l-1 j < s l ′ j < σ l+1 j
To compute the resulting contraint between θ k i and θ l j , we first need to express t k ′ i as a function of θ k i and the speed of the aircraft, which is v k-1 i before waypoint ω k i and v k i afterwards. Therefore:

∀k ′ ∈ [1, m i ] , ∃k ∈ [1, n i ] , t k ′ i =      θ k i + s k ′ i -σ k i v k i si s k ′ i ≥ σ k i θ k i + s k ′ i -σ k i v k-1 i si s k ′ i < σ k i (2) 
Inequation 1 and equation 2 can then be combined, with four different cases depending on the locations of points p k ′ i and p l ′ j with respect to waypoint ω k i = ω l j . Note that if flights i and j have several distinct (non continuous) potential conflicts, there will be as many (non empty) sets C kl ij of conflicting points:

∀(k, l) ∈ [1, n i ] × [1, n j ] s.t. C kl ij = ∅, ∀(k ′ , l ′ ) ∈ C kl ij , t k ′ i = t l ′ j ⇔ θ k i -θ l j =                    s l ′ j -σ l j v l j - s k ′ i -σ k i v k i if s l ′ j ≥ σ l j and s k ′ i ≥ σ k i s l ′ j -σ l j v l j - s k ′ i -σ k i v k-1 i if s l ′ j ≥ σ l j and s k ′ i < σ k i s l ′ j -σ l j v l-1 j - s k ′ i -σ k i v k i if s l ′ j < σ l j and s k ′ i ≥ σ k i s l ′ j -σ l j v l-1 j - s k ′ i -σ k i v k-1 i if s l ′ j < σ l j and s k ′ i < σ k i
(3) However, these expressions depend on the (unknown) variable speeds of aircraft, whereas the conflict model presented in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF] uses static bounds for the time difference between flights i and j at waypoint ω k i = ω l j . In the next section, we explain how the speed variations are tightly bounded in our operational context, which allows us to approximate the values of equation 3 by small intervals.

III. SMALL SPEED ADJUSTMENT AND CONFLICT APPROXIMATION

Following [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF], we consider the same kind of small speed variation as in the ERASMUS project [START_REF] Villiers | Automatisation du contrôle de la circulation aérienne "ERASMUS" -Une voie conviviale pour franchir le "mur de la capacité[END_REF]. Two ratio paramaters α ≤ 1 and α ≥ 1 are introduced to bound the possible speed adjustment, such that if we note v 0 i the reference speed of flight i, all other speed variables are restricted to take values in a small interval α v 0 i , α v 0 i :

∀i ∈ [1, n], ∀k ∈ [1, n i -1] , v k i ∈ α v 0 i , α v 0 i ( 4 
)
where n is the number of flights in the instance. These ratio paramaters are typically chosen in the range α = 0.97 and α = 1.06 to limit the cost of regulation on the fuel consumption of aircraft and to have the smallest impact possible on standard Air Traffic Control (ATC) practices.

As the speed variations considered are small and bounded, we can bound the values of θ k iθ l j described in equation 3 by constants r k ′ l ′ ij (lower bound) and r k ′ l ′ ij (upper bound) defined as follows:

∀(k, l) ∈ [1, n i ] × [1, n j ] s.t. C kl ij = ∅, ∀(k ′ , l ′ ) ∈ C kl ij , r k ′ l ′ ij =                    s l ′ j -σ l j α v 0 j - s k ′ i -σ k i α v 0 i if s l ′ j ≥ σ l j and s k ′ i ≥ σ k i s l ′ j -σ l j α v 0 j + σ k i -s k ′ i α v 0 i if s l ′ j ≥ σ l j and s k ′ i < σ k i - σ l j -s l ′ j α v 0 j - s k ′ i -σ k i α v 0 i if s l ′ j < σ l j and s k ′ i ≥ σ k i - σ l j -s l ′ j α v 0 j + σ k i -s k ′ i α v 0 i if s l ′ j < σ l j and s k ′ i < σ k i r k ′ l ′ ij =                    s l ′ j -σ l j α v 0 j - s k ′ i -σ k i α v 0 i if s l ′ j ≥ σ l j and s k ′ i ≥ σ k i s l ′ j -σ l j α v 0 j + σ k i -s k ′ i α v 0 i if s l ′ j ≥ σ l j and s k ′ i < σ k i - σ l j -s l ′ j α v 0 j - s k ′ i -σ k i α v 0 i if s l ′ j < σ l j and s k ′ i ≥ σ k i - σ l j -s l ′ j α v 0 j + σ k i -s k ′ i α v 0 i if s l ′ j < σ l j and s k ′ i < σ k i
(5) For one conflict set C kl ij , bounds of a forbidden interval for the difference of times θ k iθ l j at the waypoint can then be computed by cumulating the inequations over the pairs of conflicting points (k ′ , l ′ ) ∈ C kl ij :

r kl ij = min (k ′ ,l ′ )∈C kl ij r k ′ l ′ ij r kl ij = max (k ′ ,l ′ )∈C kl ij r k ′ l ′ ij
Moreover, the bounds on the speed of each aircraft further constrain the θ k i variables for two consecutive waypoints

ω k i and ω k+1 i : ∀k ∈ [1, n i -1] , θ k+1 i -θ k i ∈ d k i α v 0 i , d k i α v 0 i (6) 
with

d k i = σ k+1 i -σ k i
, the distance between ω k i and ω k+1 i . In the following, these bounds on the travel time of flight i between two consecutive waypoints are respectively noted

T k i = d k i αv 0 i and T k i = d k i αv 0 i .

IV. MODEL

The conflict detection processing of the previous sections can now be sum up with a more standard (and concise) combinatorial decision problem formulation, with variables θ k i representing the RTA of flight i on waypoint ω k i , for a set of n potentially conflicting flights over the time window considered:

Find: ∀i ∈ [1, n] , (θ k i ) k∈[1,ni] s.t.: ∀(i, j) ∈ [1, n] 2 , i < j, ∀(k, l) ∈ [1, n i ] × [1, n j ] s.t. C kl ij = ∅, θ k i -θ l j / ∈ r kl ij , r kl ij ∀i, ∀k ∈ [1, m i -1] , θ k+1 i -θ k i ∈ T k i , T k i
The first set of constraints are derived from the conflicts between two potentially conflicting flights i and j, r kl ij and r kl ij being the bounds of the forbidden values for the difference of fly times over the conflicting waypoint ω k i = ω l j . The second one characterizes the speed limitation for each aircraft as stated in equation 6.

OPTIMIZATION

Among the admissible solutions of this decision problem, the ones that minimize airlines costs should be preferred. To optimize their operating costs, airlines generally tune the Cost Index (CI) parameter (used by the FMS to optimize the flight parameters along its trajectory) for each flight, which represents the relative importance of the cost of fuel with respect to the cost of flight time, i.e.:

CI = cost time cost fuel
where cost time is in $ per time unit, and cost fuel in $ per mass unit. For a given flight i, we can therefore consider that the airline cost is the sum of the extra cost of time and of the extra cost of fuel multiplied by CI i (the Cost Index of flight i), compared to the reference trajectory at the reference speed:

cost i = CI i × cost fuel i + T 0 i -θ ni i -θ 1 i where T 0 i = ni-1 k=1 d k v 0 i
is the total flight time of flight i at its reference speed v 0 i . If we assume that v 0 i is the optimal speed of the flight and that a discrepancy from v 0 i leads to a proportional increase of fuel consumption during the time flown at this speed, then:

cost fuel i = ni-1 k=1 v k i -v 0 i v 0 i θ k+1 i -θ k i = ni-1 k=1 d k i v 0 i -θ k+1 i -θ k i
So the cost for one flight can be expressed as:

cost i = CI i ni-1 k=1 d k i v 0 i -θ k+1 i -θ k i + T 0 i -θ ni i -θ 1 i
and the total cost of one solution simply is the sum of the costs of all flights:

cost = n i=1 cost i (7) 
Note that other parameters could be taken into account, like the number of speed changes, or could use a more realistic function to estimate the effect of the speed discrepancy from the reference speed, provided we could gather enough data from airlines and manufacturers.

INFEASIBILITY

If some conflict constraints cannot be satisfied, it may still be of interest to relax these constraints and search for solutions with as few violated constraints as possible. Furthermore, when a conflict constraint is violated, the longer the conflict lasts, the more hazardous is the operational situation, so it is interesting as well to search for solutions that minimize the duration of all actual conflicts, as proposed in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF].

As the conflict constraints of our model enforce that θ k iθ l j does not belong to r kl ij , r kl ij , we have to compute the "distance" of the time difference from the center of the interval M kl ij = 1 2 r kl ij + r kl ij :

dist kl ij = θ k i -θ l j -M kl ij
The longer the conflict lasts, the closer θ k i -θ l j is to M kl ij , and the smaller is dist kl ij . So to obtain a measure of the duration of the conflict, the distance is subtracted from the half of the length of the interval r kl ij , r kl ij , i.e. from L kl ij = r kl ijr kl ij . Moreover, the cost should be 0 outside the conflict interval:

max(0, 1 2 L kl ij -(θ k i -θ l j ) -M kl ij )
The total cost over all remaining conflicts is the sum of all the actual conflicts durations, for all pairs of flights in potential conflict (i.e. ∀i < j s.t. ∃(k, l), C kl ij = ∅):

cost conflict = i<j k,l s.t. C kl ij =∅ max(0, 1 2 L kl ij -|(θ k i -θ l j ) -M kl ij |)
This cost could be combined with the cost defined in equation 7 with suitable weighting to balance the cost of remaining conflicts with the operational one, so as to take both criteria into account for overconstrained instances.

V. CONCLUSIONS AND PERSPECTIVES

To overcome the traffic growth predicted by current ATM research programs in Europe, we propose a novel deconfliction model based on small speed regulations, following the mixed integer program presented in [START_REF] Rey | Technical Report on the Minimization of Potential Air Conflicts using Speed Control[END_REF] with a conflict model that generalizes the work presented in [START_REF] Barnier | 4D-Trajectory Deconfliction Through Departure Time Adjustment. 8 th USA/Europe Air Traffic Management Research and Development Seminar ATM 2009[END_REF]. The associated centralized solver would output new RTAs to dynamically adjust the flight plans during the flight, taking operational costs for airlines and for ATC into account. The resolution would be iteratively performed over a rolling horizon (20-30 min) to handle the uncertainties inherent to trajectory prediction.

The described model is currently being implemented using Constraint Programming and Local Search as optimization techniques. Simulations will be carried out with Europe-wide traffic data.