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Abstract. For a given sample set, there are already different methods
for building possibility distributions encoding the family of probability
distributions that may have generated the sample set. Almost all the
existing methods are based on parametric and distribution free confi-
dence bands. In this work, we introduce some new possibility distribu-
tions which encode different kinds of uncertainties not treated before.
Our possibility distributions encode statistical tolerance and prediction
intervals (regions). We also propose a possibility distribution encoding
the confidence band of the normal distribution which improves the ex-
isting one for all sample sizes. In this work we keep the idea of building
possibility distributions based on intervals which are among the smallest
intervals for small sample sizes. We also discuss the properties of the
mentioned possibility distributions.

Keywords: imprecise probabilities, possibility distribution, confidence band, con-
fidence region, tolerance interval, prediction interval, normal distribution, dis-
tribution free.

1 Introduction

In 1978, Zadeh introduced the possibility theory [31] as an extension of his theory
on fuzzy sets. Possibility theory offers an alternative to the probability theory
when dealing with some kinds of uncertainty. Possibility distribution can be
viewed as a family of probability distributions. Then, the possibility distribution
contains all the probability distributions that are respectively upper and lower
bounded by the possibility and the necessity measure [10]. For a given sample set,
there are already different methods for building possibility distribution which
encodes the family of probability distributions that may have generated the
sample set[3, 25, 2]. The mentioned methods are almost all based on parametric
and distribution free confidence bands.

In this paper we review some methods for constructing confidence bands for
the normal distribution and for constructing distribution free confidence bands
(γ-C distribution). Then we propose a possibility distribution for a sample set
drawn from an unknown normal distribution based on Frey [15] confidence band



which improves the existing possibility distribution proposed by Aregui et al.
[2] for all sample sizes. We also introduce possibility distribution which encodes
tolerance intervals, named as γ-Confidence Tolerance Possibility distribution (γ-
CTP distribution). The proposed possibility distribution uses tolerance intervals
to build the maximal specific possibility distribution that bounds each popula-
tion quantile of the true distribution (with a fixed confidence level) that might
have generated our sample set. The distribution obtained will bound each con-
fidence interval of inter-quantiles independently. This latter is different from a
possibility distribution encoding a confidence band, because a possibility distri-
bution encoding a confidence band will simultaneously bounds all population
quantiles of the true distribution (with a fixed confidence level) that might have
generated our sample set. Finally, we consider possibility distributions encoding
prediction intervals (prediction possibility distribution). In this case, each α-cut
will contain the next observation with a confidence level equal to 1−α. Each of
the proposed possibility distributions encodes a different kind of uncertainty that
is not expressed by the other ones. We show that γ-C distribution is always less
specific than γ-CTP distribution which is itself less specific than the prediction
possibility distribution. This is due to the fact that the distributions properties
are less and less strong. Note that the confidence level is usually chosen by the
domain expert.

This paper is structured as follows: we begin with a background on possibility
theory. Then we review possibility distribution encoding confidence bands and
their relationship with confidence regions. In this section we introduce a method
which improves existing possibility distributions. Next we see how to encode
tolerance intervals and prediction intervals by possibility distributions. Finally,
we end with a discussion on the mentioned possibility distributions and some
illustrations.

2 Background

2.1 Possibility theory

Possibility theory, introduced by Zadeh [31, 12], was initially created in order
to deal with imprecision and uncertainty due to incomplete information. This
kind of uncertainty may not be handled by probability theory, especially when
a priori knowledge about the nature of the probability distribution is lacking. In
possibility theory, we use a membership function π to associate a distribution
on the universe of discourse Ω. In this paper, we only consider the case Ω = R.

Definition 1 A possibility distribution π is a function from Ω to (R → [0, 1]).

The definition of the possibility measure Π is based on the possibility distribu-
tion π such that:

Π(A) = sup(π(x), ∀x ∈ A). (1)

The necessity measure is defined by the possibility measure

∀A ⊆ Ω,N(A) = 1−Π(AC) (2)



where AC is the complement of the set A. A distribution is normalized if : ∃x ∈ Ω
such that π(x) = 1. When the distribution π is normalized, we have :Π(∅) =
0, Π(Ω) = 1.

Definition 2 The α-cut Aα of a possibility distribution π(·) is the interval for
which all the point located inside have a possibility membership π(x) greater or
equal to α.

Aα = {x|π(x) ≥ α, x ∈ Ω}, (3)

2.2 Possibility distribution encoding a family of probability

distribution

In fact, one interpretation of possibility theory, based on Zadeh’s [31] consistency
principle of possibility “what is probable should be possible”, is to consider a
possibility distribution as a family of probability distributions (see [10] for an
overview). In the following, we denote f as density function, F as its Cumulative
Distribution Function (CDF) and P as its probability measure. Thus, a possi-
bility distribution π will represent the family of the probability distributions Θ
for which the measure of each subset of Ω’s will be bounded by its possibility
measures :

Definition 3 A possibility measure Π is equivalent to the family Θ of probability
distribution F such that

Θ = {F |∀A ∈ Ω,P (A) ≤ Π(A)}, A ⊆ Ω. (4)

Definition 4 Given a probability density function f(·) with finite number of
modes, we define the interval I∗β defined below as ”smallest β-content interval”
of f .

I∗β = {x|x ∈ f−1[d], ∀d ∈ [c,+ inf)} (5)

where
∫

{x|f(x)≥c}
f(x)dx = β and c > 0.

We know that Pr(I∗β) = β and this interval is unique only if f has a finite
number of modes. Now let θ be a set of Cumulative Distribution Function (CDF)
F defined by a possibility distribution function π(·). Thus, an alternative to
equations (4) is:

∀α ∈ [0, 1], ∀F ∈ Θ, I∗F,β ⊆ Aπ,α (6)

where β = 1 − α and Aπ,α is the α-cut of possibility distribution π(·). Thus, a
possibility distribution encodes a family of probability distributions for which
each quantile is bounded by a possibility α-cut. By considering the definition of
necessity, we obtain the following inequalities:

N(A) ≤ P (A) ≤ Π(A), A ⊂ Ω. (7)

Thus by using the possibility and necessity measures, like in the Dempster-Shafer
theory, we can define upper and lower values to describe how an event is likely
to occur.



2.3 Probability-possibility transformation

In many cases it is desirable to move from the probability framework to the pos-
sibility framework. This is why several transformations based on various princi-
ples such as consistency (what is probable is possible) or information invariance
have already been proposed [8, 9, 22, 13, 11]. Dubois et al.[14] suggest that when
moving from probability to possibility framework we should use the ”maximum
specificity” principle which aims at finding the most informative possibility dis-
tribution. Formally the maximum specificity principle is defined as follow:

Definition 5 Given the maximum specific possibility distribution (m.s.p.d) π∗

that encodes the probability distribution function F (i.e. ∀A ⊆ Ω,N∗(A) ≤
P (A) ≤ Π∗(A)) we have, for all π such as ∀A ⊆ Ω,N(A) ≤ P (A) ≤ Π(A),
π∗(x) ≤ π(x), ∀x ∈ Ω.

Because the possibility distribution explicitly handles the imprecision and is also
based on an ordinal structure rather than an additive one, it has a weaker repre-
sentation than the probability one. This kind of transformation (probability to
possibility) may be desirable when we are in presence of weak source of knowl-
edge or when it is computationally harder to work with the probability measure
than with the possibility measure. The ”most specific” possibility distribution is
defined for a probability distribution having a finite number of modes and the
equation is as below [11] :

πt(x) = sup(1− P (I∗β), x ∈ I∗β) (8)

where πt is the ”most specific” possibility distribution, I∗β is the smallest β-
content interval [11]. Then, in the spirit of equation 6, given f and its transfor-
mation π∗ we have :

A∗
α = I∗β where α = 1− β.

Figure (1) presents the maximum specific transformation (in blue) of a normal
probability distribution (in green) with mean and variance respectively equal to
0, 1 (N (0, 1)).

Fig. 1. The m.s.p.d for N (0, 1).



Definition 6 The interval between the lower and upper quantiles of the same
level are called inter-quantiles. The inter-quantile at level p is defined by

[F−1(p), F−1(1− p)], 0 < p < 0.5 (9)

where F−1(·) is the inverse function of the continuous strictly-monotone CDF
F (·).

An inter-quantile at level p contains β proportion of the distribution where
β = 1− 2p. We will call a β-content inter-quantile Iβ , the interval that contains
β proportion of the underlying distribution, we have Pr(Iβ) = β.

Proposition 1 The maximum specific possibility distribution (m.s.p.d) π∗(·) of
unimodal symmetric probability density function f(·) can be built just by cal-
culating the β-content inter-quantile Iβ of f(·) for all the values of β, where
β ∈ [0, 1].

It is evident that for any unimodal symmetric p.d.f f(·), the smallest β-
content interval I∗β of f is also its inter-quantile at level 1−β

2 . Therefore the
proposition 1 can be used.

3 Possibility distribution encoding confidence bands

3.1 Confidence Band

Definition 7 The confidence band for a CDF F is a function which associates
to each x an interval [L(x), U(x)] such as :

P (∀x, L(x) ≤ F (x) ≤ U(x)) ≥ γ where ∀x, 0 ≤ L(x) ≤ U(x) ≤ 1 (10)

In frequentist statistics, a confidence band is an interval defined for each value
x of the random variable X such that for a repeated sampling, the frequency of
F (x) located inside the interval [L(x), U(x)] for all the values of X tends to the
confidence coefficient γ.
Note that given any γ level confidence band, we can use it to infer confidence
intervals of the quantile function Q(β) = F−1(β) = inf{x ∈ R : β ≤ F (x)}, and
that for all β ∈ (0, 1). In other word the confidence band gives simultaneously
confidence intervals for all F−1(β), β ∈ (0, 1). Therefore such confidence inter-
vals derived from confidence bands are Simultaneous confidence Intervals (SMI)
for all population quantiles. We can take advantage of this property to derive
simultaneous γ-confidence intervals for β-content inter-quantiles of the unknown
CDF F (·) and we will denote them by ICβ .
By using proposition (1) and tables of confidence band stated in the statistic
literature [21, 15, 7, 5, 20, 1], we can encode simultaneous γ-confidence intervals
for β-content inter-quantiles ICβ , of an unknown CDF F (·) by a possibility dis-

tribution represented by πC
γ :

πC
γ (x) = 1− max

x∈IC
1−α

(α) where Aα = ICβ , β = 1− α (11)

By construction, the obtained distribution has the following property:



Proposition 2 Let πC
γ be a possibility distribution obtained by equation (11) we

have:
P (∀x, ∀α ∈ (0, 1), P (x ∈ Aα) ≥ 1− α) ≥ γ

Suppose that K is a set of estimated CDF F̂ for F , and that in a repeated
sampling the frequency of the function F̂ being equal to the true CDF F
(∀x, F̂ (x) = F (x)), tends to 1 − α. The function set K will be a confidence
band for F (x). This is expressed formally below:

P (∃F̂ ∈ K,F = F̂ ) = 1− α (12)

Equations (10) and (12) are two different views representing confidence band.
In equations (10), the goal is to find a set K composed of estimated cumulative
distribution functions being one ”choice” for estimating the true CDF F . When
F belongs to a parametric family, we can use the confidence region of its pa-
rameter vector to construct its confidence band [21, 7, 15]. Therefore, confidence
bands build by considering confidence regions are described by equation (12).

3.2 Possibility distribution encoding normal confidence bands

As we saw above, we can use the confidence region of parameter of a proba-
bility distribution to infer its confidence band. Cheng and Iles [7] and kanofsky
[21] used this approach to infer the confidence band of the normal distribution.
Aregui et al. [3], proposed to construct possibility distributions for sample set
drawn from a known parametric family with an unknown parameter vector.
Their possibility distribution encoded the Cheng et al. [7] confidence band. In
another paper, Aregui et al. [2] used confidence region for the parameters of the
normal distribution to infer a possibility distribution. This possibility distribu-
tion encodes all normal distributions having their parameters inside the desired
confidence region of the ”true parameters” belonging to the ”real distribution”
that has generated this sample set. As we saw previously, encoding the confidence
region of parameters results in a possibility distribution which encodes the whole
confidence band of the normal distribution. The band encoded by their method
was built by the ”Smallest Mood exact” confidence region [4]. The ”Smallest
Mood exact” region contains exactly the desired confidence level and it was the
the second smallest confidence region (after the ”likelihood-ratio test”) in [4].
This region is easy to obtain and is particularly useful for small sample sizes.
(Note that if we want to construct the m.s.p.d encoding confidence band of a
normal distribution, we have to find the smallest possible SMIs which leads us
to use the tightest confidence band.) In [15], Frey proposed the minimum-area
confidence region and the minimum area based confidence band for the normal
distribution. She showed that her minimum area confidence band improves other
bands for all sample sizes. In the same way we propose a possibility distribution
which encodes the Frey confidence band. In figures (2,3) we compared our pos-
sibility distribution named ”0.95 Frey C.P.D.” (0.95 Frey Confidence Possibility
Distribution) which is encoded in blue with the Mood based and Smallest Mood
based confidence possibility distribution.



Proposition 3 The Frey normal confidence band improves the confidence band
resulted by the ”Smallest Mood exact” region, in area sense, and this for all
sample sizes.

Sketch of proof : The ”smallest Mood confidence region” is found by the optimal
confidence levels ψ1 and ψ2 for the mean and variance confidence intervals and
also for each sample size such that (1−ψ1)(1−ψ1) = γ = 0.95 [4]. We can observe
that the Frey confidence band for γ = 0.95 gives confidence band with smaller
area (integral over all confidence intervals of inter-quantiles) than the band is-
sued from a Mood confidence region (1− ψ)2 = 0.952 where (1− ψ) = 0.95 and
this for all sample sizes. We know that we the confidence band built from Mood
confidence region (1− ψ)2 where (1− ψ) = 0.95 is everywhere smaller than the
confidence band built from the ”smallest Mood confidence region” for γ = 0.95.
The statement above holds for every value of γ ∈ (0.01, 1) �

3.3 Possibility distribution encoding distribution free confidence

bands

For distribution free confidence bands, the most known method is the Kol-
mogorof [5] statistic for small sample sizes and the Kolmogorof-Smirnof test
for large sample sizes. Some other methods have also been suggested based on
the weighted version of the Kolmogorof-Smirnof test [1]. Owen also proposed a
nonparametric likelihood confidence band for a distribution function. Remark
that Owen’s nonparametric likelihood bands are narrower in the tails and wider
in the center than Kolmogorov-Smirnov bands and are asymmetric on the em-
pirical cumulative distribution function. Frey [20] suggested another approach
in which the upper and lower bounds of the confidence band are chosen to mini-
mize a narrowness criterion and she compared her results to other methods. The
optimal bands have a nice property : by choosing appropriate weights, you may
obtain bands that are narrow in whatever region of the distribution is of inter-
est. Masson et al. [25], suggested simultaneous confidence intervals of the the
multinomial distribution to build possibility distributions and in another paper,
Aregui et al. [3] proposed the Kolmogorof confidence band [5] to construct pre-
dictive belief functions[26] for sample set drawn from an unknown distribution.
Thus, we propose to use the Frey band to construct the possibility distribution
since it allows to have narrower α-cuts for the α’s of interest.

4 Possibility distribution encoding tolerance interval

A tolerance interval, is an interval which guarantees with a specified confidence
level γ, to contain a specified proportion β of the population. Confidence bounds
or limits are endpoints within which we expect to find a stated proportion of
the population. As the sample set grows, a parameter’s confidence interval down-
sizes toward zero. In the same way, increasing the sample size leads the tolerance



interval bounds to converge toward a fixed value. We name a 100%β tolerance
interval(region) with confidence level 100%γ, a β-content γ-coverage tolerance
interval (region) and we represent it by ITγ,β .
Having a sample set which come from a CDF F (·) with unknown parameters and
for a given confidence level γ, we encode all the β-content γ-coverage tolerance
intervals of F (·), ∀β ∈ (0, 1), by a possibility distribution and we name it ”γ-
confidence tolerance possibility distribution” (γ-CTP distribution represented
by πCTP

γ ). When we do not know the distribution of the sample set, we can use
β-content γ-coverage distribution free tolerance intervals ,∀β ∈ (0, 1), of the un-
known probability distribution in order to build Distribution Free γ-Confidence
Tolerance Possibility (γ-DFCTP distribution represented by πDFCTP

γ ) distribu-

tion. The possibility distributions πCTP
γ and πDFCTP

γ will have by construction,
the following property:

Proposition 4 Let πCTP
γ (or πDFCTP

γ ) be a possibility distribution that encodes
tolerance intervals, we have:

∀α ∈ (0, 1), P (∀x, P (x ∈ Aα) ≥ 1− α) ≥ γ where Aα = ITγ,β , β = 1− α

Note that, it may also be interesting to fix the proportion β and make the
confidence coefficient vary , γ ∈ (0, 1), to have a β-content tolerance possibility
distribution.

Possibility distribution encoding tolerance interval for the normal dis-

tribution When our sample set comes from a univariate normal distribution,
the lower and upper tolerance bounds (xl and xu ,respectively) are calculated
by formulas (13) and (14) where, X̄ is the sample mean, S the sample standard
deviation, χ2

1−γ,n−1 represents the p-value of the chi-square distribution with
n − 1 degree of freedom and Z2

1− 1−β
2

is the squared of the critical value of the

standard normal distribution with probability (1− 1−β
2 ) [19]. Hence, the bound-

aries of a β-content γ-coverage tolerance interval for a random sample of size n
drawn from an unknown normal distribution are defined as follows:

xl = X̄ − kS, xu = X̄ + kS (13)

k =

√

√

√

√

(n− 1)(1 + 1
n
)Z2

1− 1−β
2

χ2
1−γ,n−1

(14)

For more details on tolerance intervals see [16].
By using proposition (1), we can find the boundaries of the (1− α)-cut A1−α =
[xl, xu] of the possibility distribution which are calculated by (13), then we obtain
the possibility distribution πCTP

γ as computed below, where Φ(·) is the CDF of
the standard normal distribution.

πCTP
γ (x) = 2(1− Φ

(

√

√

√

√

χ2
(1−γ,n−1)(

x−X̄
S

)2

(n− 1)(1 + 1
n
)

)

) (15)



Possibility distribution encoding distribution free tolerance interval

Let {x1, x2, · · · , xn} be n independent observations from the random variable
X and let f(x) be its continuous probability density function. A distribution
free tolerance region is the region between two tolerance limits where the prob-
ability that this region contains β proportion of the unknown probability dis-
tribution function is equal to γ . The mentioned tolerance limits are functions
L1(x1, x2, · · · , xn) = xr and L2(x1, x2, · · · , xn) = xs constructed based on the
order statistics of the observations.

∫ xr

xs

f(x)dx ≥ β, (16)

In order to find the distribution free β-content γ-coverage tolerance interval (re-
gion) of continuous random variable x, we have to find the smallest n and the
order statistics xr and xs for which the probability that equation (16) holds
is greater or equal to γ. Equation (16) has a sampling distribution which was
first defined by Wilks [30] for a univariate random variable with symmetrical
values of r and s. Wilks [30] definition puts the following constraints on r and
s: s = n − r + 1 and 0 < r < s ≤ n. Wald [27] proposed a non-symmetrical
multivariate generalization of the Wilks method. Note that because distribution
free tolerance intervals are based on order statistics, the sample size required
for a given distribution free tolerance interval may increase with the interval’s
confidence level (γ) or the interval’s proportion β. For example, in order to have
95% 0.99-content tolerance interval between the first and last element of a sam-
ple set, using formula in [18], we need n = 473. For the calculation of the sample
size requirement for tolerance intervals. The reader can refer to [16] and [18].

The construction of possibility distribution based on distribution free tol-
erance intervals (region) raises some problems, because for a given sample set
there are many ways to choose the r and s order statistics. If we choose them
symmetrically such that r = n − s + 1, then the possibility distribution which
encodes these intervals does not guarantee that its α-cuts include the mode and
the α-cuts are neither the smallest ones. In fact, for any symmetric unimodal
distribution, if we choose r and s order statistics in a symmetrical way, we will
have tolerance intervals which are also the smallest possible ones and also in-
clude the mode of the distribution (see proposition (1) ). Thus the Distribution
Free γ-Confidence Tolerance Possibility (πDFCTP

γ ) distribution is constructed

by equation below where xr and xs are the limits for the distribution free ITγ,β
of our sample set.

πDFCTP
γ (x) = 1− max

x∈IT
γ,1−α

(α) where Aα = ITγ,β = [xr, xs], β = 1− α

5 Possibility distribution encoding prediction intervals

Let us now define a prediction interval and its associated possibility distribu-
tion. A prediction interval uses past observations to estimate an interval for what



the future values will be, however other confidence intervals and credible inter-
vals of parameters give an estimate for the unknown value of a true population
parameter.

Definition 8 Let x1, x2, · · · , xn be a random sample drawn from an arbitrary
distribution, then the interval [xl, xu] is a 100%(1 − α) prediction interval such
that:

P (xl ≤ x ≤ xu) = 1− α.

The prediction interval for the next future observation from a normal distribution
is given by [17]:

xn+1 −Xn

S
√

1 + 1/n
∼ tn−1 (17)

IPrev
β = [Xn − t(α

2
,n−1)S

√

1 +
1

n
,Xn + t(1−α

2
,n−1)S

√

1 +
1

n
] (18)

So the equation (18) gives a two tailed 1 − α prediction interval for the next
observation xn+1 , where Xn represents the estimated mean from the n past
observations , t(1−α

2
,n−1) is the 100( 1+p

2 )th quantile of Student’s t-distribution
with n− 1 degrees of freedom and β = 1− α.
By using proposition (1) and equation (18), we can infer a prediction possibility
(πPrev) distributions for a sample set which comes from a normal distribution
with an unknown mean and variance. πPrev is computed as below where Tn−1(·)
is the CDF of the Student distribution with n− 1 degree of freedom. Equation
(5) shows the properties of the α-cuts of πPrev.

πPrev(x) = 2(1− Tn−1

(∣

∣

∣

∣

xn+1 −Xn

S
√

1 + 1/n

∣

∣

∣

∣

)

) (19)

By construction, the obtained distribution has the following property:

Proposition 5 Let πprev be a possibility distribution that encodes prediction
intervals using equation (19) build from a random sample set X = {x1, . . . , xn}
we have:

∀α ∈ (0, 1), P (xn+1 ∈ Aα) ≥ 1− α where Aα = IPrev
β

For distribution free prediction intervals, the reader can find more informa-
tion in [16],[23] and [6].

6 Discussion and Illustrations

We have seen three different types of intervals and their encoding possibility
distributions. The most known approach is to choose the possibility distribution
which is encoded by confidence bands. However, depending on the application,
we might be interested to infer other possibility distributions than the one that



encodes conventional SMIs. We can deduce, from the propositions 2, 4 and 5,
that:

∀x, πC
γ (x) ≥ πCTP

γ (x) ≥ πPrev(x).

The choice of the distributions depends on the application. In this work, because
of the lack of space, we just focused on two-sided intervals. It might be useful to
construct one-sided possibility distributions encoding one-sided intervals. One
can also be interested to encode percentiles of a distribution with a possibility
distribution, but note that instead of using possibility distribution encoding
two-sided percentiles we can use πCTP

γ (two-sided). For more information the
reader can refer to [16]. The reviewed distributions can be used for different
purpose in uncertainty management. Wallis [29] used the Wald et al.[28] normal
tolerance limits to find tolerance intervals for linear regression. In the same
way, we can use our γ-CTP distribution to build probabilistic regression which
encodes tolerance bounds of the response variable. Note that we are not restricted
to linear possibilistic linear regression with homoscedastic and normal errors.
We can also apply our γ-CTP and γ-DFCTP distributions to do possibilistic
non-parametric and parametric regression with homoscedastic or heteroscedastic
errors.
Figure (2) shows the πC

0.95 for a sample set of size 10 with sample mean and
sample variance respectively equal to 0 and 1, figure (2) represents the same
concept for n = 25. This figure illustrates the proposition 3. Indeed, we can
see that our possibility distribution is more informative than the Aregui et al.
possibility distribution. In figure (5) the blue color is used to represent πPrev
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Fig. 2. Possibility distribution encoding
normal confidence band for a sample set of
size 10 having (X̄, S) = (0, 1).
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for different sample sets drawn from the normal distribution, all having the
same sample parameters, (X,S) = (0, 1) but different sample sizes. The green
distribution represents the probability-possibility transformation of N (0, 1) .
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Fig. 4. 0.95-confidence tolerance possibility
distribution for different sample sizes hav-
ing (X,S) = (0, 1).
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In figure (4) we used the previous settings for the πCTP
0.95 . Note that, for

n ≥ 100, the tolerance interval is approximately the same as the maximum like-
lihood estimated distribution. In figure 6, the blue curves represents the πDFCTP

0.95

for a sample set of size 450, drawn from N (0, 1) and the green distribution rep-
resents the probability-possibility transformation for N (0, 1). In figure (7), we
used two different sample sets with n = 194 to build two different πDFCTP

0.9 .
In this example, in order to reduce the required sample size, we restricted the
biggest β to 0.98.

7 Conclusion

In this work, we proposed different possibility distributions encoding different
kind of uncertainties. We also proposed a possibility distribution encoding con-
fidence band of the normal distribution which improves the existing one for all
sample sizes. Building possibility distributions which encode tolerance intervals
and prediction intervals are also new concepts that we introduced in this work.
For future works, we propose to build in the same way the possibility distribu-
tions encoding distribution free tolerance regions [27] and tolerance regions for
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Fig. 6. Distribution free 0.95-confidence
tolerance possibility distribution for a sam-
ple set with size 450 drawn from N (0, 1).
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Fig. 7. Distribution free 0.9-confidence tol-
erance possibility distributions for a sample
set with size 194 drawn from N (0, 1).

the multivariate normal distribution [24]. We also propose to use our distribu-
tions for possibilistic regression.
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