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RESUMO 

Neste estudo uma abordagem multi niveis é proposta para estudar o problema da definição das taxas a serem 

aplicadas por un provedor publico de serviços de controle e gerenciamento do trafego aéreo. O provedor de 

serviço procura, dentro de toda segurança,  fomentar a demanda final dos usuários do sistema de transporte 

aéreo. Esta analise lea a considerar a resolução de um problema de programação matemática de tipo bi nivel 

onde o provedor do serviço é o “líder” e o setor das empresas aéreas é o “seguidor”. No caso mono dimensional, 

uma solução analítica é estabelecida e analizada para este problema. Um esquema natural de negociação entre o 

provedor de serviço e as empreasas aéreas é então considerado e condições suficientes de convergência do 

processo para a solução ôtima são estabelecidas.   

ABSTRACT 

In this study a multilevel framework is proposed to analyze the charges definition problem for a public 

ATC/ATM service provider whose final objective is, while guarranteeing safety,  to promote the level of end 

users demand. This leads to the formulation of a bi-level  optimization program involving ATC/ATM service 

provider as the leader  and  the whole airline sector as the follower. A direct optimal solution has been obtained 

in the simplistic considered one dimensional case. Then a natural negotiation process between the ATC/ATM 

service provider and the airline sector is introduced. Sufficient conditions are established so that the proposed 

negotiation process converges towards  the optimal solution.  

Keywords: pricing, bilevel programming, ATC/ATM, air transportation 

 

1. INTRODUCTION 

 

Along the last decades, many studies in the fields of Operations Research, Systems 

Management and Applied Economics have been devoted to air transportation planning , tariffs 

and operations related issues. In general the analysis which have been performed are limited 

to direct effects so that the scope of the adopted models are in general too limited. This 

implies that feedback phenomena between the different actors and involved air transportation 

activities cannot be fully taken into account to perform a comprehensive analysis and to 

design  efficient plans and policies . In this study a multilevel approach is developped. 

The objective assumed for airlines in this study is of a pure economic nature: profit 

maximization. The main concern of this study being with the definition of efficient 

ATC/ATM charges , the whole airline sector is taken as a whole, so that market competition 

between airlines is not contemplated. This is a limitation of the study, which is done in sake 

of limited complexity, since in fact, ATC/ATM charges may have some influence on the 

equilibrium state of different air transportation markets. However, it is also worth to observe 

that these airlines are in general represented by a unique entity during negotiations with 

ATC/ATM authorities.  



 

In the case of a public ATC/ATM service provider, it is considered that the main objective is 

to promote air transportation for end users, i.e. the passengers ( freight is not considered 

explicitly in this study), through a safe and efficient transportation supply by airlines and 

ATM authorities. Hence a passengers demand model, reactive to airlines tariffs is introduced 

to take into account indirect influence of ATC/ATM charges on passengers demand levels 

over different air transportation markets. Another objective, which is taken into account 

through inequality constraints, is that the economic performance of the airline sector is not 

impaired by the retained levels of ATC/ATM charges. Also, ATC/ATM costs related directly 

with the current traffic situation (investments costs leading to enlarged ATC/ATM capacity to 

face  future traffic situations are not considered) should be adequately covered. This results in 

a bilevel optimization problem which is of the upper linear-lower linear class.  

To illustrate the approach a one dimensionnal system is considered. In that case it is possible 

to establish directly its optimal solution while sufficient conditions are established so that a 

negotiation process between ATM authorities and the airline sector leads to this optimal 

solution. There, the problem is split in two dependent problems: one where ATM authorities 

determine ATC/ATM charges for given airlines tariffs and one where the airline sector 

determines the tariffs and seat capacity supplies over the different markets for given 

ATC/ATM charge levels.  

2. BASIC ASSUMPTIONS 

Here is considered the case of an elementary air transportation system composed of a 

single pair of airports linked by a single air route. There is a unique ATC/ATM operator and a 

unique airline operating between these two airports. 

 

Figure 1: The elementary ATC/ATM case 

The potential demand is supposed to be composed of round trips and to obey, for the sake of 

simplicity and the ability to develop clear analytical and graphical results, to the following 

affine demand function: 

)1(0   D                                                            (1) 

where  is the effective level of potential demand. Here it is supposed that there is a unique 

class of travelers and a unique apparent price )1(~    is adopted for round trips. D0 is an 

absolute potential demand and  is a constant positive parameter characteristic of the response 

of the market to price changes. The parameter  represents a tax index applied to each trip 

ticket.  

Other demand models such as the exponential one with constant price elasticity : 



 

    ~

0

 eD                                                              (2) 

or either unspecified models such as: 

)~( D                                                                (3) 

with adequate assumptions such as: 

0~/  D    and   0~/ 22  D                                         (4) 

could have been adopted. 

Beyond the ATC charges, an additional way to fund the ATC services which appears natural, 

is to assign a proportion  (  1,0 ) of the above tax, which is paid by the final users, to the 

ATC service provider. 

The transport capacity of the airline is given by the maximum  affordable frequency  of 

service maxf which is related with the size of the fleet of the airline. Here for simplicity and 

considering that for the given time period f can be a high number, f will be taken as real. 

When a frequency of service  f is adopted, the operations costs are supposed to be given by: 

 
F

ALNCfvc  )(                                                             (5) 

here: 

-  c is a positive parameter (a mean variable cost with respect to frequency). It is 

related with the price of fuel, the cost of the crew and the length of the flights. 

- F

ALNC is a fixed cost related with the sizes of the fleet and the crews of the airline as 

well as with the characteristics of the operated network. 

- v is the ATC tariff applied to a round flight, including en route control and airport 

control. Here no distinction will be made between airport taxes and approach and en 

route charges. 

The available seat capacity is given by: 

fq                                                              (6) 

where q is the mean seat capacity of an aircraft of the fleet of the airline. 

The operating costs of the ATC supplier are given by: 

 
F

ATCCf                                                                 (7) 

here: 

-  is  a positive parameter ( a mean variable cost with respect to frequency). It is 

related mainly with the length of the flights. 

- F

ATCC is a fixed cost related with the characteristics of the controlled airspace and 

with the size of the ATC staff. 

No saturation effects with consequences over the cost functions of the ATC service provider 

and the airline are considered in this study. 

 

3. OPTIMIZING CHARGES FOR A PUBLIC ATC/ATM SERVICE SUPPLIER 

 

Here it is supposed that the final objective of the public ATC/ATM service supplier is to 

maximize the satisfied demand while guarranteeing a minimum economic return for the 

ATC/ATM services, RATC, and a minimum economic return RALN for the airline. It is supposed 

also that the airline tries to maximize her benefit taking into account her cost function and the 

ATC/ATM tariff. 



 

 

3.1 A bilivel program for public ATC/ATM pricing 

 

According to the above assumptions, a bilivel program can be established: 

 
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with  

ATC

F

ATC RCfvf  )(                                                        (9) 

 

where  is the tax rate applied to air travellers, and the airline’s profit constraint: 
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where  and f are given by the solution of:     
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with    )1(,min,0max 0   Dfq                                        (12) 

and  

max0 ff                                                                   (13) 

 

3.2  Solving the airlines profit maximization problem 

  

To solve the airline’s profit maximization, two cases must be considered with respect to the 

effective level of passengers demand. 

 Either : 

fq                                                                       (14) 

 or: 

)1(0   D                                                             (15) 

 

3.2.a Case in which effective demand is determined by the seat capacity 

 

 In this first case, we have:  ~)1( 00  DDfq                                              (16) 

where  

                                                                )1(~                                                             (17) 

Now, considering airline’s profit level curves ALNp , we get: 

)( vcq

Cp
f

F

ALNALN 
                                                               (18) 

where ALNp  is a chosen level of profit for the airline. Changing the value of ALNp  and 

considering constraint (13) in the (, f) plane , we get hyperbola arcs for the profit level 

curves. 

 



 

It appears clearly in figure 2 that the maximum profit is obtained when constraint (13) reduces 

to equality. This result is also valid (see figure 3) when the tangency of a profit level curve 

and the demand ligne provides a frequency above fmax. 

In the case of no active fleet constraints, we get a double solution for the following equation: 
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when ALNp  reaches the value: 
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Figure 2: Optimization of airline profit, no active fleet constraint, full capacity 

 

 

 
 

Figure 3:  Optimization of airline profit with an active fleet constraint at full capacity 



 

 

and either (no activation of the fleet constraint): 

 ~22
* 0D

q
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or (activation of the fleet constraint): 

max
0
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qD
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while the optimal airline profit is given either by max*

ALNALN pp   (relation (16)) or by: 
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3.2.b Case in which effective demand is determined by the price level 

 

 In this second case, we have: ~0  Dfq                                                              (25) 

 

Now, considering airline’s profit level curves ALNp , we get: 
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where ALNp  is a chosen level of profit for the airline. Changing the value of ALNp  and 

considering constraint (25) in the (, f) plane , we get parabola arcs for the profit level curves. 

 

 

 
 

Figure 4:  Optimization of airline profit with priced constrainted demand 

 

 

It appears that here again the optimal solution is given by relations: 
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with again (20), (22) and : 
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Relation (22) reveals the influence of ATC/ATM tolls over air transportation tariff and 

consequently over satisfied demand (relation (28)). In the following, it will be assumed that 

the fleet constraint remains inactive. 

 

  

3.3 Solving the public ATC/ATM service provider problem 

 

Considering the solution of the airline profit maximization problem, problem (8), (9), (10) 

with (11), (12) and (13) becomes: 
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under the constraints: 
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and    

                                                        cDqv  0)~/(0                                                 (32) 

 

This last condition insures that there is some satisfied demand. 

This problem can be rewritten as: 
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under the constraints: 
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Constraints (34) and (35) can be rewritten as: 
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          and 
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The equation:                                02  cbxax                                                            (40) 

 

presents real roots which are then positive, when: 
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When  = 0, this condition reduces to: 
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Let x1 be the minimum real root of (40) when it exists: 
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When  =0, we get: 
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and x1 is then less than xmax if: 

0)()0()~/( 0   cDq                                              (47) 

 

It will be supposed in the following that ,  and RATC are chosen so that x1 is less than xmax . 



 

The roots of equation: 
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are always real, one of them being always positive: 
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 The smallest of these roots, 
2x ,  is such as: 
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Considering (36), 
2x is such as: 

max2 xx                                                             (51) 

 

Here also,it will be supposed in the following that  and RALN are chosen so that x2 is less than 

xmax . By inspection of all the possiblities, only two situations lead to a solution for problem 

(33), (34), (35) and (36). 

 They are represented graphically bellow: 

- In the case in which x2 is positive superior to c, to have a solution , x1 must be inferior or 

equal to x2 and superior to c, then the solution x* is equal to x1.  

- In the case in which 
2x is less than c, there is a solution given by   21,max* xxx   when: 

  max21,max xxxc                                                   (52) 

The ordinates in figure 5 and figure 6 bellow represent the profits above the guarranteed 

values RATC and RANL. 

 

 



 

Figure 5:  Solution of the public ATC/ATM supplier problem (case in which 

2x is superior to c) 

 

 

 

 

Figure 6: Solution of the public ATC/ATM supplier problem (case in which 

2x is inferior to c) 

 

 

4. GLOBAL SOLUTION FOR PUBLIC ATC/ATM SERVICE PROVIDER 

 

It will be supposed for the following that  and RALN are  chosen so that cx 
2  (figure 5): 
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then, only the first case is to be considered and the solution of the whole problem (8) to 

(13) is given by: 
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The level of the satisfied demand is given by: 
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The profit of the public ATC supplier is equal (see figure 5) to the minimum guarranteed 

level  RATC while the profit of the airline is given by: 
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which is superior or equal (see figure 4) to the minimum guarranted level RALN. 

 



 

From relations (54) and  (55) , it is easy to show ( )0/*  v that for a given value of , 

the value of  which maximizes  is 1*  .  

Then, a further step towards the optimization of the sector would be to choose efficiently 

the rate of the tax applied to the trips. In that case, considering (54) with  =1 , we should 

define )(* v  by : 
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and the best value of  would be solution of: 
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and  
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However, the value of parameter  is the result of an exogenous choice process where 

overall economic as well as political considerations are taken into account. 

 
 

Figure 7:  Financial flows and activity levels with public ATC/ATM service supplier 

 

  

 

5. OPTIMALITY OF A PRICING NEGOTIATION PROCESS 

 



 

Since the considered pricing problem involves two major economic agents, the ATC/ATM 

service provider and the airline sector, a solution of the considered bilevel problem resulting 

from the hypothesis with respect to the nature, public or private, and the goals of the 

ATC/ATM service provider, through a negociation process can be of interest. Following the 

general formulation (5) to (10) , a natural negociation process based on the objectives of the 

involved economic agents could be the following: 
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and the airline’s profit constraint: 
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n
 are provided by the airline sector which solves the following problem given 
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This process is represented in figure 8: 

 

 
 

Figure 8: Negotiacion process between public ATC/ATM and airlines 
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function of v, the solution of the problem corresponds to the saturation of his own budget 

constraint, so that: 
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Here we consider the case in which the solution of the airline problem is given by: 
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then we get a recurent formula for v
n
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For simplicity we consider here only the case in which  = 0, then: 
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or 
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Here we consider that the following condition is satisfied: 
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0                                                               (72) 

 

Then in figure 9, the convergence of the negociation process is analyzed graphically. 
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Figure 9:  Convergence of the public ATC/ATM- Airline negociation process 
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then there are two equilibrium points: point A which is a stable equilibrium solution and point 

B which is an unstable equilibrium solution. It appears that point A corresponds to the optimal 

solution of the bilevel problem treated in section III.3. In that case the proposed negociation 

schemes leads to the optimal solution. 

6. CONCLUSION  

 

In this study a multilevel framework has been proposed to analyze the ATC/ATM charges 

definition problem in the case of a public ATC/ATM service provider in a deregulated 

market. Here the one dimensional case has been considered. The objective which has been 

assumed for the ATC/ATM public service provider is to promote air transportation for end 

users while the objective of the airlines sector is profit maximization. This has led to the 

formulation of a bi-level  optimization program involving ATC/ATM service provider as the 

leader  and  the whole airline sector as the follower. A direct optimal solution has been 

obtained in the simplistic considered one dimensional case. Then a natural negotiation process 

between the ATC/ATM service provider and the airline sector has been introduced, splitting 

this problem in two dependent problems: one where ATM authorities determine ATC/ATM 

charges for given airlines tariffs and one where the airline sector determines the tariffs and 

seat capacity supplies over the different markets for a given ATC/ATM charge level. 

Sufficient conditions have been established so that the proposed negotiation process 

converges towards  the optimal solution. Then it appears of interest to the service provider to 

adopt a similar negotiation process when dealing with the full scale networked pricing 

problem. 
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