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Hybrid Backstepping Control for Rotorcraft 

Guidance  

Antoine Drouin, Jules G. Slama and Félix A.C.  Mora-Camino 

 

Abstract— The purpose of this communication is to 

display a non-linear control approach based on 

backstepping for the positioning and orientation for a 

four-rotor aircraft. Realistic rotorcraft flight dynamics 

are introduced and the effectiveness of its control 

channels is analyzed. Then two complementary 

implementations of the backstepping control approach 

are considered. The compatibility of these control 

approaches with a two-layer control structure devoted 

to the guidance of the rotorcraft is displayed. The 

resulting  control laws are detailed and their expected 

performances are discussed. A simulation study is 

performed where the performances of the proposed 

control structure are compared with those of a classical 

non linear inverse control solution. 

 

I. INTRODUCTION 

N the last years a large interest has risen for the four-

rotor concept since it appears to present simultaneously 

hovering, orientation and trajectory tracking capabilities 

of interest for many practical applications [1]. The flight 

mechanics of this rotorcraft are highly non-linear and 

different control approaches [2], [3], have been considered 

with little success to achieve either only autonomous 

hovering and orientation or also trajectory tracking.  

In this paper we consider the flight dynamics of a four- 

rotor aircraft with fixed pitch blades. The control problem 

of interest is the design of flight control laws enabling 

autonomous positioning and orientation for this class of 

rotorcraft. This study investigates the solution of this 

problem using a backstepping control approach. Here it is 

required that a single continuous control law performs the 

whole maneuver while to achieve it by manual control it 

appears necessary to go through a succession of elementary 

maneuvers since the system is underactuated.  

 The backstepping control approach, which has also been 

applied to airships flight control law design [4], is 

introduced. Two different design techniques are developed 

following the main guidelines of this approach. These two 
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implementations  appear of direct interest for the design of 

a new two-layer control structure based on backstepping 

control laws.  The proposed control approach is compared 

with a nonlinear inverse control approach introduced in 

[10]. 

II. ROTORCRAFT FLIGHT DYNAMICS 

The considered system is shown in figure 1 where rotors 

one and three are clockwise while rotors two and four are 

counter clockwise. The main simplifying assumptions 

adopted with respect to flight dynamics in this study are a 

rigid cross structure, constant wind, negligible aerodynamic 

contributions resulting from translational speed, no ground 

effect as well as small air density effects and negligible 

response times for the rotors. It is then possible to write the 

rotorcraft flight equations as follows [7]. 

 
Fig. 1. Four rotor aircraft 

 

A. Rotorcraft Flight Equations  

The rotor forces and moments are given by: 

2

ii fF ω=         (1-1) { 4,3,2,1∈i }
}2

iii fkFkM ω==  i   (1-2)  { 4,3,2,1∈
Where f and k are positive constants and ωi is the rotational 

speed of rotor i. These speeds and forces satisfy the 

constraints: 

max0 ωω ≤≤
i

i
{ 4,3,2,1∈i }       (2-1)    

{ }4,3,2,10 maxmax ∈=≤≤ ifFF ii
i

ω  (2-2) 

Since the inertia matrix of the rotorcraft can be considered 

diagonal with Ixx = Iyy, the roll, pitch and yaw moment 

equations may be written as: 

xxIrqkFFlp /))(( 224 +−=&               (3-1) 

yyIrpkFFlq /))(( 431 +−=&                (3-2) 
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zzIFFFFkr /))(( 3412 −+−=&              (3-3) 

 

Where p, q and r are the roll, pitch and yaw body angular 

rates. Here   and   , where 

I

)(2 yyzz IIk −= )(4 zzxx IIk −=
xx, Iyy and Izz are the inertia moments in body-axis, and l is 

the length of the four arms of the rotorcraft. 

Let  φ, θ and ψ be respectively the bank, pitch and heading 

angles, then the Euler equations relating the derivatives of 

the attitude angles to the body angular rates, are given by: 

)cos)(sin( rqtgp φφθφ ++=&           (4-1) 

rq φφθ sincos −=&                  (4-2) 

θφφψ cos/)cos(sin rq +=&           (4-3) 

In this study the wind is given in the local Earth reference frame 

by ( )'zyx wwww = . The wind is supposed constant while the 

ground effect is neglected. The acceleration ( )'zyx aaaa = of 

the centre of gravity, taken directly in the local Earth reference 

frame, is such as: 

)))sin()sin()cos()sin())((cos(/1( xx dFma −+= φψφθψ    (5-1) 

)))sin()cos()cos()sin())((sin(/1( yy dFma −−= φψφθψ    

(5-2) 

))cos())(cos(/1( zz dFmga +−= φθ               (5-3) 

 

where x, y and z are the centre of gravity coordinates,  m is the 

total mass of the rotorcraft and: 

 
4321 FFFFF +++=                 (6) 

Here the drag force ( )'zyx dddd =   is given by: 

 ( )')()()( 222

zyxzyx wzwywxwzwywxcd −−−−+−+−= &&&&&&   (7) 

with dCSc ρ2/1= where ρ is the volumetric mass of the 

air, S is the reference surface for the aerodynamics of the 

rotorcraft and Cd is its dimensionless drag factor.  The 

components of the rotorcraft airspeed are: 

   ,       and     xa wxu −= &
ya wyv −= &

za wzw −= &      (8) 

The equilibrium conditions (hovering) in an horizontal wind 

(wz =0) with a given heading ψ  are such that: 

,0,0,0 === rqp 0,0,0 === zyx &&&        (9-1) 

))sin)(cos/(( yxe wwmgwcarctg ψψθ +=          (9-2) 

)cos)cos)(sin/(( eyxe wwmgwcarctg θψψφ −=    (9-3) 

with      

)coscos4/(4321 eemgFFFF φθ====          (9-4) 

 

B. Analysis of Rotorcraft Flight Dynamics  

Here we are interested in controlling the four-rotor aircraft 

so that its centre of gravity reaches and stays hovering at a 

predefined position while its heading acquires and 

maintains a given orientation. Many potential applications 

require this capability to be available in UAVs’ while this 

problem can be also considered as a first step towards the 

design of more efficient trajectory tracking systems.  

The manoeuvre under study is, when performed manually 

through direct radio control of the four engine thrusts (see 

picture 1), quite difficult to be achieved in one step. 

Experimentally it appears that no direct approach is feasible 

and that much depends on the rotorcraft attitude angles φ 

and θ specially when considering the control of its 

horizontal position error (x-xc, y-yc).  

Equations (5-1) and (5-2) show that to get any horizontal 

acceleration, it is necessary to have a non zero attitude 

( 0≠φ or 0≠θ ), they show also that the orientation of the 

acceleration is dependent of the heading angle ψ. Equations 

(3-3) with (4-3) and (5-3) show that given the attitude 

angles φ and θ, it is easy to master the heading angle error 

(ψ-ψc) and the vertical position error (z-zc). From equations 

(3-1), (3-2) and (3-3), it appears that the effectiveness of the 

rotor actuators is much larger with respect to the roll and 

pitch axis than with respect to the yaw axis. Then we 

consider that attitude piloting is involved with controlling 

the angles θ and φ. In equations (3-1) and (3-2), the effect 

of the rotor forces appears as differences so, we define new 

attitude inputs uq and up as: 

31 FFuq −=                    (10.1) 
24 FFup −=

In the heading and position dynamics, the effects of rotor 

forces and moments appear as sums, so we define new 

guidance inputs uψ and uz as: 

 

)()( 3142 FFFFu +−+=ψ   
4321 FFFFFuz +++==     (10.2) 

']['][ 4321 zqp uuuuuFFFFF ψ==       (11-3) 

 

Equations (3-1), (3-2) and (3-3) are rewritten: 

 

                                    (12-1) xxp Irqkulp /)( 2+=&

yyq Irpkulq /)( 4+=&                   (12-2) 

zzIukr /ψ=&                           (12-3) 

It appears that uq and up can be made to vary significantly 

with uψ and uz remaining constant. Attitude angles φ and θ 

can be seen as virtual controls for the horizontal position of 

the rotorcraft. Here the attitude dynamics are considered to 

be the fast dynamics , they are at the heart of the control 

system. The heading and height dynamics are intermediate 

while the dynamics of the horizontal position coordinates 

are the slower. This can lead to multilevel closed-loop 

control structures.  

III. BACKSTEPPING CONTROL 

A. The Backstepping Control Approach 

The backstepping technique is a rather recent non-linear 

control technique, which applies to cascaded systems. The 

main idea is to use intermediate state variables as virtual 

inputs to take advantage of the causality relations displayed 

by the cascaded state representation. The convergence of 



 

 

 

the output variables towards their target values is obtained 

by the construction, step by step, of an auxiliary Lyapunov 

function. This general idea can be developed in different 

ways, as it will be shown in the next sub-section.  

The main interest of the backstepping approach is that the 

stability of the controlled system as well as the convergence 

of the outputs towards their reference values can be 

guaranteed without inducing, like in the case of the non-

linear control approach, the decoupling of the outputs 

dynamics. Indeed, it can be considered that the decoupling 

of the outputs dynamics demands an additional effort from 

the control channels with then a higher possibility of 

saturation for the actuators, either in position or speed, 

resulting in downgraded performances. Finally, another 

advantage of this approach is that several matrices of 

parameters are introduced while constructing the control 

law, providing a large variety of possibilities to shape 

conveniently the outputs dynamics as well as the control 

signals. 

B. Direct Implementation of the Backstepping 

Consider a cascaded system whose state representation is 

given by: 

 21 xx =&     and   ),( 22 Uxgx =&                   (13) 

where nRx ∈1 , 
nRx ∈2  are state variables and nRu ∈  is 

the control input and g is a smooth diffeomorphism with 

respect to u. The control objective here is to design a 

control law such that the state 1x  can be stabilized at cx1 . 

Here also, 2x  can be regarded as a virtual control input for 

the dynamics of 1x  while the dynamics of 2x  are 

controlled by the real control input U . Now, suppose that 

there exists a control law ),( 112 cxxGx = such that the 

dynamics of 1x can be stabilized at cx1  while we can find a 

Lyapunov function )( 111 cxxV − , which satisfies the 

condition: 

)(),()'/()(
111111111 ccc

xxWxxGxVxxV −−≤∂∂=−&        (14) 

where )( 11 cxxW −  is a positive definite function of x1. A 

possible choice is: 

)(),( 1111 cc xxxxG −Λ−=                (15) 

where Λ is a positive definite symmetric matrix. Then in 

this case: 

)()'(
2

1
),()(

111111111 cccc
xxxxxxWxxV −−==−   (16) 

The whole dynamics can be expressed as: 

 zxxGx c += ),( 111
&     and     wz =&      (17-1) 

 where              ),( 112 cxxGxz −=                        (17-2)  

and    

       212 )/(),( xxGuxgw ∂∂−=            (17-3) 

Then a candidate Lyapunov function of the full system is 

given by: 

zzxxVzxxV
cc

'2/1)(),(
11111

+−=−               (18) 

),( 11 zxxV c− is given by: The time derivative of 

        (19) wzzxxGxVzxxV
cc

')),((')/(),(
111111

++∂∂=−&

then:                        

wzzxVxxWzxxV
cc

')'/()(),(
111111

+∂∂+−−≤−&   (20) 

and by an adequate choice of w , such as  :                                             

                         zxVw Ω−∂∂− )/( 11=               (21)  

where Ω is a symmetric positive definite matrix, the full 

system is  globally asymptotically stable since it satisfies 

the following condition: 

        (22) zzxxWzxxV
cc

Ω−−−≤− ')(),(
1111

&

 Finally, the effective control input is given by: 

( )),()/(()(
112112

1

c
xxGxxVxgU −Ω+∂∂−= − )          (23) 

 

C. Indirect Implementation of Backstepping  

Now we consider the case where the cascaded system 

cannot be written easily in the form  (13), but it obeys to: 

 ),( UXgX =&    with   ( )XhY =                (24) 

where X∈R
n
, U∈R

m
, Y∈R

m
, g is a smooth vector 

field of X and U and h is a smooth vector field of 

X. The system has, with respect to each 

independent output Y  , a relative degree ri i 

( , i = 1, … , m) around the state nr
m

i i ≤+∑ =1
)1(

X   if the output dynamics can be written as: 0

 ) ,()(
)1(

)1(
1

1

UXBXA

Y

Y

mr
m

r

+=
⎟⎟
⎟⎟
⎠

⎞
⎜⎜
⎜⎜
⎝

⎛
+

+
M                   (25) 

Here we assume that  , where the 

jacobian of B with respect to the control inputs is invertible.  

121 ==== mrrr L

In that case, two auxiliary outputs can be defined: 

YYYLZ c
&+−= )(1

   and      YZ &=2
              (26) 

where L is a positive definite symmetric matrix. A 

candidate Lyapunov function is then given by: 

)(
2

1
2

'

21

'

12 ZZZZV +=                  (27) 

The time derivative of V2 is such as: 

  
22112 '' ZZZZV +=&                     (28-1) 



 

 

 

or     YYLYYLYYYLV c
&&&&&&& ')(')2)((2 −++−=         (28-2) 

Choosing a control such as :                             

)2( YYLYYL &&&& +Λ−=+                 (29) 

where Λ is another symmetric positive definite matrix. We 

have: 

YLYYYYLYYYLV cc
&&&&& '))((')2)((2 −+−Λ+−−=      (30)       

and it is straightforward to show that the system is globally 

asymptotically stable. The corresponding control law is 

given by : 

 ))()2()()((1 XAYLYYLXBU c +Λ++−Λ−= − &   (31) 

 

IV. APPLICATION OF BACKSTEPPING TO 

ROTORCRAFT FLIGHT CONTROL 

 

Analyzing relations  (3-i), (4-i) and (5-i), i =1 to 3, it 

appears that their equations can be separated into two sets: 

one relative to the slower dynamics, the horizontal 

dynamics, and corresponding to the first case considered in 

the previous section and one relative to other dynamics and 

corresponding to the second case. The above approaches of 

backstepping are now applied to each of the control layer 

necessary to perform attitude control and guidance of the 

rotorcraft. 

A. Control of Rotorcraft Attitude and Level  

The attitude and altitude dynamics can be given by the state 

equations: 

)cos)(sin( rqtgp φφθφ ++=&              (32-1) 

),,,,(

/)cossin(

θφ
φθθθφ ψ

rqpP

Iutgkutglul

p

xxqp

+
++=&&

    (32-2) 

rq φφθ sincos −=&                             (32-3) 

),,,,(

/)sincos(

θφ
φφθ ψ

rqpP

Iukul

q

yyq

+
−=&&

           (32-4) 

θφφψ cos/)cos(sin rq +=&             (32-5) 

),,,,,(

)/(cossin)/(coscos

ψθφ
θφθφψ

ψ
ψ

rqpg

IulIuk yypzz

+
+=&&

 (32-6) 

zvz =&                                     (32-7) 

))cos())(cos(/1( zz dumgz +−= φθ&&         (32-8) 

 

where the exact expressions of ),,,,( θφrqpPp
, 

),,,,( θφrqpPq  and ),,,,,( ψθφψ rqpg  can be derived from 

relations (3-i) and (4-i) .   

The outputs dynamics (32-2), (32-4), (32-6) and (32-8) take 

the form (24) with Y=[φ θ ψ z]’, U = u with 

'),,,( zqp uuuuu ψ= . Here '),,,,,,,( zzrqpX &ψθφ=  

and B(X, u) is such as: 

uYJuXB )(),( =                   (33-1) 

    with  
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⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
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⎢⎢
⎢

⎣

⎡

−

−
=

m

I

k

I

l

I

k

I

l

I

tgk

I

tgl

I

l

YJ

zzyy

yyyy

xxxxxx

θφθ
φ

θ
φ

φφ
φθθθ

coscos
000

0
cos

cos
0

cos

sin

0
sincos

0

0
cossin

)(

     (33-2) 

and the above matrix is invertible if: 

0)cossin(sin
sincos 2

2 ≠+− φφθφθφ
yyzz I

tg

I

         (34) 

which is the case when φ and θ remains small with respect 

to ±π/2. We introduce now the two R4x4 symmetric positive 

definite matrices L and Λ and adopt the control law (31) 

with  

')]/([)( mdggPPXA zqp −= ψ         (35) 

to compute the current input vector u .  

 

B. Horizontal backstepping control layer 

The state representation of the horizontal dynamics is given 

by: 

                                              (36-1) xvx =&

yvy =&                           (36-2) 

)))sin()sin(

)cos()sin())((cos(/1(

x

x

dF

mv

−
+=

φψ
φθψ&

       (36-3) 

)))sin()cos(

)cos()sin())((sin(/1(

y

y

dF

mv

−−
=

φψ
φθψ&

          (36-4) 

where ψ and F are defined by the inner control loop. 

This state representation corresponds to the one studied in 

the case of (13-1) and (13-2).  Then following the 

corresponding backstepping approach, we get with V1 

chosen according to relation  (23) the following reference 

values for φ and θ : 

)/)(cos

)(narcsin((si

zyy

xxc

udm

dm

+−
+=

εψ
εψφ

           (37-1) 

)cos//)(sin

/)(sarcsin((co

czyy

zxxc

udm

udm

φεψ
εψθ

++
+=

         (37-2) 

where εx and εy are given by: 

⎥⎦
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⎡Ω−⎥⎦
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⎡

y

x
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I

c

c

y

x

&

&
)( 2ε

ε
         (37-3) 

where Λ and Ω are symmetric positive definite matrices. 

Then, the horizontal position of the rotorcraft follows the 

linear dynamics: 

⎥⎦
⎤⎢⎣

⎡
−
−ΛΩ++⎥⎦

⎤⎢⎣
⎡Ω+⎥⎦

⎤⎢⎣
⎡

c

c

yy

xx
I

y

x

y

x
)( 2&

&

&&

&&
= 0            (38) 

 

     Since the actuator settings are determined by the inner 

control loop, let us have a look at the corresponding 

dynamics. The outputs φ, θ, ψ and z of the inner closed 

loop follows  the dynamics given by: 



 

 

 

0)()2()()( 11 =−+Λ+Λ+Λ −−
cYYYLLYL &&&    (39) 

When matrices  Λ and L are diagonal, these dynamics are 

decoupled and the poles of the decoupled dynamics are the 

roots of the m different characteristic polynomials: 

 

0)2(2 =+++ iiii ss μλλμ    i =1 to m      (40-1)  

where                

),,,( 21 mdiag λλλ L=Λ  

 and                                                                     (40-2) 

),,,( 21 mdiagL μμμ L=  

and where s is the Laplace variable. In this case, since the λi and the μi are positive real, we get always real negative 

roots. In the general case, the dynamics modes of the 

outputs will be characterized by the solutions of the global 

characteristic polynomial: 

0)
)2(

det( =⎥⎦
⎤⎢⎣

⎡
Λ++Λ

−
LsIL

IsI

m

mm           (41) 

Since this last relation is independent of the application it is 

possible to study once for all the reachable pole sets within 

the left half complex plane. 

Remark: In the case of an horizontal wind, a necessary 

condition for final convergence and equilibrium, 

independent of the choice of matrices Λ and L or even of 

the control approach  is given by: 

max)coscos4/( iee Fgm ≤φθ               (42-1) 

  with             

))sin)(cos/(( ycxce wwmgwcarctg ψψθ +=    (42-2) 

                      

)cos)cos

)(sin/((

eyc

xce

w

wmgwcarctg

θψ
ψφ

−
=          (42-3) 

where ψc is the heading reference value. 

V. SIMULATION RESULTS 

 

The selected gains for the backstepping control law are 

displayed on Table 1 while the selected dynamics for the 

attitude, the altitude, the heading and the horizontal position 

are second order linear dynamics characterized by their 

respective damping coefficients and natural frequencies. 

These values are reported on Table 2.  

The produced figures display different time responses of 

the rotorcraft under either the backstepping control law or a 

reference non-linear inverse control law. The comparison is 

performed in two stages: first, the responses of the 

rotorcraft to a step in attitude (either φ  or θ) for each 

control law, are evaluated. Then, for each control law , the 

responses of the rotorcraft to a step in position (x, y or z) are 

evaluated and compared.  The evaluation of the inner 

attitude control loop is important  since the guidance 

capability of the rotorcraft, an under actuated device, is 

directly dependent of the controllability of its attitude 

angles. 

 

                                        TABLE I 

   SELECTED GAINS FOR BACKSTEPPING CONTROL 

     Kθ = -2     Kq =-0.23 

     Kφ= - 2     Kp = -0.23 

     Kψ = -0.02     Kr = -0.025 

     Kz = 0.12     K z& =0.15 

     Kx = 0.137     K x&=0.183 

     Ky = 0.137     K = 0.183 y&

 

                                  TABLE II 

           SELECTED DYNAMIC PARAMETERS 

ζθ = 0.8 ωθ = 10 rad/s 

ζφ = 0.8 ωφ = 10 rad/s 

ζψ = 0.8 ωψ = 2 rad/s 

ζz = 0.8 ωz = 1.5 rad/s 

ζx = 0.8 ωx = 1.5 rad/s 

ζy = 0.8 ωy = 1.5 rad/s 

 

The results (see figures 2 to 5) show that the two control 

laws, in both levels, present  equivalent performances. 

However, while the non linear inverse control law produces 

second order linear dynamics for the attitude angles and the 

position and heading outputs, the backstepping control law 

produces clearly  a non linear behaviour for these variables.  

In particular (figure 4) , since the final convergences of the 

backstepping control law is rather slow, the non linear 

inverse solution can produce, for a same response time, a 

less input demanding solution. However, as shown in the 

following figures, other parameters settings may lead to 

responses where the backstepping approach is slightly 

superior.  Other simulation studies should be performed in 

particular to show clearly the advantage of using advanced 

non-linear control law instead of empirical-intuitive ones. 

Also, the realisation of simulation studies should be of 

interest to explore the impact of actuator saturations on the 

flight domain and feasible manoeuvres of the rotorcraft.  

 

VI. CONCLUSION 

In this communication the applicability of a non-linear 

control approach to the positioning and orientation of a 

rotorcraft has been treated. Since this system is highly 

nonlinear, naturally unstable and rather under-actuated, the 

design of a unique control law to perform safely the whole 

manoeuvre is not straightforward and a multilevel control 

approach must be considered. So a multilevel control 

structure has been introduced. It appeared that the direct 

application of the backstepping control approaches was not 

desirable and that it was more judicious to realize two 

different implementations of the backstepping guidelines to 

insure first the internal stability and then guidance of the 

controlled system. 
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Fig.3. Step response of φ  (ωφ=15 rad/s)
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Fig.2 Step response of φ ( ωφ=10 rad/s) 
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Fig.4. Step response of x 

(with θ, θc, ωx=1.5, rad/s, ωθ=15 rad/s) 
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Fig. 5.  Step response of z    ( sradz /5.1=ω ) 
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