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DSNA/DTI/R&D,  Toulouse, 31055, France 

Felix Mora-Camino° 
ENAC, Toulouse, 31055, France 

The purpose of this communication is to apply and compare three different non-linear 

control approaches to the design of control structures with control laws allowing 

autonomous positioning and orientation for a four-rotor aircraft. Realistic rotorcraft flight 

dynamics are established and analyzed so that a reference three-layers control structure is 

defined. Then are introduced different non-linear control approaches: non-linear inverse 

control, backstepping control and differential flat control. The compatibility of these control 

approaches with the three-layer control structure is assessed and adaptations are .proposed 

so that they can cope with the guidance of the rotorcraft. The corresponding  control laws 

are detailed and their expected performances are discussed. The simplification of these 

control laws around equilibrium  conditions produces close quasi-linear proportional 

derivative controllers. A careful tuning of one of them provides a reference to evaluate the 

improvements resulting from the use of full non-linear control laws, when applied to the 

positioning and orientation problem. This evaluation is performed by simulation and 

numerical results are displayed for analysis. 

Nomenclature 

g   gravitational acceleration, m s-2 

iω   rotational speed of rotor i , rad.s-1 

iF   Lift force from rotor i, N 

m                      rotorcraft mass, kg 

rqp ,,                      angular rates (roll, pitch and yaw) in body-axis frame, rad s-1 

ψθφ ,,   Euler angles (bank, pitch, and heading, rad 

cccc θφ ,                      current target values for φ and θ,  rad  

ψc  target value for heading, rad 

zyx ,,   current rotorcraft position in the inertial frame, m 

xc, yc, zc  target rotorcraft position, m 

up, uq  roll and pitch controls, N 

uψ, uz            heading and height controls 

Ixx,, Iyy,Izz                              inertia moments in body-axis frame, N m2 

wx,wy, wz  wind speed in inertial frame, m s-1 

ua,va,wa  rotorcraft airspeed in inertia frame, m s-1 ζi ,ωi  damping coefficient and natural frequency, rad s-1 
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I. Introduction 

 

  n the last years interest has risen for the four-rotor concept since it appears to present simultaneously hovering, 

orientation and trajectory tracking capabilities of interest for many practical applications [1]. The flight mechanics 

of this rotorcraft are highly non-linear and different control approaches (integral LQR techniques, integral sliding 

mode control [2], reinforcement learning [3]) have been considered with little success to achieve either only 

autonomous hovering and orientation or also trajectory tracking.  

 In this paper we consider the flight dynamics of a four- rotor aircraft with fixed pitch blades. The control problem 

of interest is the design of flight control laws enabling autonomous positioning and orientation for this class of 

rotorcraft. This study investigates the solution of this problem using three of the main popular approaches for non-

linear control law design ( non-linear inverse control, backstepping control and differential flat control). Here it is 

required that a single continuous control law performs the whole maneuver while to achieve it by manual control it 

appears necessary to go through a succession of elementary maneuvers.  

 An analysis of the rotorcraft flight dynamics is realized. This leads to the proposal of a reference control structure 

composed of three layers associated to the different time scales which made up the dynamics of he rotorcraft and to 

its alighted causality relationships. 

 The first considered non-linear control approach, non-linear inverse control, has been already applied by different 

authors [4, 5, 6] to the case of aircraft trajectory tracking. It appears in the case of the rotorcraft that the non-linear 

inversion can be achieved more easily when the  control structure is reduced to two layers.  This is also the 

opportunity to extend this control law design technique to the case of  non-affine systems.  

Then the backstepping control approach, which has also been applied to airships[7] and aircraft [8, 9] flight control 

law design, is introduced  Two different design techniques are developed following the main guidelines of this 

approach. These two implementations  appear of direct interest for the design of a new two-layer control structure 

based on backstepping control laws.  

 The third approach, differential flat control, has been already used to design generic guidance systems for aircraft 

[10, 11]. After introducing some of the main relevant concepts of this already vast field, the partial differential 

flatness property of the fast rotorcraft dynamics is displayed. Since the slower dynamics present an affine structure, 

this induce to  design first a differential flat control law for attitude, heading and altitude control and then, based on 

non-linear inversion, a control law for the  horizontal track of the rotorcraft. The resulting control structure is quite 

similar to the one resulting from the  backstepping one. 

      The three different control approaches are assessed and compared through a numerical simulation study 

while a quasi-linear proportional derivative multi-loop controller, tuned empirically, is also generated for reference 

purpose. 

II. Rotorcraft Flight Dynamics 

 

The considered system is shown in figure 1 where rotors one and three are clockwise while rotors two and four 

are counter clockwise. Annex 1 describes the rotor dynamics. The main simplifying assumptions adopted with 

respect to flight dynamics in this study are a rigid cross structure, constant wind, negligible aerodynamic 

contributions resulting from translational speed, no ground effect as well as small air density effects and negligible 

response times for the rotors. It is then possible to write the rotorcraft flight equations as follows [1]. 

The rotor forces and moments are given by: 

2
ii fF ω=          { }4,3,2,1∈i                                            (1-1) 

2
iii fkFkM ω==    { }4,3,2,1∈i                                            (1-2) 

Where f and k are positive constants and ωi is the rotational speed of rotor i. These speeds and forces satisfy the 

constraints: 

max0 ωω ≤≤
i

i
  { }4,3,2,1∈i                                                  (2-1)     

{ }4,3,2,10 maxmax ∈=≤≤ ifFF ii
i

ω                                          (2-2) 

In Annex 1,the rotor dynamics are detailed. Since the inertia matrix of the rotorcraft can be considered diagonal with 

Ixx = Iyy, the roll, pitch and yaw moment equations may be written as: 

         xxIrqkFFlp /))(( 224 +−=&                                                       (3-1) 

I
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yyIrpkFFlq /))(( 431 +−=&                                                        (3-2) 

zzIFFFFkr /))(( 3412 −+−=&                                                      (3-3) 

 

Where p, q and r are the roll, pitch and yaw body angular rates. Here )(2 yyzz IIk −=   and   )(4 zzxx IIk −= , where Ixx, 

Iyy and Izz are the inertia moments in body-axis, and l is the length of the four arms of the rotorcraft. 

Let  φ, θ and ψ be respectively the bank, pitch and heading angles, then the Euler equations relating the derivatives 

of the attitude angles to the body angular rates, are given by: 

)cos)(sin( rqtgp φφθφ ++=&                                                  (4-1) 

rq φφθ sincos −=&                                                           (4-2) 

θφφψ cos/)cos(sin rq +=&                                                      (4-3) 

In this study the wind is given in the local Earth reference frame by ( )'zyx wwww = . The wind is supposed 

constant while the ground effect is neglected. The acceleration ( )'zyx aaaa = of the centre of gravity, taken 

directly in the local Earth reference frame, is such as: 

 

)))sin()sin()cos()sin())((cos(/1( xx dFma −+= φψφθψ                               (5-1) 

)))sin()cos()cos()sin())((sin(/1( yy dFma −−= φψφθψ                               (5-2) 

))cos())(cos(/1( zz dFmga +−= φθ                                         (5-3) 

 

where x, y and z are the centre of gravity coordinates,  m is the total mass of the rotorcraft and: 

 

 
4321 FFFFF +++=                                                           (6) 

Here the drag force ( )'zyx dddd =   is given by: 

      ( )')()()( 222
zyxzyx wzwywxwzwywxcd −−−−+−+−= &&&&&&                                        (7) 

with dCSc ρ2/1= where ρ is the volumetric mass of the air, S is the reference surface for the aerodynamics of the 

rotorcraft and Cd is its dimensionless drag factor.  The components of the rotorcraft airspeed are: 

xa wxu −= & ,      ya wyv −= &     and     za wzw −= &                                       (8) 

The equilibrium conditions (hovering) in an horizontal wind (wz =0) with a given heading ψ  are such that: 

 

,0,0,0 === rqp   0,0,0 === zyx &&&                                           (9-1) 

))sin)(cos/(( yxe wwmgwcarctg ψψθ +=                                              (9-2) 

)cos)cos)(sin/(( eyxe wwmgwcarctg θψψφ −=                                       (9-3) 

with           )coscos4/(4321 eemgFFFF φθ====                                            (9-4) 

 

III.   A Reference Structure for Rotorcraft Flight Control 

 
Here we are interested in controlling the four-rotor aircraft so that its centre of gravity reaches and stays hovering 

at a predefined position while its heading acquires and maintains a given orientation. Many potential applications 

require this capability to be available in UAVs’ while this problem can be also considered as a first step towards the 

design of more efficient trajectory tracking systems.  

The manoeuvre under study is, when performed manually through direct radio control of the four engine thrusts (see 

picture 1), quite difficult to be achieved in one step. Experimentally it appears that no direct approach is feasible and 

that much depends on the rotorcraft attitude angles φ and θ specially when considering the control of its horizontal 

position error (x-xc, y-yc).  

Equations (5-1) and (5-2) show that to get any horizontal acceleration, it is necessary to have a non zero attitude 

( 0≠φ or 0≠θ ), they show also that the orientation of the acceleration is dependent of the heading angle ψ. 

Equations (3-3) with (4-3) and (5-3) show that given the attitude angles φ and θ, it is easy to master the heading 
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angle error (ψ-ψc) and the vertical position error (z-zc). From equations (3-1), (3-2) and (3-3), it appears that the 

effectiveness of the rotor actuators is much larger with respect to the roll and pitch axis than with respect to the yaw 

axis. Then we consider that attitude piloting is involved with controlling the angles θ and φ. In equations (3-1) and 

(3-2), the effect of the rotor forces appears as differences so, we define new attitude inputs uq and up as: 

 

31 FFuq −=       24 FFup −=                                                           (10.1) 

In the heading and position dynamics, the effects of rotor forces and moments appear as sums, so we define new 

guidance inputs uψ and uz as: 

)()( 3142 FFFFu +−+=ψ   4321 FFFFFuz +++==                                     (10.2) 

 

 Then                                                                                  uTF =                                                                       (11-1) 

                              with                                          

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
−−

−
−

=
1102

1120

1102

1120

4

1
T                                                         (11-2)  

                             

        and                       ']['][ 4321 zqp uuuuuFFFFF ψ==                                         (11-3) 

 

Equations (3-1), (3-2) and (3-3) are rewritten: 

                    xxp Irqkulp /)( 2+=&                                                         (12-1) 

yyq Irpkulq /)( 4+=&                                                         (12-2) 

zzIukr /ψ=&                                                                 (12-3) 

It appears that uq and ur can be made to vary significantly with uψ and uz remaining constant. Attitude angles φ 

and θ can be seen as virtual controls for the horizontal position of the rotorcraft. Here the attitude dynamics are 

considered to be the fast dynamics , they are at the heart of the control system. The heading and height dynamics are 

intermediate while the dynamics of the horizontal position coordinates are the slower. This can lead to a three-level 

closed-loop control structure, as shown in figure 2, however the two inner or the two outer loops can be merged, if 

convenient, leading to different two-layer closed loop control structures, as will be seen in the next sections. 

 

IV. Non-Linear Inverse Control of Rotorcraft Dynamics 
 

The basic idea of nonlinear dynamic inversion is to transform a non-linear dynamic system into an equivalent 

controllable linear system through a change of coordinates by compensating the non-linear parts of the system 

dynamics. This leads to adopt as control objective a stable linear dynamics for the output error. A non-linear state 

feedback control law can be derived when a non-singularity condition is satisfied 

 

A. Generalized Non-Linear Inverse Control 

Consider now a non-linear dynamic system given by: 

 ),( UXgX =&                                                                 (13-1) 

 ( )XhY =                                                                   (13-2) 

where X∈R

n, U∈R

m, Y∈R

m, g is a smooth vector field of X and U and h is a smooth vector field of X. The system 

has, with respect to each independent output Yi , a relative degree ri ( nr
m

i
i ≤+∑ =1

)1( , i = 1, … , m) around the state 

X0  if the output dynamics can be written as: 

 ) ,()(
)1(

)1(
1

1

UXBXA

Y

Y

mr
m

r

+=
⎟⎟
⎟⎟
⎠

⎞
⎜⎜
⎜⎜
⎝

⎛
+

+
M                                                        (14) 
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If B(X, U)m × m is invertible with respect to U, a feedback control law such as: 

 ( ))()(1 XAvXBU −= −                                                             (15) 

can be obtained. Here the new control input  v = [v1, …, vm]’  is chosen such as: 

 ( )∑−= −−=
1

0

)()()(
i

i

r

k

k
di

k
iik

r
dii YYcYv    i=1 to m                                                (16) 

where Ydi is the reference control input for the output dynamics. Then the dynamics of the tracking error given by 

diii YYe −=   i=1 to m , are such as: 

00

)1(

1

)1(

1

)( =++++ −
− iiii

r

iir

r

i ececece i

i

i L                                          (17) 

where the coefficients cik can be chosen to make the output dynamics asymptotically stable and ensure the tracking 

of output yi towards the reference output ydi. However the derived feedback control law works only if either no 

internal dynamics ( nr
m

i
i =+∑ =1

)1( ) are present or if the internal dynamics ( nr
m

i
i <+∑ =1

)1( ) are stable. To cope 

with the saturation of the actuators, the choice of the coefficients cik  should be the result of a trade-off between the 

characteristics of the transient dynamics of the different  outputs and the solicitations of the inputs. 

 

 B. Rotorcraft Non-Linear Inverse Control Structure 

      The flight dynamics of the rotorcraft, equations (3-i),(4-i) and (5-i) i =1 to 3,  cannot be modelled directly as an 

affine system such as (13-1) and (13-2), however the whole equations can be split in two sets:  

- one relative to the roll and pitch dynamics (equations (3-1),(3-2), (4-1) and (4-2)), 

- one relative to the position coordinates and the heading    dynamics (equations (3-3), (4-3), (5-1),(5-2) and (5-3)). 

      The first set of equations is decoupled from the second one except for the yaw rate r, however since the yaw rate 

should remain  small since heading dynamics are rather slow, this coupling can be neglected in a first step. The first 

set of equations provides φ and θ as virtual inputs to the second set of equations. Moreover, it appears that both set 

of equations satisfy the generalized invertibility condition. In the case of position coordinates and heading dynamics, 

since the real inputs (uψ and uz) and the virtual inputs (φ and θ) are tightly mixed, the invertibility condition can be 

satisfied easily if the corresponding set of equations is taken as a whole. Then the non-linear inverse control 

approach is applied in two steps: 

 -  One relative to the φ and θ attitude dynamics. 

 -  One relative to the position coordinates and heading dynamics.  

 This leads to the control structure displayed in figure 3 where the two outer loops of the control structure presented 

in figure 2 have been merged. The first control layer is devoted to attitude control while the second one is devoted 

broadly to guidance control. 

 

C. Non-linear  Inverse Attitude Control Layer 

    The attitude dynamics can be rewritten under the form: 

),,( zuUXgX =&                                                             (18-1) 

with here:            '),,,( θφ qpX = , '),( qp uuU = and  '),( φθ=Y                                      (18-2) 

where uψ is considered to be slowly varying with respect to the roll and pitch dynamics. 

The attitude angles φ and θ have relative degrees equal to one and then there are no internal dynamics. The   

equations of the output dynamics can be rewritten as: 

),()()( rXPuYNUYMY ++= ψ&&                                                   (19-1) 

with 

⎥⎦
⎤⎢⎣

⎡=
yy

yyxx

Il

ItglIl
YM

/cos0

/sin/
)( φ

θθ
                                                        (19-2) 

 

    ⎥⎦
⎤⎢⎣

⎡
−=⎥⎦

⎤⎢⎣
⎡=

zz

zz

q

p

Ik

Itgk

YN

YN
YN

/sin

/cos

)(

)(
)( φ

φθ
                                                        (19-3) 

]',[),( qp PPrXP =                                                                 (19-4) 
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where  )sin(/)cos(/sin/),( 42 φθφθφθ tgdqdttgdrIrptgkIrqkrXP yyxxp +++=           (19-5) 

and                                φφφφφ && cossin/cos),( 4 rqIrpkrXP yyq −−=                                       (19-6) 

  

From (19-2), while 2/πφ ±≠ , the attitude dynamics given by (19-1) remain invertible. This leads to adopt as 

control objectives for the attitude angles φ and θ, decoupled second order linear dynamics towards the current 

reference values φcc and θcc:  

⎥⎥⎦
⎤

⎢⎢⎣
⎡

−−−
−−−==⎥⎦

⎤⎢⎣
⎡

)(2

)(2
2

2

cc

cc
d

d

d Y θθωθωζ
φφωφωζ

θ
φ

θθθ
φφφ

&

&
&&

&&

&&
                                             (20) 

where φθφθ ωωζζ ,,,  are respectively damping and natural frequency parameters while θcc and φcc are current 

reference values for the attitude angles, which are computed by the guidance controller. 

Then the corresponding non-linear inverse attitude control law is given by: 

 )),()(()( 1
d

q

p
YrXPuYNYMU

u

u
&&−+−==⎥⎦

⎤⎢⎣
⎡ − ψ                                   (21-1) 

   Then:                ))()sin(cos( 2
qd

zz
dp

xx
p Ptgutg

I

tgk
P

l

I
u −+++−= θθφθφθφ ψ &&&&                     (21-2) 

               and                             )
sin

)(2(
cos

2 ψθθθ φθθωθωζφ u
I

k
P

l

I
u

zz
qc

yy
q −+−+= &                          (21-3) 

Then eliminating the second order terms, we get: 

)cos)(2(
2 ψφφφ φθφφωφως u

I

tgk

l

I
u

zz

c
xx

p +−+= &                                      (21-4) 

                                )
sin

)(2(
cos

2 ψθθθ φθθωθωζφ u
I

k

l

I
u

zz
c

yy
q −−+= &                                       (21-5) 

which are respectively linear and quasi-linear proportional derivative control laws. Observe that in (21-4) and (21-5) 

we have conserved the term with uψ since it is, with respect to the attitude dynamics, a slow varying signal. 

 

D. Non-linear inverse guidance control Layer 

 The outputs of the guidance dynamics are here ψ, x, y and z. The output dynamics are then: 

 

ψψ θφθφψ gIulIuk xxpzz ++= )/(cossin)/(coscos&&                                    (22-1) 

)))sin()sin()cos()sin())((cos(/1( xz dumx −+= φψφθψ&&                                    (22-2) 

)))sin()cos()cos()sin())((sin(/1( yz dumy −−= φψφθψ&&                                     (22-3) 

))cos())(cos(/1( zz dumgz +−= φθ&&                                               (22-4) 

where     
xxI

rq
kdtdrdtdpg θ

φ
θ
φ

θ
φψ

cos

sin
/)

cos

cos
(/)

cos

sin
( 2++=                                            (23) 

and d is given by (7). 

      The term gψ is neglected since it remains very small during normal operations, moreover, its presence in 

equation (22-1) should turn difficult the computation of the current reference values for φ and θ. The coupling term 

with the inner control loop, which remains small, is also removed from equation (22-1). Then considering the output 

equations (22-1), (22-2), (22-3) and (22-4), here also, the guidance dynamics presents, for each of its outputs, 

relative degrees equal to 1 while the internal dynamics, which are concerned with the attitude angles, are supposed 

already stabilized. Then, here also we are led to adopt, for ψ, x, y and z, decoupled second order linear dynamics 

towards their target values ψc, xc, yc and zc :  
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⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡

−−−
−−−
−−−
−−−

=
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

)(2

)(2

)(2

)(2

2

2

2

2

czzz

cyyy

cxxx

c

d

d

d

d

zzz

yyy

xxx

z

y

x

ωωζ
ωωζ
ωωζ

ψψωψωζψ ψψψ

&

&

&

&

&&

&&

&&

&&

                                                  (24) 

 

where 
zyxzyx ωωωωζζζζ ψψ ,,,,,,, are respectively damping and natural frequency parameters, ψ, x, y and z and are the 

current values of the heading and the coordinates of the centre of gravity of the rotorcraft while ψc, xc, yc and zc   are 

the final reference values for the heading angle and the position coordinates. Of course, many other schemes can be 

proposed to define desired accelerations at the guidance level.  

Once the desired accelerations are made available (relations (24-1), (24-2), (24-3) and (24-4)), the set of equations 

(22-1), (22-2), (22-3) and (22-4) must be solved simultaneously with respect to uψ, uz, φcc and θcc . We get the 

solution of this set of equations in the following order: 

We get first the current reference attitude angles by elimination: 

)sincos( ψδ
δψδ

δθ
zd

yd

zd

xd
cc

zg

y

zg

x
arctg −−

++−−
+=

&&

&&

&&

&&                                                 (25-1) 

))cossin((cos ψδ
δψδ

δθφ
zd

yd

zd

xd
cc

zg

y

zg

x
arctg −−

+−−−
+=

&&

&&

&&

&&
                                       (25-2) 

Here mdmdmd zzyyxx /// === δδδ . Then, the current values of controls values of the controls uψ and uz can 

be computed: 

d
zz

k

I
u ψφ

θψ &&
cos

cos=                                                                   (25-3) 

)cos/(cos))(( θφzdz dzgmu −−= &&                                                 (25-4) 

Here also we get quasi-linear control law of the proportional derivative class. The values of φcc and θcc  must be 

returned to the attitude controller to compute up and uq  using relations (21-2) and (21-3). 

 

 

V.   Backstepping Control of Rotorcraft Dynamics 
 

      The backstepping technique is a rather recent non-linear control technique, which applies to cascaded systems. 

The main idea is to use intermediate state variables as virtual inputs to take advantage of the causality relations 

displayed by the cascaded state representation. The convergence of the output variables towards their target values is 

obtained by the construction, step by step, of an auxiliary Lyapunov function. This general idea can be developed in 

different ways, as it will be shown in the next sub-section.  

The main interest of the backstepping approach is that the stability of the controlled system as well as the 

convergence of the outputs towards their reference values can be guaranteed without inducing, like in the case of the 

non-linear control approach, the decoupling of the outputs dynamics. Indeed, it can be considered that the 

decoupling of the outputs dynamics demands an additional effort from the control channels with then a higher 

possibility of saturation for the actuators, either in position or speed, resulting in downgraded performances. Finally, 

another advantage of this approach is that several matrices of parameters are introduced while constructing the 

control law, providing a large variety of possibilities to shape conveniently the outputs dynamics as well as the 

control signals. 

 

A. Two Examples of Implementation of the Backstepping Technique 

 Consider a cascaded system whose state representation is given by: 

 
21 xx =&                                                                         (26-1) 

 ),( 22 Uxgx =&                                                                  (26-2) 

where nRx ∈1
, nRx ∈2

 are state variables and nRu∈  is the control input and g is a smooth diffeomorphism with 

respect to u. The control objective here is to design a control law such that the state 1x  can be stabilized at 
cx1

. 
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Here also, 
2x  can be regarded as a virtual control input for the dynamics of 1x  while the dynamics of 

2x  are 

controlled by the real control input U . Now, suppose that there exists a control law ),(
112 c

xxGx = such that the 

dynamics of 1x can be stabilized at 
cx1

 while we can find a Lyapunov function )( 111 cxxV − , which satisfies the 

condition: 

 )(),()'/()(
111111111 ccc

xxWxxGxVxxV −−≤∂∂=−&                                                (27) 

where )( 11 cxxW −  is a positive definite function of x1. A possible choice is: 

)(),(
1111 cc

xxxxG −Λ−=                                                             (28) 

where Λ is a positive definite symmetric matrix. Then in this case: 

)()'(
2

1
),()(

111111111 cccc
xxxxxxWxxV −−==−                                                (29) 

 

The whole dynamics can be expressed as: 

 zxxGx
c
+= ),(

111
&     and    wz =&                                              (30-1) 

 where                                   ),( 112 cxxGxz −=                                                        (30-2) 

                                         and                               
212 )/(),( xxGuxgw ∂∂−=                                                (30-3) 

Then a candidate Lyapunov function of the full system is given by: 

 zzxxVzxxV
cc

'2/1)(),(
11111

+−=−                                                   (31) 

The time derivative of ),( 11 zxxV c− is given by: 

wzzxxGxVzxxV
cc

')),((')/(),(
111111

++∂∂=−&                                             (32) 

then:                      wzzxVxxWzxxV
cc

')'/()(),(
111111

+∂∂+−−≤−&                                          (33) 

and by an adequate choice of w , such as: 

 zxVw Ω−∂∂−= )/(
11

                                                      (34) 

where Ω is a symmetric positive definite matrix, the full system is  globally asymptotically stable since it satisfies 

the following condition: 

 zzxxWzxxV
cc

Ω−−−≤− ')(),(
1111

&                                                (35) 

Finally, the effective control input is given by: 

 ( ) )),()/(()(
112112

1
c

xxGxxVxgU −Ω+∂∂−= −                                            (36) 

 

Now we consider the case where the cascaded system cannot be written easily in the form  (26-1) and (26-2), but its 

outputs obey to relations (13-2) and (14) with 121 ==== mrrr L , where B is invertible with respect to the control 

inputs. In that case, two auxiliary outputs can be defined: 

 

YYYLZ c
&+−= )(1

    and    YZ &=2
                                                  (37) 

 

where L is a positive definite symmetric matrix. A candidate Lyapunov function is then given by: 

 

)(
2

1
2

'
21

'
12 ZZZZV +=                                                                  (38) 

The time derivative of V2 is such as: 

22112 '' ZZZZV &&& +=                                                              (39-1) 
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                                                or               YYLYYLYYYLV c
&&&&&&& ')(')2)((2 −++−=                                         (39-2) 

 

Choosing a control such as :                                      )2( YYLYYL &&&& +Λ−=+                                                           (40) 

where Λ is another symmetric positive definite matrix. We have: 

YLYYYYLYYYLV cc
&&&&& '))((')2)((2 −+−Λ+−−=                                      (41) 

 and it is straightforward to show that the system is globally asymptotically stable. The corresponding control law is 

given by (see (15)): 

 ))()2()()((1 XAYLYYLXBU c +Λ++−Λ−= − &                                    (42) 

     Analyzing relations  (3-i), (4-i) and (5-i), i =1 to 3, it appears that their equations can be separated into two sets: 

one relative to the slower dynamics, the horizontal dynamics, and corresponding to the first case considered in the 

previous section and one relative to other dynamics and corresponding to the second case. This leads to propose in 

figure 4 the following two layers control structure where, making reference to figure 2,  the faster control loops have 

been merged. 

 

B.  Attitude and Altitude Control by Backstepping 

 

The attitude and altitude dynamics are given by the state equations: 

)cos)(sin( rqtgp φφθφ ++=&                                                     (43-1) 

),,,,(/)cossin( θφφθθθφ ψ rqpPIutgkutglul pxxqp +++=&&                          (43-2) 

rq φφθ sincos −=&                                                             (43-3) 

),,,,(/)sincos( θφφφθ ψ rqpPIukul qyyq +−=&&                                        (43-4) 

θφφψ cos/)cos(sin rq +=&                                                      (43-5) 

),,,,,()/(cossin)/(coscos ψθφθφθφψ ψψ rqpgIulIuk yypzz ++=&&                            (43-6) 

zvz =&                                                                             (43-7) 

))cos())(cos(/1( zz dumgz +−= φθ&&                                                 (43-8) 

 

Here ),,,,( θφrqpPp and ),,,,( θφrqpPq  are given respectively by expressions  (19-5) and (19-6) while 

),,,,,( ψθφψ rqpg is given by relation (23).  The outputs dynamics (43-2), (43-4), (43-6) and (43-8) take the form 

(14) with Y=[φ θ ψ z]’, U = u with '),,,( zqp uuuuu ψ= . Here '),,,,,,,( zzrqpX &ψθφ=  and B(X,u) is such as: 

 

uYJuXB )(),( =                                                                    (44-1) 

                             with 

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

−

−
=

m

I

k

I

l

I

k

I

l

I

tgk

I

tgl

I

l

YJ

zzyy

yyyy

xxxxxx

θφθ
φ

θ
φ

φφ
φθθθ

coscos
000

0
cos

cos
0

cos

sin

0
sincos

0

0
cossin

)(

                                                    (44-2) 

 

and the above matrix is invertible if: 

0)cossin(sin
sincos 2

2 ≠+− φφθφθφ
yyzz I

tg

I
                                             (45) 

which is the case when φ  and θ  remain small with respect to π/2 . 

We introduce now the two R4x4 symmetric positive definite matrices M and Λ1 and adopt the control law (42),where: 

')]/([)( mdggPPXA zqp −= ψ                                                         (46) 
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Since the actuator settings are determined by the inner control loop, let us have a look at the corresponding 

dynamics. The outputs φ, θ, ψ and z of the inner closed loop follows  the dynamics given by: 

0)()2()()( 1

1

1

1

1 =−+Λ+Λ+Λ −−
cYYYLLYL &&&                                        (47) 

When matrices  Λ1 and L are diagonal, these dynamics are decoupled and the poles of the decoupled dynamics are 

the roots of the m different characteristic polynomials: 

0)2( 11

2 =+++ iiii ss μλλμ    i =1 to m                                         (48-1) 

                                            where       ),,,( 112111 mdiag λλλ L=Λ  and  ),,,( 21 mdiagL μμμ L=                        (48-2) 

and where s is the Laplace variable.  

In this case, since the λ1i and the μi are positive real, we get always real negative roots. In the general case, the 

dynamics modes of the outputs will be characterized by the solutions of the global characteristic polynomial: 

0)
)2(

det(
11

=⎥⎦
⎤⎢⎣

⎡
Λ++Λ

−
LsIL

IsI

m

mm                                                       (49) 

Since this last relation is independent of the application it is possible to study once for all the reachable pole sets 

within the left half complex plane. 

Remark: In the case of an horizontal wind, a necessary condition for final convergence and equilibrium, independent 

of the choice of matrices Λ and L or even of the control approach  is given by: 

max)coscos4/( iee Fgm ≤φθ                                                        (50-1) 

                              with            ))sin)(cos/(( ycxce wwmgwcarctg ψψθ +=                                         (50-2) 

                                and           )cos)cos)(sin/(( eycxce wwmgwcarctg θψψφ −=                                 (50-3) 

 

C.  Horizontal Backstepping Control Layer 

 

 The state representation of the horizontal dynamics is given by: 

                      xvx =&                                                                          (51-1) 

yvy =&                                                                          (51-2) 

)))sin()sin()cos()sin())((cos(/1( xx dFmv −+= φψφθψ&                                 (51-3) 

)))sin()cos()cos()sin())((sin(/1( yy dFmv −−= φψφθψ&                                 (51-4) 

where ψ and F are defined by the inner control loop. 

This state representation corresponds to the one studied in the case of (26-1) and (26-2).  Then following the 

corresponding backstepping approach, we get with V1 chosen according to relation  (29): 

 

)/))(cos)(narcsin((si zyyxxcc udmdm +−+= εψεψφ                             (52-1) 

)cos/)sinsarcsin((co cc

z

yy

z

xx

cc
u

dm

u

dm φεψεψθ +++=                            (52-2) 

where εx and εy are given by: 

⎥⎦
⎤⎢⎣

⎡Ω−⎥⎦
⎤⎢⎣

⎡
−
−ΛΩ+−=⎥⎦

⎤⎢⎣
⎡

y

x

yy

xx
I

c

c

y

x

&

&
)( 22ε

ε
                                        (52-3) 

where Λ2 and Ω are symmetric positive definite matrices. Then, the horizontal position of the rotorcraft follows the 

linear dynamics: 

⎥⎦
⎤⎢⎣

⎡
−
−ΛΩ++⎥⎦

⎤⎢⎣
⎡Ω+⎥⎦

⎤⎢⎣
⎡

c

c

yy

xx
I

y

x

y

x
)( 22&

&

&&

&&
= 0                                          (49) 

     

VI. Differential Flat Control for Rotorcraft Dynamics 
 

    In the field of Robotics many control problems present strong non-linearities, which are not tractable through 

linearization. This has driven researchers to develop the notion of differential flatness for continuous non-linear 
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dynamical systems. This notion, which has some similarity with both controllability and observability for linear 

systems, has open the door to a new approach for the design of non linear control laws. Many applications in the 

field of aerospace have already been performed with success. In this section, the differential flatness property of 

rotorcraft  attitude and altitude dynamics taken as a whole, is displayed and a two layer control structure is proposed: 

one layer makes use of to differential flat control approach to provide a common control loop for attitude and 

altitude dynamics, and the other one provides, through non linear inversion, a control loop for the horizontal 

coordinates of the rotorcraft. 

 

A.  Differential flatness of smooth systems 

A general nonlinear system given by:  

    ( )UXX ,ϕ=& , nRX ∈ , mRU ∈                                                           (54) 

where ϕ is a smooth mapping, is said explicitly flat with respect to the output vector Z , if Z  is an thm order vector 

which can be expressed analytically as a function of the current state, the current input and its derivatives, while the 

state and the input vectors can be expressed analytically as a function of Z  and a finite number of its derivatives. 

Then there exists smooth mappings
X

G , 
U

G , and 
Z

G  such as:    

                   ( ))(
,,, zn

Z UUXGZ K=                                         (55.1)  

                         ( ))(
,,, xn

X ZZZGX K&=                                                         (55.2) 

 
( )( )1

,,,
+= xn

U ZZZGU K                                                     (55.3) 

where nz and nx are integer numbers. Vector Z  is called a flat output for the nonlinear system given by  equation 

(54). Although until today there is no systematical way to determine flat outputs and eventually to prove its 

uniqueness, the flat outputs usually possess some physical meaning. The explicit flatness property is of particular 

interest for the solution of control problems when physically meaningful flat outputs can be related with their 

objectives. In many situations, the control problem can be formulated as a flat output trajectory following problem. 

In general, for these cases, the flat output of equation (55-1) can be reduced, through state transformation, to a 

function of a single argument, the new system state itself: 

                                      ( )XGZ Z=                                           (56)      

Then a possible control law providing to the flat outputs linear decoupled dynamics towards reference values is 

given by:   

 ⎟⎟⎠
⎞⎜⎜⎝

⎛ −−−= ∑= )(,,, 0

)(

1

c

i
n

i

iU ZZAZAZZGU
x

K                                         (57) 

where the Ai matrices are diagonal matrices chosen such as the m polynomials : 

∑=+ ++ x

x

n

i

i
i

n
jjasjjas

1

0
1

),(),( mj ,...,1=                                                     (58) 

are characteristic polynomials corresponding to acceptable dynamics for the m flat outputs.  

B.  Differential flatness of rotorcraft dynamics 

The motion equations of the rotorcraft can be written in non-linear state form as: 
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),( uxfx =&                                                                               (59-1) 

where      )',,,,,,,,,,,( zyxzyxrqpx &&&ψθφ=                                                      (59-2) 

and                )',,,( zqp uuuuu ψ=                                                                      (59-3) 

Considering here the output vector  Z = (φ, θ, ψ, z)’, the inversion of the Euler equations (4-1), (4-2) and (4-3)  

provides expressions such as: 

              ),,( ψφθ &&pp =                                                                           (60-1) 

),,,( ψθθφ &&qq =                                                                         (60-2) 

),,,( ψθθφ &&rr =                                                                         (60-3) 

or more specifically: 

                   ψθφ && sin−=p                                                                          (61-1) 

              ψθφθφ && cossincos +=q                                                                (61-2) 

ψθφθφ && coscossin +−=r                                                             (61-3) 

while u can be expressed as: 

      ),,,,,,,,,( zzuu &&&&&&&&&&&& ψθφψθφθφ=                                                             (62) 

by inversion of the set of equations (3-1), (3-2), (3-3) and (5-3), or more specifically: 

 

lqrkpIu xxp /)( 2+−= &                                                           (63-1) 

lprkqIu yyq /)( 4−= &                                                               (63-2) 

krIu zz /)( &−=ψ                                                                    (63-3) 

)cos/(cos)),,()(( φθzyxdmgzu zz &&&&& +−−=                                               (63-4) 

Then, it can be concluded that the attitude and heading dynamics as well as the vertical dynamics of the rotorcraft 

are differentially flat when considering the input-output relation between u and Z. 

This leads to propose the control structure displayed in figure 5 which is close to the one proposed with the 

backstepping approach in figure 4 . 

 

C.  Design of the differential flat control laws 

 

We adopt for the flat outputs second order dynamics and their second tie derivative should be such as: 

dφ&& = )(2
2

ccφφωφωζ φφφ −−− &                                                  (64-1) 

dθ&& = )(2
2

ccθθωθωζ θθθ −−− &                                                 (64-2) 

dψ&& = )(2
2

cψψωψωζ ψψψ −−− &                                                 (64-3) 

                 dz&& = )(2
2

czzz zzz −−− ωωζ &                                              (64-4) 

The expressions of the control inputs in relations (63-1), (63-2), (63-3) and (63-4) are fed by rqp ,, given by (61-1), 

(61-2) and (61-3) and by rqp &&& ,, given by: 

ddp ψθψθθφ &&&&&&& sincos −−=                                            (65-1) 

ψφθφψθθφψθφθφ &&&&&&&&& coscos)sin1(sincossincos ++−+= ddq             (65-2) 

ψθθφψφθφθφφψθφθφ &&&&&&&&&&& sincoscossincoscoscossin −−−+−= ddr       (65-3) 

where ddd ψθφ &&&&&& ,, and  dz&& are given by (64-1), (64-2), (64-3) and (64-4) where appear the current target values for φ 

and θ , φcc and θcc, and the final target values of ψ and z, ψc and zc. 
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D.  Horizontal guidance by non-linear inverse control 

Now, considering equations (5-1) and (5-2), to insure that x and y adopt second order dynamics such as: 

 0)(2
2 =−++ cxxx xxxx ωωζ &&&                                            (66-1) 

0)(2
2 =−++ cyyy yyyy ωωζ &&&                                           (66-2) 

following the non linear inverse control approach, ccφ and ccθ  must be chosen such as: 

0)(2))sinsincossin)((cos/1(
2 =−++−+ cxxxxzcccccc xxxdum ωωζφψφθψ &                  (67-1) 

0)(2))sincoscos)sin()((sin/1(
2 =−++−− cyyyyzcccccc yyydum ωωζφψφθψ &                  (67-2) 

Then :                                                   )/)cos(sinarcsin( zyxcc uDDm ψψφ −=                                     (68-1) 

                                                 )cos/()sin(cosarcsin( czyxcc uDDm φψψθ +=                                  (68-2) 

                                where                        )(2
2

cxxxxx xxxD −−−= ωωζδ &                                                   (69-1) 

)(2
2

cyyyyy yyyD −−−= ωωζδ &                                                  (69-2) 

So it appears that differential flat control and non-linear inverse control can be easily integrated within a same 

multilayer control structure. 

 

VII. Rotorcraft Quasi-Linear Control 

 

In this section the three non-linear control laws designed for the positioning of the rotorcraft are simplified to 

get quasi-linear control laws. Then a multi loop proportional derivative control law with a simple non-linear gain is 

introduced.  

A.  Quasi linearization of the non-linear control laws 

In the case of the non-linear inverse control approach the obtained control laws are already quasi linear (see relations 

(21-4), (21-5), (25-3) and (25-4)). We can write: 

    )cos)(2(~ 2 ψφφφ φθφφωφως u
I

tgk

l

I
u

zz

c
xx

p +−+= &                                     (70-1) 

)
sin

)(2(
cos

~ 2 ψθθθ φθθωθωζφ u
I

k

l

I
u

zz
c

yy
q −−+= &                                 (70-2) 

))(2(
cos

cos~ 2
c

zz

k

I
u ψψωψωςφ

θ ψψψψ −+−= &                                           (70-3) 

)cos(cos

))(2(

coscos

)(~
2

θφ
ωως

θφ
δ czzzz

z

zzzmgm
u

−++−= &
                                     (70-4) 

The linearization of relations (25-1) and (25-2) can be realized in two steps: 

First equalizing the sine with its angle: 

  )cossin(cos
~ ψδ

δψδ
δθφ

z

y

z

x
cc

zg

y

zg

x

−−
+−−−

+=
&&

&&

&&

&&
                                (71-1) 

      ψδ
δψδ

δθ sincos
~

z

y

z

x
cc

zg

y

zg

x

−−
++−−

+=
&&

&&

&&

&&                                       (71-2) 

and then considering that  z is already close to its final value  zc, and  if the wind is considered to have negligible 

effects, expressions (71-1) and (71-2) become: 

))(2(sin))(2((cos
1~ 22

cyyycxxxcc yyyxxx
g

−++−+−= ωωςψωωςψθ &&                 (72-1) 

       )cos))(2(sin))(2((
cos~ 22 ψωωςψωωςθφ cyyycnxxcc yyyxxx

g
−+−−+= &&              (72-2) 
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The linearization of the backstepping control laws (relations (42), (48.1), (48.2) and (48-3)) gives: 

)
0

0

0

)2()((1

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
+

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
Λ++

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

−
−
−
−

Λ−=
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
−

gz

L

zz

LJ

u

u

u

u

c

c

c

c

z

q

p

&

&

&

&

ψ
θ
φ

ψψ
θθ
φφ

ψ                                     (73-1) 

                    with 

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

−
−

−
−

=−

θφ
φ

θθθ

φ
φ

φ

coscos
000

0
cos

cos
0cos

0
sin

cos
0

00

1

m

k

I
Itg

I

k

l

I

tg
Ik

II

l

I

J
zz

zz

yy

yy

yy

zzxxxx

                                         (73-2) 

 

So here again we get quasi-linear proportional derivative control laws. With respect to the computation of the 

current target values for the bank and pitch angle, we get in a first step: 

zyyxxcc udmdm /))(cos)((sin +−+= εψεψφ                                          (74-1) 

cc
z

yy

z

xx
cc

u

dm

u

dm φεψεψθ cos/)sin(cos
+++=                                           (74-2) 

where εx and εy are linear expressions given by: 

⎥⎦
⎤⎢⎣

⎡Ω−⎥⎦
⎤⎢⎣

⎡
−
−ΛΩ+−=⎥⎦

⎤⎢⎣
⎡

y

x

yy

xx
I

c

c

y

x

&

&
)( 22ε

ε
                                                   (75) 

Then zu  in (74-1) and (74-2) can be approximated roughly by: 

                                                                )cos/(cos φθmguz =                                                               (76) 

The linearization of the differential flat control law (relations (63-1) to (63-4), (64-1) to (64-4) and (65-1) to (65-3))  

leads to: 

))(2(sin)ˆ(2)(/(ˆ 22
cccxxp plIu ψψωψωςθφφωφως ψψψφφφ −++−+= &&&                      (77-1) 

))(2(cossin)ˆ(2()(cos/(ˆ 22
cccyyq lIu ψψωψωςθφθθωθωςφ ψψψθθθ −++−+−= &&              (77-2) 

)))(2(coscos))ˆ(2()(sin/(ˆ 22
ccczz kIu ψψωψωςθφθθωθωςφ ψψψθθθψ −+−−+= &&            (77-3)                             

φθ
ωως

φθ
δ

coscos

))(2(

coscos

)(
ˆ

2
czzzz

z

zzzmgm
u

−++−= &
                                     (77-4) 

with              ))cos(sin
ˆ

ˆ
yx

z
cc DD

u

m ψψφ −=                                          (78-1) 

             ccyx
z

cc DD
u

m φψψθ ˆcos/)sin(cos
ˆ

ˆ +=                                       (78-2) 

where            )(2
2

cxxxxx xxxD −−−= ωωζδ &                                              (79-1) 

)(2
2

cyyyyy yyyD −−−= ωωζδ &                                             (79-2) 

 

B.  Quasi -linear proportional derivative controller 

From the previous sub-section it appears that non-linear inverse control and differential flatness produce very close 

control laws while the backstepping approach seems able to provide, depending of the choice of matrices L Λ1Ω and Λ2, control laws quite different. Anyway, all the control laws developed here demonstrate to be non-linear 
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extensions of proportional derivative control laws. The main difference between the different approaches is relative 

to the derived control structures.  

For comparison purpose, a simplistic quasi-linear multi-loop control structure has been produced. Its control laws 

are completely decoupled and are given 

  - Attitude control laws: 

pKKu pccp +−= )( φφφ
((

                                                  (80-1) 

qKKu qccq +−= )( θθθ
((

                                                        (80-2) 

  -  Heading control law: 

rKKu rc +−= )( ψψψψ(                                                        (80-3) 

- Horizontal control laws:   

Let us define the auxiliary  variables xu
(

and yu
(

by: 

xKxxKu xcxx
&

(
&+−= )(                                                         (80-4) 

yKyyKu ycyy
&

(
&+−= )(                                                        (80-5) 

then, where ψ is the current heading of the rotorcraft: 

:                                                       )cos(sin yxcc uu
((( ψψφ −−=                                                    (80-6) 

)sin(cos yxcc ucu
((( ψψθ +−=                                                 (80-7) 

     - Vertical control law: 

θφ coscos

)( zcz
z

KzzK
u

&( +−=                                                         (80-8) 

This last control law is non linear and numerical simulation tests has shown that the introduction of its non linear 

factor improves in a noticeable way the guidance performances of the  rotorcraft under this modified control law. 

 

VIII. Simulation Study 
 

A view of two identical rotorcraft is shown in picture 1. Their physical parameters have been adopted for the 

numerical simulation. In Annex 1, the main physical characteristics of this class of rotorcraft are reported. The 

values of the gains of the backstepping control law have been chosen, in a first attempt, which has given rather good 

results, identical to those of the quasi-linear control law. These values have been obtained by tuning empirically the 

gains of the quasi-linear control law until an acceptable behaviour has been obtained. Since the backstepping control 

law, although non-linear, has the same structure than the quasi-linear control law, it needed the same gain structure 

and so the same gains values have been tested for it. The selected gains are displayed on Table 1. 

The selected dynamics for the attitude, the altitude, the heading and the horizontal position are second order linear 

dynamics characterized by their respective damping coefficient and natural frequency. These values are reported on 

Table 2.  

Although the non linear inverse control approach and the  differential flat control approach are based on different 

control structures, since there are driven by common attitude and output dynamics (see table 2), they produce at the 

end control laws  which are very similar and have basically the same performance. So the produced figures display 

different time responses of the rotorcraft under either the quasi-linear control law, the backstepping control law or 

the non-linear inverse control law.  

The comparison is performed in two stages: first, the responses of the rotorcraft to a step in attitude (either φ  or θ) 

for each control law, are evaluated. Then, for each control law , the responses of the rotorcraft to a step in position 

(x, y or z) are evaluated and compared.  The evaluation of the inner attitude control loop is important  since the 

guidance capability of the rotorcraft, an under actuated device, is directly dependent of the controllability of its 

attitude angles. 

The results (see figures 6 to 11) show that the three control laws, in both levels, present  equivalent performances. 

However, while the non linear inverse control law produces second order linear dynamics for the attitude angles and 

the position and heading outputs, the two other control laws, even the quasi linear control law, produce clearly non 
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linear behaviours for these variables.  In particular (figure 6) , since the final convergences of the quasi linear and 

the backstepping control laws are rather slow, the non linear inverse solution can produce, for a same response time, 

a less input demanding solution. However, as shown in the following figures, other parameters settings may lead to 

responses where the quasi linear and the backstepping approaches are slightly superior. 

 Other simulation studies should be performed in particular to show clearly the advantage of using advanced non-

linear control law instead of empirical-intuitive ones. Also, the realisation of simulation studies should be of interest 

to explore the impact of actuator saturations on the flight domain and feasible manoeuvres of the rotorcraft.  

 

IX. Conclusion 

 

In this communication the applicability of three non-linear control approaches to the positioning and 

orientation of a rotorcraft has been treated. Since this system is highly nonlinear, naturally unstable and rather under-

actuated, the design of a unique control law to perform safely the whole manoeuvre is not straightforward and a 

multilevel control structure must be conceived. So along the paper, different control structures, associated to the 

different non-linear control approaches considered, are produced. Moreover, it appears that the direct application of 

these non-linear control approaches is not possible:  

- In the case of the non-linear inverse control approach, it is necessary to extend its applicability to systems given by 

a non-affine state representation to bring a non-linear inverse control solution to the horizontal guidance sub 

problem.    

- In the case of the backstepping control approach, it is necessary to realize two different implementations of its 

guidelines to insure the internal stability as well as the global stability of the controlled system. 

 - In the case of the differential flat control approach, first it has been necessary to identify the differential flatness 

property of a part of the rotorcraft flight dynamics, and then it has been necessary to combine this approach with the 

non-linear inverse control approach to treat the horizontal guidance sub problem. 

The original paper considered also the important issue of the possible saturation of the actuators and proposed in 

each of the three considered approaches, the design of a supervision layer to avoid the occurrence or at least to limit 

the effects of actuator saturations. These lengthy developments have not been included in the present paper by lack 

of space.  

 Note also that the three developed non-linear control laws assume that, contrarily to the quasi-linear control law, an 

estimate of the wind speed is available. Should this estimate be computed on board or communicated from the 

ground?  A partial solution to this problem could be provided by the possible robustness of these control laws with 

respect to external perturbations. The robustness with respect to other aspects such as parameters uncertainty is also 

an important issue since the payload of the rotorcraft can present important variations considering its reduced weight 

and its possible different missions. This question will be treated and it is to be expected that, whatever the adopted 

control solution, additional terms should be introduced. Of course, when considering the reference quasi-linear 

proportional derivative control law, the addition of an integrator term is expected. 

 The positioning and orientation problem, which has been treated here, can be seen as a first step towards the design 

of an efficient  trajectory tracking system for the rotorcraft. A first move in this direction should be the evaluation of 

the proposed control schemes when the coordinates of the target point change slowly following a given 3D 

trajectory. Then a second move should be to integrate in the control structure predictive components so that the 

delays resulting from the inner control loops can be compensated. One of the main results of the present study is to 

provide insights into this question. 

 Two other interesting but very complex problems related with flight control of a rotorcraft are the generation of 

minimum time trajectories and the generation of minimum energy trajectories for the positioning and orientation 

problem. These two problems can be of interest depending of the application, their solutions provide the envelope of 

the whole set of feasible positioning and orientation manoeuvres. Another problem which can be of interest in this 

field is related with the safe landing (“soft crash”) of a rotorcraft when an engine has failed. The solution of these 

three problems should use different control and decision techniques from those displayed in this paper. 

Finally, the effective realisation of the control solutions depends of the availability of accurate measurement systems 

dedicated to the estimation of the angular rates p, q and r,  the attitude and heading angles, φ, θ and ψ, as well as the 
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inertial speed and position components, zyx &&& ,,  and x,y, z. This accuracy could be obtained through some ad hoc 

hybridization schemes to overcome the specific difficulties associated with this light and small flying platform.  
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     Kθ = -2     Kq =-0.23 

     Kφ= - 2     Kp = -0.23 

     Kψ = -0.02     Kr = -0.025 

     Kz = 0.12     K z& =0.15 

     Kx = 0.137     K x&=0.183 

     Ky = 0.137     K y& = 0.183 

 

                                           Table 1 Selected gains for control laws  

 

      ζθ = 0.8 ωθ = 10 rad/s 

      ζφ = 0.8 ωφ = 10 rad/s 

      ζψ = 0.8      ωψ = 2 rad/s 

      ζz = 0.8 ωz = 1.5 rad/s 

      ζx = 0.8 ωx = 1.5 rad/s 

      ζy = 0.8 ωy = 1.5 rad/s 

 

                               Table 2 Selected dynamics parameters 
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        Figure 1     Rotorcraft Frame 
 

 

 

 

 

 
               

Picture 1  View of  two hovering rotorcraft 
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φ , θ dynamics 
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Figure 2. Three-layer rotorcraft dynamics 
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Figure 3  Two -layer non-linear inverse  
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                        Figure 6    Step response of φ ( ωφ=10 rad/s)
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Figure 9  Step response of x with θ, θcc  ( ωx=1.5, rad/s, ωθ=10 rad/s ) 
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Figure 8  Step response of ψ  ( ωψ=5 rad/s) 
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Figure 10. Step response of x (with θ, θc, ωx=1.5, rad/s, ωθ=15 rad/s) 
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    Figure 11 Step response of z    ( sradz /5.1=ω ) 
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Appendix: Rotorcraft Physical Characteristics 
 

 

 

Physical parameter values 

Mass: m =500 g, Body drag coefficient: Cd = 0.05, Force coefficient: 
tpp CrSf

2
)0(5.0 ρ= , Moment 

coefficient :
qpp CrSk

2
)0(5.0 ρ= , Volumetric mass of the air at see level : ρ(0)=1.225 kg/m3, Area of the propellers: 

Sp=0.005 m2, Propeller radius: rp=  0.125 m, Arms length: l = 0.25 m, Propeller thrust aerodynamic coefficient: 

Ct=0.297, Propeller moment aerodynamic coefficient: Cq = 0.0276, Inertia body axis coefficients: Ixx = 0.007 kg.m2,  

Iyy =0.0137 kg.m2, Izz=0.0073 kg.m2. 

 

 

Rotor engine dynamics 

The rotor engine dynamics are characterized by the relation between the input voltage Va and the angular rate ω. A 

realistic model of rotor dynamics is given by: 

)()/()()(
1

)( 2 tVKtKtt aVQ a
τωωτω +−−=&                                              (A.1) 

where τ , KQ and KVa are given positive parameters and where the voltage input is such as: 

max0 VVa ≤≤                                                                                  (A.2) 

 

Numerical values for the rotors parameters:    τ =10,  KQ = 0.0079, KVa = 1000, Vmax = 11 V. 

 

Step response 

The step response (Va =constant) of the rotor is solution of the scalar Riccati equation: 

aVQ VKtKtt
a

)/()()(
1

)( 2 τωωτω +−−=&                                                     (A.3) 

 with 
0)0( ωω =  A. particular solution ω1 of the associated differential equation is such as: 

                          )141(
2

1
1 −+= aQV

Q

VKK
K a

ττω                                                      (A.4)   

A particular solution ω1 of the associated differential equation is such as: 

                          )141(
2

1
1 −+= aQV

Q

VKK
K a

ττω                                                        (A.4)                             

In the general case, the solution of (A.3) can be written as: 

                                                                
'/

'/

1

1

)1('
)0(

1

1
)( τ

ττωω
ωω t

t

Q

e

eK

t −
−−+−

+=                                                (A.5) 

                                      with                                                                                                                                     

(A6)  

 

and                             
1)(lim ωω =+∞→ t

t

                                                           (A.7) 

It appears (see figure 12) that the dynamics of the rotor may be close to those of a first order linear system with time 

constant τ’, but as can be seen in (A.6), this value is a function of Va. If the desired dynamics for the output are such 

as: 

                                 ))(/1( cT ωωω −−=&                                                                 (A.8)  

where T is a very small time constant Va can be chosen such as: 

aQV VKK τττ 41/' +=
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))()()1((
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                                   Figure 12 Two examples of rotor step response 
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