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Non-Linear Control Structures for Rotorcraft Positioning

The purpose of this communication is to apply and compare three different non-linear control approaches to the design of control structures with control laws allowing autonomous positioning and orientation for a four-rotor aircraft. Realistic rotorcraft flight dynamics are established and analyzed so that a reference three-layers control structure is defined. Then are introduced different non-linear control approaches: non-linear inverse control, backstepping control and differential flat control. The compatibility of these control approaches with the three-layer control structure is assessed and adaptations are .proposed so that they can cope with the guidance of the rotorcraft. The corresponding control laws are detailed and their expected performances are discussed. The simplification of these control laws around equilibrium conditions produces close quasi-linear proportional derivative controllers. A careful tuning of one of them provides a reference to evaluate the improvements resulting from the use of full non-linear control laws, when applied to the positioning and orientation problem. This evaluation is performed by simulation and numerical results are displayed for analysis.

 x c ,y c ,z ctarget rotorcraft position, m u p , u q roll and pitch controls, N u ψ , u z heading and height controls I xx, , I yy ,I zz inertia moments in body-axis frame, N m 2 w x ,w y , w z wind speed in inertial frame, m s -1 u a ,v a ,w a rotorcraft airspeed in inertia frame, m s -1 ζ i ,ω i damping coefficient and natural frequency, rad s -1

I. Introduction

II. Rotorcraft Flight Dynamics

The considered system is shown in figure 1 where rotors one and three are clockwise while rotors two and four are counter clockwise. Annex 1 describes the rotor dynamics. The main simplifying assumptions adopted with respect to flight dynamics in this study are a rigid cross structure, constant wind, negligible aerodynamic contributions resulting from translational speed, no ground effect as well as small air density effects and negligible response times for the rotors. It is then possible to write the rotorcraft flight equations as follows [START_REF] Hoffmann | The Standford Tetsbed of Autonomous Rotorcraft for Multi-Agent Control[END_REF]. The rotor forces and moments are given by:

2 i i f F ω = { } 4 , 3 , 2 , 1 ∈ i (1-1) 2 i i i f k F k M ω = = { } 4 , 3 , 2 , 1 ∈ i (1-2)
Where f and k are positive constants and ω i is the rotational speed of rotor i. These speeds and forces satisfy the constraints:

max 0 ω ω ≤ ≤ i i { } 4 , 3 , 2 , 1 ∈ i (2-1) { } 4 , 3 , 2 , 1 0 max max ∈ = ≤ ≤ i f F F i i i ω (2-2)
In Annex 1,the rotor dynamics are detailed. Since the inertia matrix of the rotorcraft can be considered diagonal with I xx = I yy , the roll, pitch and yaw moment equations may be written as:

xx I r q k F F l p / ) ) ( ( 2 2 4 + - = & (3-1) I 3 yy I r p k F F l q / ) ) ( ( 4 3 1 + - = & (3-2) zz I F F F F k r / )) ( ( 3 4 1 2 - + - = & (3-3)
Where p, q and r are the roll, pitch and yaw body angular rates. Here , where I xx , I yy and I zz are the inertia moments in body-axis, and l is the length of the four arms of the rotorcraft.

Let φ, θ and ψ be respectively the bank, pitch and heading angles, then the Euler equations relating the derivatives of the attitude angles to the body angular rates, are given by: ) cos )(sin ( r q tg p φ φ θ φ (5-3) where x, y and z are the centre of gravity coordinates, m is the total mass of the rotorcraft and:

4 3 2 1 F F F F F + + + = (6)
Here the drag force ( )'

z y x d d d d =
is given by: ( )' where ρ is the volumetric mass of the air, S is the reference surface for the aerodynamics of the rotorcraft and C d is its dimensionless drag factor. The components of the rotorcraft airspeed are:

) ( ) ( ) (
x a w x u - = & , y a w y v - = & and z a w z w - = & (8)
The equilibrium conditions (hovering) in an horizontal wind (w z =0) with a given heading ψ are such that: 

, 0 , 0 , 0 = = = r q p 0 , 0 , 0 = = = z y x & & & (9-1) )) sin )(cos / ((

III. A Reference Structure for Rotorcraft Flight Control

Here we are interested in controlling the four-rotor aircraft so that its centre of gravity reaches and stays hovering at a predefined position while its heading acquires and maintains a given orientation. Many potential applications require this capability to be available in UAVs' while this problem can be also considered as a first step towards the design of more efficient trajectory tracking systems. The manoeuvre under study is, when performed manually through direct radio control of the four engine thrusts (see picture 1), quite difficult to be achieved in one step. Experimentally it appears that no direct approach is feasible and that much depends on the rotorcraft attitude angles φ and θ specially when considering the control of its horizontal position error (x-x c , y-y c ). Equations (5-1) and show that to get any horizontal acceleration, it is necessary to have a non zero attitude ( 0 ≠ φ or 0 ≠ θ

), they show also that the orientation of the acceleration is dependent of the heading angle ψ. Equations (3-3) with (4-3) and show that given the attitude angles φ and θ, it is easy to master the heading angle error (ψ-ψ c ) and the vertical position error (z-z c ). From equations (3-1), (3-2) and (3-3), it appears that the effectiveness of the rotor actuators is much larger with respect to the roll and pitch axis than with respect to the yaw axis. Then we consider that attitude piloting is involved with controlling the angles θ and φ. In equations (3-1) and , the effect of the rotor forces appears as differences so, we define new attitude inputs u q and u p as:

3 1 F F u q - = 2 4 F F u p - = (10.1)
In the heading and position dynamics, the effects of rotor forces and moments appear as sums, so we define new guidance inputs u ψ and u z as:
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Equations (3-1), (3-2) and (3-3) are rewritten:

xx p I r q k u l p / ) ( 2 + = & (12-1) yy q I r p k u l q / ) ( 4 + = & (12-2) zz I u k r / ψ = & (12-3)
It appears that u q and u r can be made to vary significantly with u ψ and u z remaining constant. Attitude angles φ and θ can be seen as virtual controls for the horizontal position of the rotorcraft. Here the attitude dynamics are considered to be the fast dynamics , they are at the heart of the control system. The heading and height dynamics are intermediate while the dynamics of the horizontal position coordinates are the slower. This can lead to a three-level closed-loop control structure, as shown in figure 2, however the two inner or the two outer loops can be merged, if convenient, leading to different two-layer closed loop control structures, as will be seen in the next sections.

IV. Non-Linear Inverse Control of Rotorcraft Dynamics

The basic idea of nonlinear dynamic inversion is to transform a non-linear dynamic system into an equivalent controllable linear system through a change of coordinates by compensating the non-linear parts of the system dynamics. This leads to adopt as control objective a stable linear dynamics for the output error. A non-linear state feedback control law can be derived when a non-singularity condition is satisfied

A. Generalized Non-Linear Inverse Control

Consider now a non-linear dynamic system given by:

) , ( U X g X = & (13-1) ( ) X h Y = (13-2)
where X∈R n , U∈R m , Y∈R m , g is a smooth vector field of X and U and h is a smooth vector field of X. The system has, with respect to each independent output Y i , a relative degree r i (

n r m i i ≤ + ∑ =1 ) 1 (
, i = 1, … , m) around the state X 0 if the output dynamics can be written as:
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If B(X, U) m × m is invertible with respect to U, a feedback control law such as:

( ) ) ( ) ( 1 X A v X B U - = - (15)
can be obtained. Here the new control input v = [v1, …, v m ] ' is chosen such as:

( ) ∑ - = - - = 1 0 ) ( ) ( ) ( i i r k k di k i ik r di i Y Y c Y v i=1 to m (16)
where Y di is the reference control input for the output dynamics. Then the dynamics of the tracking error given by

di i i Y Y e - =
i=1 to m , are such as:
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where the coefficients c ik can be chosen to make the output dynamics asymptotically stable and ensure the tracking of output y i towards the reference output y di . However the derived feedback control law works only if either no internal dynamics ( n r

m i i = + ∑ =1 ) 1 (
) are present or if the internal dynamics (

n r m i i < + ∑ =1 ) 1 (
) are stable. To cope with the saturation of the actuators, the choice of the coefficients c ik should be the result of a trade-off between the characteristics of the transient dynamics of the different outputs and the solicitations of the inputs.

B. Rotorcraft Non-Linear Inverse Control Structure

The flight dynamics of the rotorcraft, equations (3-i),(4-i) and (5-i) i =1 to 3, cannot be modelled directly as an affine system such as (13-1) and (13-2), however the whole equations can be split in two sets: -one relative to the roll and pitch dynamics (equations (3-1),(3-2), (4-1) and (4-2)), -one relative to the position coordinates and the heading dynamics (equations (3-3), (4-3), (5-1),(5-2) and (5-3)).

The first set of equations is decoupled from the second one except for the yaw rate r, however since the yaw rate should remain small since heading dynamics are rather slow, this coupling can be neglected in a first step. The first set of equations provides φ and θ as virtual inputs to the second set of equations. Moreover, it appears that both set of equations satisfy the generalized invertibility condition. In the case of position coordinates and heading dynamics, since the real inputs (u ψ and u z ) and the virtual inputs (φ and θ) are tightly mixed, the invertibility condition can be satisfied easily if the corresponding set of equations is taken as a whole. Then the non-linear inverse control approach is applied in two steps:

-One relative to the φ and θ attitude dynamics.

-One relative to the position coordinates and heading dynamics. This leads to the control structure displayed in figure 3 where the two outer loops of the control structure presented in figure 2 have been merged. The first control layer is devoted to attitude control while the second one is devoted broadly to guidance control.

C. Non-linear Inverse Attitude Control Layer

The attitude dynamics can be rewritten under the form:

) , , ( z u U X g X = &
(18-1) with here:

' ) , , , ( θ φ q p X = , ' ) , ( q p u u U = and ' ) , ( φ θ = Y (18-2)
where u ψ is considered to be slowly varying with respect to the roll and pitch dynamics.

The attitude angles φ and θ have relative degrees equal to one and then there are no internal dynamics. The equations of the output dynamics can be rewritten as:

) , ( ) ( ) ( r X P u Y N U Y M Y + + = ψ & & (19-1) with ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = yy yy xx I l I tg l I l Y M / cos 0 / sin / ) ( φ θ θ (19-2) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = zz zz q p I k I tg k Y N Y N Y N / sin / cos ) ( ) ( ) ( φ φ θ (19-3) ]' , [ ) , ( q p P P r X P = (19-4) where ) sin ( / ) cos ( / sin / ) , ( 4 2 φ θ φ θ φ θ tg d q dt tg d r I r p tg k I r q k r X P yy xx p + + + = (19-5) and φ φ φ φ φ & & cos sin / cos ) , ( 4 r q I r p k r X P yy q - - = (19-6) From (19-2), while 2 / π φ ± ≠
, the attitude dynamics given by (19-1) remain invertible. This leads to adopt as control objectives for the attitude angles φ and θ, decoupled second order linear dynamics towards the current reference values φ cc and θ cc :

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ - - - - - - = = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ) ( 2 ) ( 2 2 2 cc cc d d d Y θ θ ω θ ω ζ φ φ ω φ ω ζ θ φ θ θ θ φ φ φ (20)
where

φ θ φ θ ω ω ζ ζ , , ,
are respectively damping and natural frequency parameters while θ cc and φ cc are current reference values for the attitude angles, which are computed by the guidance controller. Then the corresponding non-linear inverse attitude control law is given by:
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Then eliminating the second order terms, we get:

) cos ) ( 2 ( 2 ψ φ φ φ φ θ φ φ ω φ ω ς u I tg k l I u zz c xx p + - + = & (21-4) ) sin ) ( 2 ( cos 2 ψ θ θ θ φ θ θ ω θ ω ζ φ u I k l I u zz c yy q - - + = & (21-5)
which are respectively linear and quasi-linear proportional derivative control laws. Observe that in (21-4) and (21-5) we have conserved the term with u ψ since it is, with respect to the attitude dynamics, a slow varying signal.

D. Non-linear inverse guidance control Layer

The outputs of the guidance dynamics are here ψ, x, y and z. The output dynamics are then:

ψ ψ θ φ θ φ ψ g I u l I u k xx p zz + + = ) /(cos sin ) /(cos cos & & (22-1) ) )) sin( ) sin( ) cos( ) sin( ) )((cos( / 1 ( x z d u m x - + = φ ψ φ θ ψ & & (22-2) ) )) sin( ) cos( ) cos( ) sin( ) )((sin( / 1 ( y z d u m y - - = φ ψ φ θ ψ & & (22-3) ) ) cos( ) )(cos( / 1 ( z z d u m g z + - = φ θ & & (22-4)
where

xx I r q k dt d r dt d p g θ φ θ φ θ φ ψ cos sin / ) cos cos ( / ) cos sin ( 2 + + = (23)
and d is given by [START_REF] Moutinho | Modeling and Non-Linear Control for Airship Autonomous Flight[END_REF].

The term g ψ is neglected since it remains very small during normal operations, moreover, its presence in equation (22-1) should turn difficult the computation of the current reference values for φ and θ. The coupling term with the inner control loop, which remains small, is also removed from equation (22-1). Then considering the output equations (22-1), (22-2), (22-3) and (22-4), here also, the guidance dynamics presents, for each of its outputs, relative degrees equal to 1 while the internal dynamics, which are concerned with the attitude angles, are supposed already stabilized. Then, here also we are led to adopt, for ψ, x, y and z, decoupled second order linear dynamics towards their target values ψ c , x c , y c and z c : Once the desired accelerations are made available (relations (24-1), (24-2), (24-3) and (24-4)), the set of equations (22-1), (22-2), (22-3) and (22-4) must be solved simultaneously with respect to u ψ , u z , φ cc and θ cc . We get the solution of this set of equations in the following order: We get first the current reference attitude angles by elimination:

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - - - - - - - - - - - - = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ) ( 2 ) ( 2 ) ( 2 ) ( 2
) sin cos ( ψ δ δ ψ δ δ θ z d y d z d x d cc z g y z g x arctg - - + + - - (25-1) )) cos sin ( (cos ψ δ δ ψ δ δ θ φ z d y d z d x d cc z g y z g x arctg - - + - - - (25-2)
Here

m d m d m d z z y y x x / / / = = = δ δ δ
. Then, the current values of controls values of the controls u ψ and u z can be computed:

d zz k I u ψ φ θ ψ & & cos cos = (25-3) ) cos /(cos ) ) ( ( θ φ z d z d z g m u - - = & & (25-4)
Here also we get quasi-linear control law of the proportional derivative class. The values of φ cc and θ cc must be returned to the attitude controller to compute u p and u q using relations (21-2) and (21-3).

V. Backstepping Control of Rotorcraft Dynamics

The backstepping technique is a rather recent non-linear control technique, which applies to cascaded systems. The main idea is to use intermediate state variables as virtual inputs to take advantage of the causality relations displayed by the cascaded state representation. The convergence of the output variables towards their target values is obtained by the construction, step by step, of an auxiliary Lyapunov function. This general idea can be developed in different ways, as it will be shown in the next sub-section. The main interest of the backstepping approach is that the stability of the controlled system as well as the convergence of the outputs towards their reference values can be guaranteed without inducing, like in the case of the non-linear control approach, the decoupling of the outputs dynamics. Indeed, it can be considered that the decoupling of the outputs dynamics demands an additional effort from the control channels with then a higher possibility of saturation for the actuators, either in position or speed, resulting in downgraded performances. Finally, another advantage of this approach is that several matrices of parameters are introduced while constructing the control law, providing a large variety of possibilities to shape conveniently the outputs dynamics as well as the control signals.

A. Two Examples of Implementation of the Backstepping Technique

Consider a cascaded system whose state representation is given by:

2 1 x x = & (26-1) ) , ( 2 2 U x g x = & (26-2) where n R x ∈ 1 , n R x ∈ 2 are state variables and n R u ∈
is the control input and g is a smooth diffeomorphism with respect to u. The control objective here is to design a control law such that the state 1 x can be stabilized at c x 1 .

Here also, 2

x can be regarded as a virtual control input for the dynamics of 1 x while the dynamics of 2 x are controlled by the real control input U . Now, suppose that there exists a control law ) , (

1 1 2 c x x G x =
such that the dynamics of 1

x can be stabilized at c x 1 while we can find a Lyapunov function ) (

1 1 1 c x x V - , which satisfies the condition: ) ( ) , ( )' / ( ) ( 1 1 1 1 1 1 1 1 1 c c c x x W x x G x V x x V - - ≤ ∂ ∂ = - & (27) where ) ( 1 1 c x x W
is a positive definite function of x 1 . A possible choice is:

) ( ) , ( 1 1 1 1 c c x x x x G - Λ - = (28)
where Λ is a positive definite symmetric matrix. Then in this case:

) ( )' ( 2 
1 ) , ( ) ( 1 1 1 1 1 1 1 1 1 c c c c x x x x x x W x x V - - = = - (29) 
The whole dynamics can be expressed as:

z x x G x c + = ) , ( 1 1 1 & and w z = & (30-1)
where ) , (

1 1 2 c x x G x z - = (30-2)
and

2 1 2 ) / ( ) , ( x x G u x g w ∂ ∂ - = (30-3)
Then a candidate Lyapunov function of the full system is given by:

z z x x V z x x V c c ' 2 / 1 ) ( ) , ( 1 1 1 1 1 + - = - (31) 
The time derivative of ) , (

1 1 z x x V c -
is given by:

w z z x x G x V z x x V c c ' ) ) , ( ( ' ) / ( ) , ( 1 1 1 1 1 1 + + ∂ ∂ = - & (32) 
then:

w z z x V x x W z x x V c c ' )' / ( ) ( ) , ( 1 1 1 1 1 1 + ∂ ∂ + - - ≤ - & (33)
and by an adequate choice of w , such as:

z x V w Ω - ∂ ∂ - = ) / ( 1 1 ( 34 
)
where Ω is a symmetric positive definite matrix, the full system is globally asymptotically stable since it satisfies the following condition:

z z x x W z x x V c c Ω - - - ≤ - ' ) ( ) , ( 1 1 1 1 & (35)
Finally, the effective control input is given by: (

))

) , ( ) / (( ) ( 1 1 2 1 1 2 1 c x x G x x V x g U - Ω + ∂ ∂ - = - (36)
Now we consider the case where the cascaded system cannot be written easily in the form (26-1) and (26-2), but its outputs obey to relations (13-2) and ( 14) with 1

2 1 = = = = m r r r L
, where B is invertible with respect to the control inputs. In that case, two auxiliary outputs can be defined:

Y Y Y L Z c & + - = ) ( 1 and Y Z & = 2 (37)
where L is a positive definite symmetric matrix. A candidate Lyapunov function is then given by:

) ( 2 1 2 ' 2 1 ' 1 2 Z Z Z Z V + = (38)
The time derivative of V 2 is such as:

2 2 1 1 2 ' ' Z Z Z Z V & & & + = (39-1) or Y Y L Y Y L Y Y Y L V ' ) ( ' ) 2 ) ( ( 2 - + + - = (39-2)
Choosing a control such as :

) 2 ( Y Y L Y Y L & & & & + Λ - = + (40)
where Λ is another symmetric positive definite matrix. We have:

Y L Y Y Y Y L Y Y Y L V ' ) ) ( ( ' ) 2 ) ( ( 2 - + - Λ + - - = (41)
and it is straightforward to show that the system is globally asymptotically stable. The corresponding control law is given by (see (15)):

)

) ( ) 2 ( ) ( )( ( 1 X A Y L Y Y L X B U c + Λ + + - Λ - = - & (42) 
Analyzing relations (3-i), (4-i) and (5-i), i =1 to 3, it appears that their equations can be separated into two sets: one relative to the slower dynamics, the horizontal dynamics, and corresponding to the first case considered in the previous section and one relative to other dynamics and corresponding to the second case. This leads to propose in figure 4 the following two layers control structure where, making reference to figure 2, the faster control loops have been merged.

B. Attitude and Altitude Control by Backstepping

The attitude and altitude dynamics are given by the state equations: which is the case when φ and θ remain small with respect to π/2 .

) cos )(sin ( r q tg p φ φ θ φ + + = & (43-1) ) , , , , ( / ) cos sin ( θ φ φ θ θ θ φ ψ r q p P I u tg k u tg l u l p xx q p + + + = & & (43-2) r q φ φ θ sin cos - = & (43-3) ) , , , , ( / ) sin cos ( θ φ φ φ θ ψ r q p P I u k u l q yy q + - = & & (43-4) θ φ φ ψ cos / ) cos (sin r q + = & (43-5) ) , , , , , ( ) / 
u Y J u X B ) ( ) , ( = (44-1) with ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
We introduce now the two R 4x4 symmetric positive definite matrices M and Λ 1 and adopt the control law (42),where:

' )] / ( [ ) ( m d g g P P X A z q p - = ψ (46)
Since the actuator settings are determined by the inner control loop, let us have a look at the corresponding dynamics. The outputs φ, θ, ψ and z of the inner closed loop follows the dynamics given by: 0

) ( ) 2 ( ) ( ) ( 1 1 1 1 1 = - + Λ + Λ + Λ - - c Y Y Y L L Y 0 ) 2 ( 1 1 2 = + + + i i i i s s μ λ λ μ i =1 to m (48-1)
where ) , , , (

1 12 11 1 m diag λ λ λ L = Λ and ) , , , ( 2 1 m diag L μ μ μ L = (48-2)
and where s is the Laplace variable.

In this case, since the λ 1i and the μ i are positive real, we get always real negative roots. In the general case, the dynamics modes of the outputs will be characterized by the solutions of the global characteristic polynomial:

0 ) ) 2 ( det( 1 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Λ + + Λ - L sI L I sI m m m (49)
Since this last relation is independent of the application it is possible to study once for all the reachable pole sets within the left half complex plane. Remark: In the case of an horizontal wind, a necessary condition for final convergence and equilibrium, independent of the choice of matrices Λ and L or even of the control approach is given by: 

C. Horizontal Backstepping Control Layer

The state representation of the horizontal dynamics is given by:

x v x = & (51-1) y v y = & (51-2) ) )) sin( ) sin( ) cos( ) sin( ) )((cos( / 1 ( x x d F m v - + = φ ψ φ θ ψ & (51-3) ) )) sin( ) cos( ) cos( ) sin( ) )((sin( / 1 ( y y d F m v - - = φ ψ φ θ ψ & (51-4)
where ψ and F are defined by the inner control loop. This state representation corresponds to the one studied in the case of (26-1) and (26-2). Then following the corresponding backstepping approach, we get with V 1 chosen according to relation (29):

) / )) ( cos ) ( n arcsin((si z y y x x cc u d m d m + - + = ε ψ ε ψ φ (52-1) ) cos / ) sin s arcsin((co cc z y y z x x cc u d m u d m φ ε ψ ε ψ θ + + + = (52-2)
where ε x and ε y are given by:

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Ω - ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - - Λ Ω + - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ y x y y x x I c c y x & & ) ( 2 2 ε ε (52-3)
where Λ 2 and Ω are symmetric positive definite matrices. Then, the horizontal position of the rotorcraft follows the linear dynamics:

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - - Λ Ω + + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Ω + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ c c y y x x I y x y x
) ( dynamical systems. This notion, which has some similarity with both controllability and observability for linear systems, has open the door to a new approach for the design of non linear control laws. Many applications in the field of aerospace have already been performed with success. In this section, the differential flatness property of rotorcraft attitude and altitude dynamics taken as a whole, is displayed and a two layer control structure is proposed: one layer makes use of to differential flat control approach to provide a common control loop for attitude and altitude dynamics, and the other one provides, through non linear inversion, a control loop for the horizontal coordinates of the rotorcraft.

A. Differential flatness of smooth systems

A general nonlinear system given by: ( )

U X X , ϕ = & , n R X ∈ , m R U ∈ (54)
where ϕ is a smooth mapping, is said explicitly flat with respect to the output vector Z , if Z is an th m order vector which can be expressed analytically as a function of the current state, the current input and its derivatives, while the state and the input vectors can be expressed analytically as a function of Z and a finite number of its derivatives.

Then there exists smooth mappings X G , U G , and Z G such as:

( )

) ( , , , z n Z U U X G Z K = (55.1) ( ) ) ( , , , x n X Z Z Z G X K & = (55.2) ( ) ( ) 1 , , , + = x n U Z Z Z G U K (55.3)
where n z and n x are integer numbers. Vector Z is called a flat output for the nonlinear system given by equation (54). Although until today there is no systematical way to determine flat outputs and eventually to prove its uniqueness, the flat outputs usually possess some physical meaning. The explicit flatness property is of particular interest for the solution of control problems when physically meaningful flat outputs can be related with their objectives. In many situations, the control problem can be formulated as a flat output trajectory following problem.

In general, for these cases, the flat output of equation (55-1) can be reduced, through state transformation, to a function of a single argument, the new system state itself:

( )

X G Z Z = (56)
Then a possible control law providing to the flat outputs linear decoupled dynamics towards reference values is given by:

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - - - = ∑ = ) ( , , , 0 ) ( 1 c i n i i U Z Z A Z A Z Z G U x K (57)
where the A i matrices are diagonal matrices chosen such as the m polynomials :

∑ = + + + x x n i i i n j j a s j j a s 1 0 1 ) , ( ) , ( m j ,..., 1 = (58) 
are characteristic polynomials corresponding to acceptable dynamics for the m flat outputs.

B. Differential flatness of rotorcraft dynamics

The motion equations of the rotorcraft can be written in non-linear state form as:

ψ θ φ ψ θ φ θ φ =
(62) by inversion of the set of equations (3-1), (3-2), (3-3) and (5-3), or more specifically:

l qr k p I u xx p / ) ( 2 + - = & (63-1) l pr k q I u yy q / ) ( 4 - = & (63-2) k r I u zz / ) ( & - = ψ (63-3) ) cos /(cos )) , , ( ) (( φ θ z y x d m g z u z z + - - =
(63-4) Then, it can be concluded that the attitude and heading dynamics as well as the vertical dynamics of the rotorcraft are differentially flat when considering the input-output relation between u and Z. This leads to propose the control structure displayed in figure 5 which is close to the one proposed with the backstepping approach in figure 4 .

C. Design of the differential flat control laws

We adopt for the flat outputs second order dynamics and their second tie derivative should be such as:

d φ & & = ) ( 2 2 cc φ φ ω φ ω ζ φ φ φ - - - & (64-1) d θ & & = ) ( 2 2 cc θ θ ω θ ω ζ θ θ θ - - - & (64-2) d ψ& & = ) ( 2 2 c ψ ψ ω ψ ω ζ ψ ψ ψ - - - & (64-3) d z& & = ) ( 2 2 c z z z z z z - - - ω ω ζ & (64-4)
The expressions of the control inputs in relations (63-1), (63-2), (63-3) and (63-4) are fed by r q p , , given by (61-1), (61-2) and (61-3) and by

r q p & & & , ,
given by:

d d p ψ θ ψ θ θ φ sin cos - - = (65-1) ψ φ θ φ ψ θ θ φ ψ θ φ θ φ cos cos ) sin 1 ( sin cos sin cos + + - + = d d q (65-2) ψ θ θ φ ψ φ θ φ θ φ φ ψ θ φ θ φ sin cos cos sin cos cos cos sin - - - + - = d d r (65-3)
where

d d d ψ θ φ

D. Horizontal guidance by non-linear inverse control

Now, considering equations (5-1) and (5-2), to insure that x and y adopt second order dynamics such as:

0 ) ( 2 2 = - + + c x x x x x x x ω ω ζ (66-2)
following the non linear inverse control approach, cc φ and cc θ must be chosen such as:

0 ) ( 2 ) ) sin sin cos sin )((cos / 1 ( 2 = - + + - + c x x x x z cc cc cc x x x d u m ω ω ζ φ ψ φ θ ψ & (67-1) 0 ) ( 2 ) ) sin cos cos ) sin( )((sin / 1 ( 2 = - + + - - c y y y y z cc cc cc y y y d u m ω ω ζ φ ψ φ θ ψ & (67-2) Then : ) / ) cos (sin arcsin( z y x cc u D D m ψ ψ φ - = (68-1) ) cos /( ) sin (cos arcsin( c z y x cc u D D m φ ψ ψ θ + = (68-2) where ) ( 2 2 c x x x x x x x x D - - - = ω ω ζ δ & (69-1) ) ( 2 2 c y y y y y y y y D - - - = ω ω ζ δ & (69-2)
So it appears that differential flat control and non-linear inverse control can be easily integrated within a same multilayer control structure.

VII. Rotorcraft Quasi-Linear Control

In this section the three non-linear control laws designed for the positioning of the rotorcraft are simplified to get quasi-linear control laws. Then a multi loop proportional derivative control law with a simple non-linear gain is introduced.

A. Quasi linearization of the non-linear control laws

In the case of the non-linear inverse control approach the obtained control laws are already quasi linear (see relations (21-4), (21-5), (25-3) and (25-4)). We can write:

) cos ) ( 2 ( ~2 ψ φ φ φ φ θ φ φ ω φ ω ς u I tg k l I u zz c xx p + - + = & (70-1) ) sin ) ( 2 ( cos ~2 ψ θ θ θ φ θ θ ω θ ω ζ φ u I k l I u zz c yy q - - + = & (70-2) )) ( 2 ( cos cos ~2 c zz k I u ψ ψ ω ψ ω ς φ θ ψ ψ ψ ψ - + - = & (70-3) ) cos (cos )) ( 2 ( cos cos ) ( ~2θ φ ω ω ς θ φ δ c z z z z z z z z m g m u - + + - = & (70-4) 
The linearization of relations (25-1) and (25-2) can be realized in two steps: First equalizing the sine with its angle:

) cos sin ( cos ~ψ δ δ ψ δ δ θ φ z y z x cc z g y z g x - - + - - - (71-1) ψ δ δ ψ δ δ θ sin cos ~z y z x cc z g y z g x - - + + - - (71-2)
and then considering that z is already close to its final value z c , and if the wind is considered to have negligible effects, expressions (71-1) and (71-2) become:

)) ( 2 ( sin )) ( 2 ( (cos 1 ~2 2 c y y y c x x x cc y y y x x x g - + + - + - = ω ω ς ψ ω ω ς ψ θ & & (72-1) ) cos )) ( 2 ( sin )) ( 2 (( cos ~2 2 ψ ω ω ς ψ ω ω ς θ φ c y y y c n x x cc y y y x x x g - + - - + = & & (72-2)
The linearization of the backstepping control laws (relations (42), (48.1), (48.2) and (48-3)) gives: So here again we get quasi-linear proportional derivative control laws. With respect to the computation of the current target values for the bank and pitch angle, we get in a first step:

) 0 0 0 ) 2 ( ) (( 1 ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ Λ + + ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - - - - Λ - = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - g z L z z L J u u u u c c c c z q p & & & & ψ θ φ ψ ψ θ θ φ φ ψ (73-1) with ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
z y y x x cc u d m d m / )) ( cos ) ( (sin + - + = ε ψ ε ψ φ (74-1) cc z y y z x x cc u d m u d m φ ε ψ ε ψ θ cos / ) sin (cos + + + = (74-2)
where ε x and ε y are linear expressions given by: The linearization of the differential flat control law (relations (63-1) to (63-4), (64-1) to (64-4) and (65-1) to (65-3)) leads to: 

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Ω - ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - - Λ Ω + - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ y x y y x x I c c y x & & ) (
)) ( 2 ( sin ) ( 2 )( / ( ˆ2 2 c cc xx p p l I u ψ ψ ω ψ ω ς θ φ φ ω φ ω ς ψ ψ ψ φ φ φ - + + - + = & & & (77-1) )) ( 2 ( cos sin ) ( 2 ( )(cos / ( ˆ2 2 c cc yy q l I u θ θ θ ψ - + - - + = & & (77-3) φ θ ω ω ς φ θ δ cos cos )) ( 2 ( cos cos ) ( ˆ2 c z z z z z z z z m g m u - + + - = & ( 

B. Quasi -linear proportional derivative controller

From the previous sub-section it appears that non-linear inverse control and differential flatness produce very close control laws while the backstepping approach seems able to provide, depending of the choice of matrices L Λ 1 Ω and Λ 2 , control laws quite different. Anyway, all the control laws developed here demonstrate to be non-linear

( + - = (80-8) 
This last control law is non linear and numerical simulation tests has shown that the introduction of its non linear factor improves in a noticeable way the guidance performances of the rotorcraft under this modified control law.

VIII. Simulation Study

A view of two identical rotorcraft is shown in picture 1. Their physical parameters have been adopted for the numerical simulation. In Annex 1, the main physical characteristics of this class of rotorcraft are reported. The values of the gains of the backstepping control law have been chosen, in a first attempt, which has given rather good results, identical to those of the quasi-linear control law. These values have been obtained by tuning empirically the gains of the quasi-linear control law until an acceptable behaviour has been obtained. Since the backstepping control law, although non-linear, has the same structure than the quasi-linear control law, it needed the same gain structure and so the same gains values have been tested for it. The selected gains are displayed on Table 1. The selected dynamics for the attitude, the altitude, the heading and the horizontal position are second order linear dynamics characterized by their respective damping coefficient and natural frequency. These values are reported on Table 2. Although the non linear inverse control approach and the differential flat control approach are based on different control structures, since there are driven by common attitude and output dynamics (see table 2), they produce at the end control laws which are very similar and have basically the same performance. So the produced figures display different time responses of the rotorcraft under either the quasi-linear control law, the backstepping control law or the non-linear inverse control law.

The comparison is performed in two stages: first, the responses of the rotorcraft to a step in attitude (either φ or θ) for each control law, are evaluated. Then, for each control law , the responses of the rotorcraft to a step in position (x, y or z) are evaluated and compared. The evaluation of the inner attitude control loop is important since the guidance capability of the rotorcraft, an under actuated device, is directly dependent of the controllability of its attitude angles. The results (see figures 6 to 11) show that the three control laws, in both levels, present equivalent performances. However, while the non linear inverse control law produces second order linear dynamics for the attitude angles and the position and heading outputs, the two other control laws, even the quasi linear control law, produce clearly non linear behaviours for these variables. In particular (figure 6) , since the final convergences of the quasi linear and the backstepping control laws are rather slow, the non linear inverse solution can produce, for a same response time, a less input demanding solution. However, as shown in the following figures, other parameters settings may lead to responses where the quasi linear and the backstepping approaches are slightly superior. Other simulation studies should be performed in particular to show clearly the advantage of using advanced nonlinear control law instead of empirical-intuitive ones. Also, the realisation of simulation studies should be of interest to explore the impact of actuator saturations on the flight domain and feasible manoeuvres of the rotorcraft.

IX. Conclusion

In this communication the applicability of three non-linear control approaches to the positioning and orientation of a rotorcraft has been treated. Since this system is highly nonlinear, naturally unstable and rather underactuated, the design of a unique control law to perform safely the whole manoeuvre is not straightforward and a multilevel control structure must be conceived. So along the paper, different control structures, associated to the different non-linear control approaches considered, are produced. Moreover, it appears that the direct application of these non-linear control approaches is not possible: -In the case of the non-linear inverse control approach, it is necessary to extend its applicability to systems given by a non-affine state representation to bring a non-linear inverse control solution to the horizontal guidance sub problem.

-In the case of the backstepping control approach, it is necessary to realize two different implementations of its guidelines to insure the internal stability as well as the global stability of the controlled system.

-In the case of the differential flat control approach, first it has been necessary to identify the differential flatness property of a part of the rotorcraft flight dynamics, and then it has been necessary to combine this approach with the non-linear inverse control approach to treat the horizontal guidance sub problem.

The original paper considered also the important issue of the possible saturation of the actuators and proposed in each of the three considered approaches, the design of a supervision layer to avoid the occurrence or at least to limit the effects of actuator saturations. These lengthy developments have not been included in the present paper by lack of space.

Note also that the three developed non-linear control laws assume that, contrarily to the quasi-linear control law, an estimate of the wind speed is available. Should this estimate be computed on board or communicated from the ground? A partial solution to this problem could be provided by the possible robustness of these control laws with respect to external perturbations. The robustness with respect to other aspects such as parameters uncertainty is also an important issue since the payload of the rotorcraft can present important variations considering its reduced weight and its possible different missions. This question will be treated and it is to be expected that, whatever the adopted control solution, additional terms should be introduced. Of course, when considering the reference quasi-linear proportional derivative control law, the addition of an integrator term is expected. The positioning and orientation problem, which has been treated here, can be seen as a first step towards the design of an efficient trajectory tracking system for the rotorcraft. A first move in this direction should be the evaluation of the proposed control schemes when the coordinates of the target point change slowly following a given 3D trajectory. Then a second move should be to integrate in the control structure predictive components so that the delays resulting from the inner control loops can be compensated. One of the main results of the present study is to provide insights into this question. Two other interesting but very complex problems related with flight control of a rotorcraft are the generation of minimum time trajectories and the generation of minimum energy trajectories for the positioning and orientation problem. These two problems can be of interest depending of the application, their solutions provide the envelope of the whole set of feasible positioning and orientation manoeuvres. Another problem which can be of interest in this field is related with the safe landing ("soft crash") of a rotorcraft when an engine has failed. The solution of these three problems should use different control and decision techniques from those displayed in this paper.

Finally, the effective realisation of the control solutions depends of the availability of accurate measurement systems dedicated to the estimation of the angular rates p, q and r, the attitude and heading angles, φ, θ and ψ, as well as the inertial speed and position components,

z y x & & & ,
, a n d x,y, z. This accuracy could be obtained through some ad hoc hybridization schemes to overcome the specific difficulties associated with this light and small flying platform. 

F

  rotor i , rad.s -1 i Lift force from rotor i, N m rotorcraft mass, kg r q p , , angular rates (roll, pitch and yaw) in body-axis frame, rad s -1 ψ θ φ , , Euler angles (bank, pitch, and heading, rad cc cc θ φ , current target values for φ and θ, rad ψ c target value for heading, rad z y x , , current rotorcraft position in the inertial frame, m

  this study the wind is given in the local Earth reference frame by of gravity, taken directly in the local Earth reference frame, is such as:

  respectively damping and natural frequency parameters, ψ, x, y and z and are the current values of the heading and the coordinates of the centre of gravity of the rotorcraft while ψ c , x c , y c and z c are the final reference values for the heading angle and the position coordinates. Of course, many other schemes can be proposed to define desired accelerations at the guidance level.

  relation (23). The outputs dynamics (43-2), (43-4), (43-6) and (43-8) take the form (14) with Y=[φ θ ψ z]', U = u with ' X,u) is such as:
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VI. Differential Flat Control for Rotorcraft Dynamics

In the field of Robotics many control problems present strong non-linearities, which are not tractable through linearization. This has driven researchers to develop the notion of differential flatness for continuous non-linear Considering here the output vector Z = (φ, θ, ψ, z)', the inversion of the Euler equations (4-1), (4-2) and provides expressions such as:

(60-3) or more specifically: 

extensions of proportional derivative control laws. The main difference between the different approaches is relative to the derived control structures. For comparison purpose, a simplistic quasi-linear multi-loop control structure has been produced. Its control laws are completely decoupled and are given -Attitude control laws:

-Heading control law:

-Horizontal control laws: Let us define the auxiliary variables x u ( and y u ( by:

then, where ψ is the current heading of the rotorcraft:

-Vertical control law:

Table 1 Selected gains for control laws 

Rotor engine dynamics

The rotor engine dynamics are characterized by the relation between the input voltage V a and the angular rate ω. A realistic model of rotor dynamics is given by:

where τ , K Q and K Va are given positive parameters and where the voltage input is such as:

Numerical values for the rotors parameters: τ =10, K Q = 0.0079, K Va = 1000, V max = 11 V.

Step response

The step response (V a =constant) of the rotor is solution of the scalar Riccati equation:

A. particular solution ω 1 of the associated differential equation is such as:

A particular solution ω 1 of the associated differential equation is such as:

In the general case, the solution of (A.3) can be written as: It appears (see figure 12) that the dynamics of the rotor may be close to those of a first order linear system with time constant τ', but as can be seen in (A.6), this value is a function of V a . If the desired dynamics for the output are such as:

where T is a very small time constant V a can be chosen such as: