
A new method for generating optimal conflict free

4D trajectory

Nour Dougui

Applied Mathematics Laboratory

ENAC

7, Avenue Edouard Belin

31055 Toulouse, France

Email: nour@recerche.enac.fr

Daniel Delahaye

and Stephane Puechmorel

Applied Mathematics Laboratory

ENAC

7, Avenue Edouard Belin

31055 Toulouse, France

Email: delahaye@recerche.enac.fr

Email: puechmor@recerche.enac.fr

Marcel Mongeau

Université de Toulouse UPS, INSA, UT1, UTM

Institut de Mathématiques de Toulouse

F-31062 Toulouse cedex 9, France

CNRS

Institut de Mathématiques de Toulouse UMR 5219

F-31062 Toulouse cedex 9, France

Email: mongeau@math.univ-toulouse.fr

Abstract—The need for increasing air traffic capacity motivates
4D trajectory planning concept. In order to generate conflict-
free 4D trajectories, we introduce a new concept based on light
propagation modeling algorithm. This algorithm is a wavefront
propagation method that yields a natural solution for the path
planning problem specifically in the case of air traffic congestion.

I. INTRODUCTION

The analysis of air traffic growth expects a doubling of the

number of flights over the next 20 years. The Air Traffic Man-

agement (ATM) will therefore have to absorb this additional

burden and increase the airspace capacity, while ensuring at

least equivalent standards of safety and interoperability. The

European project SESAR was initiated to propose solutions

to this problem. It relies on a new concept of air traffic

control, known as 4D (3D plus time) trajectory planning,

which consists in exploiting the possibilities of the Flight

Management System (FMS) to ensure that a given aircraft

is at a given position at a given time. For each flight,

a reference trajectory, called Reference Business Trajectory

(RBT), is requested by the operating airline. During the flight,

conflict situations may nevertheless occur, in which two or

several aircraft can dangerously approach each other. In this

case, it is necessary to modify one or more trajectories to

ensure that minimum separation standards (currently 5 Nm

horizontally and 1000 ft vertically) are still satisfied. Moreover,

it is desirable that proposed new trajectories deviate as little

as possible from RBT. In this context, we propose a new

algorithm which seeks to ensure sufficient separation between

aircraft while producing flyable trajectories.

A. Previous related works

During recent years, several methods have been proposed

to find an optimal solution that could solve conflicts in air

traffic. The aim of these methods is to find for each aircraft, an

optimal 4D trajectory that avoids conflicts with other aircraft,

reaches the destination point and optimizes a cost function

which depends on the travel duration and on the cost index (a

coefficient that takes into account fuel consumption). There are

mainly two classes of methods to address this problem: genetic

algorithms [1] and navigation-function based approach [2].

Each one provides only a partial solution to the problem.

The first one, genetic algorithms, consists in generating a

new population of aircraft trajectories from a base population

using three basic operators: selection, mutation and crossover

in order to improve the cost function. This process is iterated

until the cost function is no longer improved. The state space

is a set of finite maneuvers, which are straight lines, turning

points (changing an aircraft heading and then bringing it back

on its initial trajectory) and offsets (inducing a lateral shift

from the initial trajectory). Those maneuvers are the ones used

by air traffic controller. Genetic algorithms generate trajecto-

ries with feasible operational maneuvers and with velocities

within bounded ranges. They can reach asymptotically optimal

solution, but for a given computing time, a feasible (conflict-

free) solution is not guarantee.

The second method, based on navigation functions, consists

in using an electrostatic modeling of the problem: an electron

(which has a negative charge) is subject to an electric field,

and is attracted by a positive charge which represents the

goal and is pushed away by negative charges which represent

obstacles. Thus, the electron is going to move towards the

goal and steered by the resultant electric fields. The aircraft

(a virtual electron) is represented by a point in 3D space.

If a mathematical function of potential fields can be built to

model adequately the destination charge and the distribution

of the obstacle charges, then the virtual forces applied on such

virtual electron, initially positioned at the departure point, can

be computed. This produces a trajectory which connects the

departure point with the destination while avoiding obstacles

(the other aircraft).

Navigation functions have already demonstrated their effec-

tiveness in motion planning with guaranteed collision avoid-

ance and convergence towards the goal configuration (reach

the destination point with the right orientation). However, they

do not take into account the constraints imposed by ATM,

such as bounded speed, smooth trajectory and time constraints.

Besides, they may tolerate large deviations from RBT.

The objective of our approach, based on an optical analogy,

is to find for each aircraft a feasible (relevant to ATM con-

straints) optimal 4D trajectory, avoiding conflicts and which

minimizes a criterion based on a local metric.

B. Paper overview

In the next section, we present our method. Numerical

results are presented in section III. Then, a conclusion appears

in section IV.

II. LIGHT MODELLING ALGORITHM

In order to build our algorithm, a light propagation analogy

is used. In the physical framework, light propagates in space

under Decarte laws (see Figure 1).

Fig. 1. Light ray deviation under Decarte laws in a region cut into two index
areas (n1,n2)

These laws are summarized by the following:

For a light ray that goes from a region with index n1

into an other one with index n2 with an angle i1, we have
{

n1 sin(i1) = n2 sin(i2)

v = c
n2

where, i2 is the angle of the light ray in region with index

n2, v its associated velocity and c the velocity of the light

in vacuum.

Our algorithm uses such laws in order to build aircraft

trajectories using congestion or other aircraft neighborhood

as high index areas.

The light modelling algorithm is adjusted from the aircraft

point of view. It is assumed that aircraft knows the surrounding

aircraft trajectories (trajectories of other aircraft is a given

input of our algorithm).

Assume that objective function is an application associating

a positive real value to a curve of class C1 of R
3. Such value is

computed by integrating a local metric along the curve. We can

thus represent length, travel time or the cost associated with a

trajectory by a suitable choice of local metric. Determining an

optimal trajectory will therefore reduce to search a geodesic

which is the shortest path between two points on the space

regarding the local metric.

In this algorithm, we use the well-known fact that a light

ray trajectory is a geodesic when considering the environment

refractive index as a local metric. To represent congestion

areas and conflicts in air traffic management, we consider

the refractive index as a measure of congestion or traffic

complexity. We select a barrier index value in the prohibited

areas and in the protection volumes surrounding each aircraft.

The optimal trajectory will be computed using a technique

of ray tracing. The light will be slowed down in congested

areas, but despite this, it can pass through. However, it will

be completely blocked by aircraft protection volumes, which

ensures conflict free-situations. We launch several light rays in

various directions from the departure point of the aircraft. The

path of the first ray that reaches the arrival point corresponds

to an approximation of a geodesic.

We compute the environment index associated to a given

congested area using a model based on Lyapunov expo-

nents [3].

To generate a trajectory, we use a wavefront propagation

algorithm in 3D with a space discretization (the wave prop-

agation is done with a space step ds) from the departure

point. We do not propagate the wavefront randomly in all

space directions but into directions with highest probability

of success. To ensure this, we guide the wavefront by an

initial solution obtained by the navigation function method [2].

Consequently, we can guarantee at least one feasible solution.

To avoid a combinatorial explosion, the propagation will be

coupled with a branch-and-bound algorithm that interrupts

unnecessary shooting rays. In our case, the trajectory obtained

by the navigation function method is sampled with half-

spheres of radius ds, oriented towards the destination. These

half-spheres are, in turn, sampled with an angle step dθ in the

horizontal plane and an angle step dϕ in the vertical plane to

build an initial search tree for the branch-and-bound algorithm

as shown in Figure 2.

Fig. 2. Initial search tree for the branch-and-bound algorithm

A. Branch-and-bound Algorithm

We implement the propagation within a branch-and-bound

algorithm [4], a classical framework for solving discrete

optimization problems. At the beginning, we consider the set

of all possible solutions, represented by the root. Procedures

to obtain lower and upper bounds for the optimal value of our

criterion are applied to the root. If these two bounds are equals,

then the optimal solution is found, and the algorithm stops.

Otherwise, the solution set is partitioned into two or more sub-

problems, which become children of the root. The method is

then applied recursively on these sub-problems, generating a

tree.

The idea behind the building of sub-problems which are

relaxations of the original problem, branching process, is to

solve them in a reasonable time. If an optimal solution is found

for a sub-problem, it is feasible but not necessarily optimal for

the original problem. On the other hand, as a feasible solution,

it can be used to eliminate partial solutions. Indeed, if the

lower bound of a node exceeds the value of an already known

solution, then we can say that global optimum solution cannot

belong to in the subset of solution represented by this node. It

is therefore eliminated. The search goes on until all the nodes

are explored or eliminated.

B. Branch and Bound applied to the Light Modeling Algo-

rithm

The initial upper bound used in the Branch and Bound

algorithm is the travel time computed by the navigation

function method.

In order to build a lower bound for a given search tree node,

we first compute a bound, ”TimeToDest”, for the remaining

time to reach the destination. This bound is a weighted sum

of two terms. The first one, ”integTime”, is the summation of

the refractive index along the direct route to the destination.

The second one, ”maxSpeedTime”, is the time needed to reach

destination in direct route with the maximum speed.

TimeToDest := α∗ integT ime+β ∗maxSpeedT ime. (1)

with weighting parameters α, β such that α + β = 1.

The lower bound is then the summation of TimeToDest and the

time needed to reach the node from the origin (TimeToNode).

More specifically, the lower bound is given by (see Figure 3):

lowerBound := TimeToNode + TimeToDest.

Fig. 3. The lower bound computing.

Branching, in our context, involves launching rays as

straight lines in a spatial half sphere of radius ds oriented

towards the arrival point.

Browsing the search tree can be done in different ways. We

choose a strategy whose priority is to find quickly a feasible

solution (depth-first search or DFS). Here a live node (a node

for which children have not yet been generated) with deepest

level in the search tree is chosen for exploration. The memory

requirement in terms of number of subproblems (stored at any

given time) is bounded above by the number of levels in the

search tree multiplied by the maximum number of children

of any node, which is in our context a manageable number.

The drawback of such approach is that nodes which are far

from being optimal, may yield large amount of unnecessary

bounding computations.

In order to avoid such drawback in our case, DFS is

combined with a selection strategy. This consists in selecting

the node that has the best lower bound among the nodes at

the same level in the search tree (a combination of DFS as the

overall principle and best first search, BeFS as a secondary

selection criterion).

At each time step dt of the algorithm, the environment index

is updated because aircraft change themselves the congestion

while moving.

The main steps of the algorithm are as follows:

1. Compute the navigation function algorithm solution:

trajectory T. Set UpperBound := time travel of T.

2. Descritize T to build a tree, with half spheres having

radius ds, an angle step dθ horizontally and an angle

step dϕ vertically.

3. Set TrajSolution := null. While the destination is not

reached do:

a. Update the refractive index.

b. While there is still unexplored nodes in the

tree do:

• Choose a node N.

• Relaunch rays from node N:

For any light ray, if the light beam goes

from a region with index n1 into a region

with index n2 with an angle i1, let it

continue with a new angle i2 such that n1

sin(i1) = n2 sin(i2) and with a velocity

of v = c
n2

.

c. Set TrajSolution := Trajectory obtained at b.

interrupted by the step time dt.

In the following section, we will see the numerical results

of a simplified version of the algorithm (2D), first with a static

refractive index and then with a dynamic refractive index.

III. NUMERICAL RESULTS

In all our simulations, we work on a 3.2 GHz machine

running under Debian Linux operating system, 1024 KB of

RAM. The software has been developed in JAVA.

We use a coordinate system that is scaled with separation

standards. Thus, we use an (x, y) grid with a standard hori-

zontal separation (5 Nm) unit. The index map used is a square

of (15 ∗ 15) standard horizontal separation.

In step 2. of the algorithm, the radius ds of the semicircles

is set to a half standard separation distance. And the sampling

angle dθ is set to Π
10 . The coefficients in the formula (1) we

chose, are: β := 0.1 and α := 0.9.

A. Results in 2D

The algorithm was first tested with a static refractive index

function (it does not depend on time) in 2D space in order to

highlight the fact that it does find geodesics in simple cases.

Several refractive index functions were tested. Some ex-

amples are presented in Figures 4, 5, 6 and 7. The index

function used is a continuous function, where high values are

represented in red and low values in blue. Thus, the congested

areas are represented in red and areas that involve little traffic

are shown in blue. The resulting solution trajectory is found

in less than 5 s of CPU.

Fig. 4. Resulting trajectory with departure point on the bottom
right corner and arrival point on the top left corner. The function in-

dex is given by: e−((x−a1)2+(y−b1)2)/k + e−((x−a2)2+(y−b2)2)/k +

e−((x−a3)2+(y−b3)2)/k + e−((x−a4)2+(y−b4)2)/k

Fig. 5. Resulting trajectory with departure point on the bottom left
corner and arrival point on the top right corner. The function in-

dex is given by: e−((x−a1)2+(y−b1)2)/k + e−((x−a2)2+(y−b2)2)/k +

e−((x−a3)2+(y−b3)2)/k + e−((x−a4)2+(y−b4)2)/k

In Figures 4, 5 and 6, trajectories avoid high index area and

passe through ”valleys” which is the expected behavior. Thus,

the aircraft avoids congested areas.

In Figure 7, the trajectory goes through a relatively con-

gested area instead of bypassing it completely through the

blue area above. This behavior can be explained by the fact

that direct path, although it slows down the aircraft is more

advantageous than a long detour with a higher aircraft velocity.

In all cases, the resulting trajectory is a geodesic approxi-

mation.

Fig. 6. Idem Figure 5 with new parameters (ai, bi, ii ∈ {1..4}) for the
index function.

Fig. 7. Idem Figure 5 with new parameters (ai, bi, ii ∈ {1..4}) for the
index function.

B. Results in 2D + time

Here, we deal with a situation of conflict resolution in-

volving several aircraft. The algorithm controls one aircraft

trajectory and we assume that the other aircraft maintain

fixed straight line trajectories. The refractive index takes into

account two factors. The first one is related to avoidance of

the protection zones of other aircraft. The second one drive

away the aircraft from congested areas where it could be in

conflict.

The index function n is given by the following formula:

Consider P aircraft (ai)i∈{1..P} moving in the space with

the associated position vectors (
−→
Xi)i∈{1..P} and velocity vec-

tors (
−→
Vi)i∈{1..P}. For any space point

−→
Y ,

n(
−→
Y) := n1(

−→
Y) + C(

−→
Y).

The first function n1 is used to avoid conflict. In order to

ensure that the aircraft controlled by the algorithm avoids the

other aircraft, we represent them by disks whose radius is

the standard distance separation. We set the function n1 to a

very high value N inside these disks and we make it decrease

rapidly outside the disk as follows:

For any space point
−→
Y , let

||
−→
Xi −

−→
Y || := α.

α ≤ R ⇒ n1(
−→
Y) := N N ≫ 1.

α ≥ R ⇒ n1(
−→
Y) := 1 + N−1

1+(α−R)q .

with R the standard distance separation and q is a parameter

that determines the speed with which the index decreases

outside the separation zone.

The second function C called convergence metric [5] mod-

els the fact that aircraft converge to a point in the space. It is

a metric used to mesure congestion. The convergence value at

a space point
−→
Y is given by the formula:

C(
−→
Y) :=

∑

i

c(i) ∗ e−β∗(||
−→
Xi−

−→
Y ||),

where

c(i) :=
∑

j 6= i,

rij < 0

rij ∗ e−α∗(||
−→
Xi−

−→
Xj ||)

where

rij :=
(
−→
Xi −

−→
Xj)

||
−→
Xi −

−→
Xj ||

∗ (
−→
Vi −

−→
Vj)

and where α and β are weighting parameters.

Some examples of conflict resolutions with 2 to 4 aircraft

are shown in Figures 8, 9, 10, 11 and 12.

The track of the aircraft controlled by the algorithm appears

in blue. This aircraft has its starting point at the bottom right

corner of the figure and its arrival point at the top left corner.

Its initial trajectory (a straight line) is shown in red. The other

aircraft trajectories appear in black. The starting point of each

trajectory is represented by a small dot.

In all these cases, the solution is found in less than 30 s of

CPU.

In Figure 8, only two aircraft are in conflict. Their trajec-

tories cross at the center of the figure. The controlled aircraft

avoids conflict and follows a path that consists in two segments

and an arc.

In Figures 9, 10 and 11, three aircraft are involved. The

controlled aircraft is initially in conflict with one or the two

other aircraft.

And each time, the trajectory generated by the algorithm

avoids conflicts while remaining close enough to the original

trajectory.

Moreover, these trajectories are composed of a set of

segments and arcs.

In Figure 12, four planes are considered. As previously, the

resulting trajectory avoids conflicts by using 3 segments and

an arc.

Figure 13 represents a situation with four aircraft in conflict.

The resulting trajectory successfully avoids conflicts, but the

Fig. 8. Conflict resolution with 2 aircraft. Controlled aircraft initial trajectory
is in red with a departure point on the bottom right corner and an arrival
point on the top left corner. Resulting trajectory is in blue. The other aircraft
trajectory starts on the top in the middle and goes to the bottom. Its separation
zone is represented by a red disk.

Fig. 9. Conflict resolution with 3 aircraft. Controlled aircraft initial trajectory
is in red with a departure point on the bottom right corner and an arrival point
on the top left corner. Resulting trajectory is in blue. The first conflicting
aircraft trajectory starts on the top in the middle and goes to the bottom. The
second conflicting aircraft trajectory starts on the left bottom corner and goes
to the right top corner.

turns used are too steep. This occurs because the metric used

for the index (convergence indicator) does not have a big

enough predictability horizon. This creates paths that are not

quite regular. We will therefore seek for a better congestion

metric that avoids the occurence of such irregularities.

IV. CONCLUSION

The trajectory produced with our light-model algorithm

avoids conflicts. It is a geodesic approximation that guarantee a

speed lower bound, which is critical for an aircraft. Moreover,

this trajectory is a sequence of segments and arcs, a trajectory

that the FMS can monitor. Indeed, in most cases, it is a smooth

curve which is flyable and which apparently does not require

a lot of RTA points (Required Time on Arrival. This means

Fig. 10. Conflict resolution with 3 aircraft. Controlled aircraft initial
trajectory is in red with a departure point on the bottom right corner and
an arrival point on the top left corner. Resulting trajectory is in blue. The
first conflicting aircraft trajectory starts on the right and goes to the left. The
second conflicting aircraft trajectory starts on the right top corner and goes
to the left bottom corner.

Fig. 11. Conflict resolution with 3 aircraft. Controlled aircraft initial
trajectory is in red with a departure point on the bottom right corner and
an arrival point on the top left corner. Resulting trajectory is in blue. The first
conflicting aircraft trajectory starts on the left and goes to the left. The second
conflicting aircraft trajectory starts on the left bottom corner and goes to the
right top corner.

that the plane must be in a given position at a given moment).

Indeed, RTA points correspond to curvatures changes and in

the tested examples, not a lot of curvatures changes appear.

Fig. 12. Conflict resolution with 4 aircraft. Controlled aircraft initial
trajectory is in red with a departure point on the bottom right corner and
an arrival point on the top left corner. Resulting trajectory is in blue. The
first conflicting aircraft trajectory starts on the left and goes to the left. The
second conflicting aircraft trajectory starts on the left bottom corner and goes
to the right top corner. The third conflicting aircraft trajectory starts from the
bottom and goes to the top.

Fig. 13. Conflict resolution with 4 aircraft. Controlled aircraft initial
trajectory is in red with a departure point on the bottom right corner and
an arrival point on the top left corner. Resulting trajectory is in blue. The first
conflicting aircraft trajectory starts on the left bottom corner and goes to the
right top corner. The two other conflicting aircraft trajectory starts from the
right and goes to the left.

In the next step, a better convergence indicator will be used.

The curvature of the resulting trajectories will be analyzed

in order to check it satisfy aircraft constraints. This approach

allows us to know how many RTA points are required to mon-

itor conflict-free trajectories. Current work involves testing a

new method for generating geodesic curves on a triangular

mesh following ideas from computer graphics[6]. Our aim is

to improve our results both in term of geodesic approximation

and in term of computational time.

REFERENCES

[1] N. Durand. Optimisation de trajectoires pour la rsolution de conflits

en route. PhD thesis, ENSEEIHT, Institut National Polytechnique de
Toulouse, France, 1996.

[2] G. Roussos, G. Chaloulos, K. Kyriakopoulos and J. Lygeros. Control

of multiple non-holonomic air vehicles under wind uncertainty using

model predictive control and decentralized navigation function, IEEE
Conference on Decision and Control, December, 2008.

[3] S. Puechmorel and D. Delahaye. Dynamical systems complexity with a

view towards air traffic management applications, IEEE Conference on
Decision and Control, 2009.

[4] E. Balas and P. Toth. Branch and Bound Methods, In The Traveling

Salesman Problem, John Wiley & Sons, 361-401, 1985.
[5] D. Delahaye, S. Puechmorel. Air traffic complexity: towards intrinsic

matrics, 3rd USA/Europe Air Traffic Management R& D Seminar Napoli,
2000.

[6] M. Novotni, R. Klein. Computing geodisic distances on triangular

meshes, The 10th International Conference in Central Europe on Com-
puter Graphics, 2002.

