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Abstract—Fault detection is essential for the survivability 

of many systems. Since many systems present highly 

nonlinear dynamics, the applicability of general fault 

detection techniques designed mainly for linear systems is 

very questionable. In this communication, after 

introducing the concept of difference flat nonlinear 

systems, a fault detection scheme based on difference 

flatness is proposed. 

 
Index Terms—Fault detection, differential flatness, 

rotorcraft.  

 

I. INTRODUCTION 

      In the last decade a large amount of interest has risen for 

new fault detection and identification (FDI) approaches for 

non linear systems. However few results have been obtained 

through purely non linear approaches. Differential flatness, a 

property of some nonlinear dynamic systems, introduced by 

Fliess et al. from the theory of differential geometry, has 

made possible the development of new tools to control 

effectively nonlinear systems. Many dynamic non linear 

systems have been proved to be differentially flat and the 

differential flatness of conventional and non conventional 

aircraft dynamics has been proven in different situations.   

      While there are many different approaches to cope with 

fault detection in the case of linear systems, this is not the 

case with non linear systems and in this paper we introduce a 

fault detection technique applicable to difference flat non 

linear systems. 

       In the first part of this paper, the main concepts relative 

to difference flatness applied to discrete dynamical systems 

are particularly considered. Then a new approach, based on 

the redundancy between flat outputs and direct state 

component measurements, is proposed. To take into account 

measurement errors as well as modelling errors to perform 

fault detection tests in this non linear context, probabilistic  

distributions are generated on-line. However the resulting 

distribution for the state estimates of a nonlinear system will  
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not be Gaussian in general and its full construction should 

need intensive computation which is not affordable in an 

online context. So, from a reduced set of distributions points 

a fuzzy membership function is constructed and a 

comparison, through a reduced number of fuzzy logic rules 

can be performed to get a fault diagnostic. The proposed 

scheme is illustrated in the case of a rotorcraft subject to 

faults characterized by parameter shifts.   

II. DIFFERENCE FLAT SYSTEMS 

A. Difference flat systems of order (p,q) 

Consider a non-linear system whose discrete time dynamics 

are given  from an initial state 
0X  by: 

( kkkk UXfXX ,1 )+=+                           (1) 

for Nk ∈ , where n

k RX ∈ , m

k RU ∈ ,  is a smooth vector 

field of 

f

kX  and 
kU  which are respectively the state and the 

input vectors of this system at time k. It is supposed here that 

each input has an independent effect on the state dynamics: { mjiwithjiufuf ji ,...,1,,, ∈ }≠∂∂≠∂∂  (2) 

The system given by (1) is said to be difference flat of order 

(p,q), where p and q are integers, if there exists a measurable 

output 
mRY ∈ : 

 ( kk XhY = )                              (3) 

where  is a smooth vector field of h
kX , such as it is 

possible to write: ( )qkpkpkk YYYX −−++= ,...,, 1η                (4) ( )qkpkpkk YYYU −+++= ,...,,1ξ                (5) 

where ( ).η  is a function of jY  and its values from  

back to order 

jpk +
jqk − , and that ( ).ξ  is a function of 

jY  and its 

values from 1++ jpk  back to , for j = 1 to m. 
jqk −

Here p and q are given by: { }j
tomj

pp
1

max==       and      { }j
tomj

qq
1

max==               (6) 

For 1=j  to ,  is called the discrete relative degree of 

output 

m
jp

jY , while 
jj qp +  is the time span of the dynamics of 

output j . It is easy to show that: 

( )∑=
≤+m

j

jj nqp
1

`                               (7) 

B. Nominal state reconstruction 

It appears in the case of difference flat systems that perfect 

on-line state reconstruction is possible in theory through two 
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steps: 

 - At current time, the set of measurements 

),,,,( 11 pkpkqkqk YYYY +−++−− L  is available, so it is 

possible when the model of the discrete dynamics and the 

measurements are assumed to be perfect, to compute the 

exact value of the state of the system at time k by the discrete 

flat relation:  (
11

,...,
~

qkpkk YYX −+=η )                    (8) 

- Then, starting from this value and using repeatedly the 

discrete state equation (1) from time  to time 

with the past known inputs U

kh =
1−+ pk h : ( )hhhh UXfXX ,

~~~
1 +=+                     (9) 

we get the current state value
pkX +

~
. 

Unfortunately, discretized models and measurements present 

in general systematic errors and the above scheme cannot be 

used directly. 

III. THE PROPOSED FAULT DETECTION SCHEME 

The proposed detection scheme is based on the 

redundancy of information which is present when 

considering simultaneously flat outputs and some state 

components of a system subject to faults. So, here we 

consider that an output composed of a flat output vector and p 

additional components of the state vector is available at each 

time period: 

⎥⎦
⎤⎢⎣

⎡+
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
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⎢

⎣

⎡
=

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

k

k

i

i

k

i

i

k

k

v

x

x

Y

x

x

Y

Z

rr

υ
μ

μ
μ

MM
11                  (10) 

with nrm ≤+  where m

k Rv ∈  and r

k
R∈υ  are 

measurements errors. 

Since in theory it is possible to reconstruct the state of the 

system from past and present flat outputs and inputs, at 

current time  it will be possible to compute residuals 

such as: 

pk +

jj iipkj XXX
~

, −=+ μδ           (11) rtoj 1=
and considering the accuracy of the measurement channels 

and of the discretized model, it should be possible to set 

thresholds   to detect faults in the system. 

Then the satisfaction of tests such as: 

pjX

j ,,1, L=σ
{ } X

jpkjXrjif σδ >∈∃ +,:,,1 L     (12) 

will indicate the presence of a fault with some probability { }rjj ,,1, L∈π .  

      Of course, the effectiveness of this fault detection scheme 

is directly dependant of the levels of these thresholds. To 

investigate this point, additional assumptions are made here: 

   It is supposed that the measurement error follow Gaussian 

white noise processes with zero means: 

 { } 0=kvE                                  (13) 

and with constant variances given by: { } { } hki

t

hk mtoiVdiagvvE ,

2
1, δ==          (14) 

where                 10 ,, =≠= kkhk andhkif δδ                    (15) 

In the same way, we suppose that: 

      { } 0=kE υ                            (16) 

and   

         { } { } hki

t

hk ptoidiagE ,

2
1, δυυ =Δ=     (17) 

where                    10 ,, =≠= kkhk andhkif δδ  (18) 

   The modeling error can be also approximated by additive 

gaussian white noises such that the state dynamics of the 

system under consideration can be rewritten: 

  
kkkkk UXfXX ω++=+ ),(1

          (19) 

where kω  is a Gaussian white noise vector of dimension n 

such as: 

  { } 0=
k

E ω                               (20) 

and  { } { } hki

t

hk ntoiWdiagE ,

2
1, δωω ==  (21) 

 

To define the appropriate probability levels used in the 

fault detection test, since the flatness relation and the state 

equation are in general non-linear, the probability 

distribution of the estimation errors through the 

reconstruction process described in subsection II.B does not 

follow necessarily a Gaussian distribution. Then, it is 

necessary to generate on line the probability distribution of 

the error of the current state estimations.  

IV. GENERATION OF STATE DISTRIBUTIONS 

     It is possible to generate, using the process described 

above through different realizations of the modeling and 

measurement errors, statistics for the estimates at current 

time k+p of the state of the difference flat system. The 

generation process for state distribution at period k+p if 

composed of two stages: random generation of the state 

distribution at period k, through flat differential equation, and 

then random generation of state distribution at period k+p 

through state equation propagation from period k to period 

k+p. 

We get first estimates at time k, 
),,(

qp
ii

kX
−L)

, where the vectors 

of indexes 
h

i  are such as: 

{ }qpphNi mh −−∈∈ ,,1,, L                   (22) 

Then we get: 

),,(
),,( qpqp

i

qk

i

pk

ii

hk YYX
−−
−+− = L

) L η                  (23) 

For each choice s of 
h

i ,  the flat output component, 
sh

ji ,

mtoj 1= , present in η  is computed according to: 

}{
qpph

NNiViYY sh

jj

sh

jhkj

i

hj

h
j

−−=
−∈⋅+= +

,,1,

,,,,,

,,

L

Lμ
     (24) 

Let  be the associated probability given by:    
sh

ji

hj

,

,ρ
 NtoNi

V

i

j

h

ji

hj

sh
j −=⋅

−= πρ
2

)exp( 2

,

,

               (25) 

     Let  be the maximum number of different estimates 

which is generated according to relations 29 and 30 at time 

k+p for each component of the state of the difference flat 

maxs
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system at time k.  is such as: maxs
)1(

max )12( ++⋅+≤ qpmNs                    (26) 

      Since this number can be excessive (for N= 5, m =3, p =2, 

q =1 we get ), the number of choices for s must 

be strongly limited. For a single choice of s among 

, we generate for N = 5, m = 3, p =2 and q =1, s

12

max 10.3≈s

}{ NN ,,L− max 

= 12 different values for each state component and then smax=  

4090 different values when two different choices are done for 

s. By similarity with the particular filtering approach, we will 

call particle each generated state 
),,(

qp
ii

kX
−L)

 for time k from 

measurements 
μ

qkY −  to 
μ

pkY + . Let 
r

kX̂  be the  estimate 

of the state for period k generated at period k+p, 

ths

1=s  to 

. maxs

      For each particle, following (25), we get for the next 

periods until current time (h = k to k+p-1) the following            

r. state estimates: maxn

),,(
),,(),,(),,,(

1

1 hhhhkhhk r

hh

rr

h

rr

h

rrr

h UXfXX ω(((( LLL +=+
+  

  with                                 (27) 
hh ss max

1

max 2 ⋅=+

for sh =1 to , with the initial conditions: 
hsmax

maxmaxmax

)(

1ˆ sswithstorforXX kk
r

k

r

k

k ===(
 (28) 

where 
hs

hω(  is a random try for the Gaussian vector hω  to 

which is associated the probability: 

∏= ⎟⎟⎠
⎞⎜⎜⎝

⎛ −⋅⋅= n

s

s

r

hs

s

s

h W
W1

2

, 2/)/(exp
2

1 ωπα (          (29) 

     Then, with the chosen generation process, we get 

different estimates of the current state of difference 

flat system. Each of this estimates are characterized by the 

vectors of indexes such as: 

max2 sr

( ) { }max1 2,,1,,, sswithrrr kh

hpkkk

−++ ∈ LL  (30) 

Let the weights  be given by: 
),,( pkk ss

pkjP ++
L

)(/)(
,,

,,

),,( ∏∑∑∏ +

−=

+

−=+ ⋅⋅=
+−

+
pk

qkh

s

h

i

hj

ss

pk

qkh

s

h

i

hj

ss

pkj
h

sh
j

pkqk

h

sh
jpkkP αραρ L

L    (31) 

It is then possible to compute approximations of the first 

and second order statistics for each measured state 

component at current time: 

 

)(
),,(),,( pkk

qk

pkk

pk

ss

pk

s

ss

pk

s

pk XPX
+

−

+

+
+++ ∑ ∑= LL (

L     (32) 

with an estimate of the standard deviation of pkjX +
~

 given 

by: 

2),,(),,(
)((

~
pkj

ss

pkj

s

ss

pk

s

pkj XXPV pkk

qk

pkk

pk

++++ −= +

−

+

+
∑ ∑ LL

L    (33) 

V. THE FAULT DETECTION SCHEME 

A. Building a fuzzy estimation 

     From the above generation it is now possible to build a 

fuzzy representation for each measured component of the 

state vector.  Considering for each component i of the state 

vector the set of points ( ,),,( pkk ss

pkP ++
L ),,( pkk ss

pkiX ++
L(

), a 

membership function can be taken as a scaled polynomial 

interpolation of this set of points when the current 

state component is taken as the independent variable (see 

figure 1). Only the positive part of the polynomial 

interpolation will be retained, this ensures that its base

)(xa pkj +

0

pkjB +
(

 

which is the smallest convex covering set of { }0)(0 >= ++ xaxB pkjpkj
,  is finite : 

+∞<+0

pkjB
(

                          (34) 

 
 

Figure 1: generated membership function 

 
Figure 2-Comparison of measure and estimate 

 distributions. 

 

Then the membership function for is given by: )( pkx j +{ })(max/)()( yaxax pkj
Ry

pkjpkj +∈++ =μ    for j =1 to r  (35) 

It is also possible to consider a Gaussian distribution for 

pkjX +
~

 given by: 

))
~

2/()(exp(~
2

1
)(

~ 2

pkjpkj

pkj

pkj VXx
V

xf ++
+

+ −−= π
      (36) 

 

B. Measuring the difference between estimates 

    The discrepancy between the distribution of  and  

the Gaussian distribution is computed by: 

pkjX +,

)))(
~

)(((
~

21 2dxxfxaVQ pkjpkjpkjpkj ∫+∞

∞−
++++ −−= π  for   j =1 to r  (37)    

so that if  the generated distribution is similar with 

a Gaussian distribution while if is near to zero or 

negative, the generated distribution is quite different from a 

1=+ pkjQ

pkjQ +

Measure 

distribution 
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Gaussian distribution. This parameter is important because 

according with the degree of similarity with a Gaussian 

distribution, the comparison with the measurement data will 

be performed differently since to the measurement is 

associated another Gaussian distribution whose standard 

deviation factor is directly related with the accuracy of the 

measurement device: 

))2/()(exp(
2

1
)( 2

jpkj

j

pkj Xxxf Δ−−Δ= ++ μ
π

    (38) 

Normalization of this distribution provides a membership 

function pkjf + for the measure of Xj at time k+p: 

))2/()(exp()( 2

jpkjpkj Xxxf Δ−−= ++ μ             (39) 

       Then, the detection of faults which here is based on a 

discrepancy between the measurement and the estimation of 

 can be performed by comparing their membership 

functions, see figure 3. Then it is possible to compute a 

membership function for the intersection of the 

corresponding fuzzy sets by: 

pkjX +,

 

)(
~

)()( xfxxw pkjpkjpkj +++ = μ    ∈x R,  for  j=1 to p    (40) 

 
Figure 3. Comparison of a Gaussian and a general 

membership functions 

 

which can be characterized, if it not identically null,  by the 

following parameters. 

Its mean value:    

dxxwdxxxwX

pkjpkj B

pkj

B

pkj

w

pkj )(/)( ∫∫
++

+++ =       (41) 

Its maximum value:           (42) )(maxmax xwX pkj
Bx

w

pkj
pkj

+∈+ +
=

Its base ratio :   
00 / pkj

w

pkj

w

pkj BBb +++ = ((
                (43) 

where  is the minimum convex covering set of  

given by:        

0w

pkjB +
(

0w

pkjB + { }00 >= ++ pkj

w

pkj wxB             (44) 

Its medium cut set ratio: 
05.0 / w

pkj

w

pkj

w

pkj BB +++ = ((τ                (45) 

where  is the minimum convex covering set of  

given by: 

5.0w

pkjB +
(

5.0w

pkjB + { }⎭⎬⎫⎩⎨
⎧ >∈= +++ )(max5.0)(5.0 ywxwRxB pkj

y
pkj

w

pkj
    (46) 

 

Given for state component j a typical fault diagnosis curve 

such as: 

 
 

Figure 4. Fault membership function for state component j 

 

C. Computation of the more likely discrepency 

     It is then possible using a set of practical rules based on 

parameters ,μ
pkjX + jΔ ,

pkjX + , , , 
pkjV +

~
pkjQ + w

pkjX + , , 

and ,  to compute the more likely discrepancy 

between the measurement of Xj and its estimate at 

current time k+p. For instance when: 

maxw

pkjX +
w

pkjb + w

pkj +τ
pkjX +ˆδ

 1≈+ pkjQ  then μδ pkjpkjpkj XXX +++ −≈ˆ    (47) 

and when: 

 0≈+ pkjQ  then    (48) μδ pkj

w

pkjpkj XXX +++ −≈ maxˆ

Then considering all the state components at current time 

k+p, the likelihood of a fault at current time k+p will be given 

by: { })ˆ(max
1

pkj

fault

j
rtoj

fault

pk X +=+ = δμμ                (49) 

with a fault generalization degree given by: 

 { })ˆ(min
1

pkj

fault

j
rtoj

fault

pk X +=+ = δμμ                    (50) 

 

VI. APPLICATION TO A ROTORCRAFT 

 

     The considered system is shown in figure 5 where rotors 

one and three are clockwise while rotors two and four are 

counter clockwise. The main simplifying assumptions 

adopted with respect to flight dynamics in this study are a 

rigid cross structure, constant wind, negligible aerodynamic 

contributions resulting from translational speed, no ground 

effect as well as small air density effects and negligible 

response times for the rotors.  

A. Rotorcraft dynamics 

The rotor forces and moments are given by: 

2
ii fF ω= { 4,3,2,1∈i }

}
         (51-1) 

2
iii fkFkM ω==        (51-2) { 4,3,2,1∈i
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Figure 5: The considered rotorcraft 

 

Where f and k are positive constants and ωi is the rotational 

speed of rotor i. These speeds and forces satisfy the 

constraints: 

max0 ωω ≤≤
i

i
     (52-1)     { 4,3,2,1∈i }

}{ 4,3,2,10 maxmax ∈=≤≤ ifFF ii
i

ω   (52-2) 

Since the inertia matrix of the rotorcraft can be considered 

diagonal with Ixx = Iyy, the roll, pitch and yaw moment 

equations may be written as: 

xxIrqkFFlp /))(( 224 +−=&                (53-1) 

                                         (53-2) yyIrpkFFlq /))(( 431 +−=&

                    zzIFFFFkr /))(( 3412 −+−=&                 (53-3) 

where p, q and r are the roll, pitch and yaw body angular 

rates. Here   and   , where I)(2 yyzz IIk −= )(4 zzxx IIk −= xx, Iyy 

and Izz are the inertia moments in body-axis, and l is the 

length of the four arms of the rotorcraft. 

Let  φ, θ and ψ be respectively the bank, pitch and heading 

angles, then the Euler equations relating the derivatives of the 

attitude angles to the body angular rates, are given by: 

)cos)(sin( rqtgp φφθφ ++=&           (54-1) 

rq φφθ sincos −=&                   (54-2) 

θφφψ cos/)cos(sin rq +=&              (54-3) 

In this study the wind is given in the local Earth reference 

frame by ( )'zyx wwww = . The wind is supposed 

constant while the ground effects are neglected. Since the 

rotorcraft operates at low speeds, the drag can be neglected. 

Then the acceleration ( )'zyx aaaa = of the centre of 

gravity, taken directly in the local Earth reference frame is 

given by: 

 

)))sin()sin()cos()sin())((cos(/1( Fma x φψφθψ +=        (55-1) 

)))sin()cos()cos()sin())((sin(/1( Fma y φψφθψ −=       (55-2) 

))cos())(cos(/1( Fmga z φθ−=                  (55-3) 

 

where x, y and z are the centre of gravity coordinates,  m is the 

total mass of the rotorcraft and: 

                         (56) 
4321 FFFFF +++=

In equations (47-1) and (47-2), the effects of the rotor 

forces appear as differences so, we define new attitude inputs 

uq and up as: 

31 FFuq −=                           (57) 24 FFup −=
In the heading and position dynamics, the effects of rotor 

forces and moments appear as sums, so we define new 

guidance inputs uψ and uz as: 

)()( 3142 FFFFu +−+=ψ     4321 FFFFFuz +++==       (58) 

 '][ zqp uuuuu ψ=                             (59) 

Equations (47-1), (47-2) and (47-3) are rewritten: 

xxp Irqkulp /)( 2+=&                    (60-1) 

yyq Irpkulq /)( 4+=&                     (60-2) 

zzIukr /ψ=&                              (60-3) 

 

B.  Rotorcraft Discretized Dynamics 

                  

Adopting a first order discretization of the rotorcraft 

dynamics with a time step δ, we get the discrete rotorcraft 

flight dynamics model: 

 ( ) ( ) ( ) ( )( )( ) ( )( )( ) ( )( ) ( ) ( )( )( )( )( )( )( )( )( ) ( ) ( ) ( ) ( ) ( )( )( )( ) ( ) ( ) ( ) ( ) ( )( )( )( ) ( ) ( )( )⎪⎪
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δ
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δ
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δ

δ
(61) 

where the state vector   
k

X  is given by: 

[ ]′= kkkkkkkkkk zyxrqpX &&&ψθφ      (62) 

where 
kφ  is the bank angle, 

kθ  is the pitch angle, 
kψ is the 

heading direction, pk is the roll rate,qk is the pitch rate, rk is 

the yaw rate , are the components of the rotorcraft 

translational speed in the Earth reference frame. 

kkk zyx &&& ,,

figure 6 displays the corresponding error histograms, 

showing that the Gaussian hypothesis for modeling is 

acceptable in the current case.  

      Here we have applied the state distribution generation 

method proposed in section 4.. It has been supposed that the 

nine components of the state of the discrete version rotorcraft 

are measured while the first component of this state is the flat 

output from which the other two state components can be 

reconstructed (here p = 1) for one period before current 

decision time. To generate an initial distribution using the 

flatness relations and take into account the errors present in 

the flat outputs measurements, two values have been chosen 

for each output randomly to activate relation (30), leading to ( ) 25622 81 ==++⋅ qpm
 different initial estimates.  

    Then applying twice relation (33) we get at current time a 

state distribution of 256 X 2 = 512 samples. These 512 

samples are generated on line at each discrete instant and 

allow to estimate probabilistic distributions so that a fault test 

can be performed by comparison with the direct 

measurements of   and . ),(4 px = )(5 qx = )(6 rx =
Figure 7 displays the same tests when at time 0 a faulty event  

induces  a 10% loss of mass for the rotorcraft with 

consequences on the inertia parameters  and . xxI yyI
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Figure 6. discretization error histograms 

 

 

 
 

 

Figure 7. Distribution comparison for x5 = q with fault 

 at t = 0.06 sec, t = 0.12 sec 

 

 

VII. CONCLUSION 

     This communication proposes a new approach to detect 

faults occurring in nonlinear systems whose discrete 

dynamics are differencially flat. The proposed approach has 

been illustrated in the case of a rotorcraft. The proposed 

approach can be improved in different ways: other 

distribution generation schemes could be considered easily 

and compared with the one adopted here while the generated 

distribution could be used directly in the fault detection tests 

avoiding the gaussian hypotesis which has been adopted here 

for sake of simplicity.  
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