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Fault Detection for Difference Flat Systems

Nan Zhang , Andrei Doncescu, Alexandre C. Branddo Ramos and Felix Mora-Camino

Abstract—Fault detection is essential for the survivability
of many systems. Since many systems present highly
nonlinear dynamics, the applicability of general fault
detection techniques designed mainly for linear systems is
very questionable. In this communication, after
introducing the concept of difference flat nonlinear
systems, a fault detection scheme based on difference
flatness is proposed.
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I. INTRODUCTION

In the last decade a large amount of interest has risen for
new fault detection and identification (FDI) approaches for
non linear systems. However few results have been obtained
through purely non linear approaches. Differential flatness, a
property of some nonlinear dynamic systems, introduced by
Fliess et al. from the theory of differential geometry, has
made possible the development of new tools to control
effectively nonlinear systems. Many dynamic non linear
systems have been proved to be differentially flat and the
differential flatness of conventional and non conventional
aircraft dynamics has been proven in different situations.

While there are many different approaches to cope with
fault detection in the case of linear systems, this is not the
case with non linear systems and in this paper we introduce a
fault detection technique applicable to difference flat non
linear systems.

In the first part of this paper, the main concepts relative
to difference flatness applied to discrete dynamical systems
are particularly considered. Then a new approach, based on
the redundancy between flat outputs and direct state
component measurements, is proposed. To take into account
measurement errors as well as modelling errors to perform
fault detection tests in this non linear context, probabilistic
distributions are generated on-line. However the resulting
distribution for the state estimates of a nonlinear system will
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not be Gaussian in general and its full construction should
need intensive computation which is not affordable in an
online context. So, from a reduced set of distributions points
a fuzzy membership function is constructed and a
comparison, through a reduced number of fuzzy logic rules
can be performed to get a fault diagnostic. The proposed
scheme is illustrated in the case of a rotorcraft subject to
faults characterized by parameter shifts.

II. DIFFERENCE FLAT SYSTEMS
A. Difference flat systems of order (p,q)

Consider a non-linear system whose discrete time dynamics
are given from an initial state x by:

X :Xk+f(Xk7Qk) (M

for ke N, where X, eR", U, € R", f is a smooth vector

field of X, and U, which are respectively the state and the

input vectors of this system at time . It is supposed here that
each input has an independent effect on the state dynamics:

of Jou, #0f [ou,, i=j, with i,je{l..,m} (2
The system given by (1) is said to be difference flat of order
(»,q), where p and q are integers, if there exists a measurable
output ¥ € R":

Zk = h(Xk) 3)

where & is a smooth vector field of X, , such as it is

possible to write: a
Xy = U(Xk+;7aX/prlr--,zqu) “
Uy zg(zk+p+lﬁzk+p5""zk—q) ®)
where 7() is a function of Y ; and its values from k + p,
back to order k — ¢, and that &(.) is a function of y, andits
values from k+p,+1 back to k—qj. ,forj=1tom.

Here p and g are given by:

and q = max {q } (6)

Jj=ltom J

p=maxip, |

Jj=ltom

For j=1to m, p; is called the discrete relative degree of
output Y, while P, +4, is the time span of the dynamics of

output ;. Itis easy to show that:

m

Y (p,+g,)<n @

J=1

B. Nominal state reconstruction

It appears in the case of difference flat systems that perfect
on-line state reconstruction is possible in theory through two
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steps:
- At current time, the set

(Zk—q s Zk—qﬂ 50" Y Y

s = k+p-1°=—k+p

of measurements
) is available, so it is

possible when the model of the discrete dynamics and the
measurements are assumed to be perfect, to compute the
exact value of the state of the system at time k by the discrete
flat relation:

X, =n (Xk+pl ""3Xk7q1) (®)
- Then, starting from this value and using repeatedly the
discrete state equation (1) from time A=k to time
k + p —1with the past known inputs U, :

X}m = Xh + f(Xh’Qh) (9)
we get the current state value X btp

Unfortunately, discretized models and measurements present
in general systematic errors and the above scheme cannot be
used directly.

III. THE PROPOSED FAULT DETECTION SCHEME

The proposed detection scheme is based on the
redundancy of information which is present when
considering simultaneously flat outputs and some state
components of a system subject to faults. So, here we
consider that an output composed of a flat output vector and p
additional components of the state vector is available at each
time period:

Xf Zk
“ X, v
2Tl
: . oy
x/ X;
with  m+r<n where y eR" and p ecpr are

measurements errors.

Since in theory it is possible to reconstruct the state of the
system from past and present flat outputs and inputs, at
current time k£ + p it will be possible to compute residuals

such as:

(11

and considering the accuracy of the measurement channels
and of the discretized model, it should be possible to set

oX

Jk+p

=Xx‘-X, j=1tor

thresholds o-f ,j=L1---,p to detect faults in the system.

Then the satisfaction of tests such as:
if 3j el |ox (12)
will indicate the presence of a fault with some probability
ﬂ‘j,je{l,---,r}.
Of course, the effectiveness of this fault detection scheme
is directly dependant of the levels of these thresholds. To
investigate this point, additional assumptions are made here:

It is supposed that the measurement error follow Gaussian
white noise processes with zero means:

X
e | >0

E{y, }=0 (13)
and with constant variances given by:
Et)k yht}:diag {Viz,i:lto m}é‘k’h (14)
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where 5., =0if k#hand 5, =1 (15)
In the same way, we suppose that:
E{,}=0 (16)
and
E@k Qh’}:diag {Aiz,i:lto p}5k,,1 (17)
where 8., =0if k#hand 5., =1 (18)

The modeling error can be also approximated by additive
gaussian white noises such that the state dynamics of the
system under consideration can be rewritten:

Xkﬂ :Xk—'—f(Xkan)"'Qk (19)
where @, is a Gaussian white noise vector of dimension »

such as:
(20)

2y

E{QA} =0
and E@k Qh’}:diag {W.Z,izlto n}é‘k’h

To define the appropriate probability levels used in the
fault detection test, since the flatness relation and the state
equation are in general non-linear, the probability
distribution of the estimation errors through the
reconstruction process described in subsection I1.B does not
follow necessarily a Gaussian distribution. Then, it is
necessary to generate on line the probability distribution of
the error of the current state estimations.

IV. GENERATION OF STATE DISTRIBUTIONS

It is possible to generate, using the process described
above through different realizations of the modeling and
measurement errors, statistics for the estimates at current
time k+p of the state of the difference flat system. The
generation process for state distribution at period k+p if
composed of two stages: random generation of the state
distribution at period £, through flat differential equation, and
then random generation of state distribution at period k+p
through state equation propagation from period k& to period
k+p.

AP i
We get first estimates at time k, X i T ), where the vectors

. Y
of indexes [ are such as:

g’h eN" he {p,p—l,---,—q}
Then we get:

(22)
=P i)

X" =W, Y,

. o
For each choice s of i, l?’s the flat output component,

(23)

j=1to m,presentin 7 is computed according to:

Yo=Y+ 0V, G el Nou Ny (g
h = pap_la"'a_q
Let pﬁ be the associated probability given by:
ch\2
b TG NN (25)

Pin = - Vv

Let §,,, be the maximum number of different estimates

which is generated according to relations 29 and 30 at time
k+p for each component of the state of the difference flat
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. 1s such as:
S S (2N + 1) 00D (26)

Since this number can be excessive (for N=5, m =3, p =2,
~3.10"), the number of choices for s must

system at time k. S

g=lwegets

be strongly limited. For a single choice of s among
{~N,---,N}, we generate for N=5,m=3,p=2 and ¢ =1, S
= 12 different values for each state component and then s,,,=
4090 different values when two different choices are done for
s. By similarity with the particular filtering approach, we will

call particle each generated state X\ ™ for time k from

AT
measurements Y f_q to Y4, . Let X, be the 5" estimate

k+p
of the state for period k generated at period k+p, s =1 to
S

max *
For each particle, following (25), we get for the next
periods until current time (2 = k to ktp-1) the following

r. nmax state estimates:

(T TpsTuer) — (1 7 -
K;Jlrl o :l(hk " +f(X§1h Uh’a)hh)
. Bl _
with Smax =2. Smax (27)
for s, =1 to Smax , with the initial conditions:
o) > .
X=X, forr=ltos" with s =s__ (28)

where @)" is a random try for the Gaussian vector @, to

which is associated the probability:

n

s 1 —r
et =T g vz @)

Then, with the chosen generation process,
2" s different estimates of the current state of difference

max
flat system. Each of this estimates are characterized by the
vectors of indexes such as:

we get

(rk,rk+1,~--, Tisp )with s, € {1,~--,2/”k smax} (30)
Let the weights Pj(k:p ) e given by:
k+p
Spesiny) sy (31
po < (el apys 3 (el apy @D
h=k—q e O

It is then possible to compute approximations of the first
and second order statistics for each measured state
component at current time:

Xy =2 > (P

Sk—q Sk+p

R e

with an estimate of the standard deviation of X jk+p gIVen
by:

(SgssSksp) (SkaaSksp) Y 33

/k+p z Z (P/~+p X/Aip ' _X/‘k+p)2 ( )

Sk—q Sk+p

V. THE FAULT DETECTION SCHEME

A. Building a fuzzy estimation

From the above generation it is now possible to build a
fuzzy representation for each measured component of the
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state vector. Considering for each component i of the state

; (5p73500p) .
vector the set of points ( ) AR X,ffp S ) a

membership function can be taken as a scaled polynomial
interpolation a,,(x) of this set of points when the current
state component is taken as the independent variable (see
figure 1). Only the positive part of the polynomial
interpolation will be retained, this ensures that its base B’ Jkip

which is the smallest covering set of

B_/O.k+p ={ | a ., (x)> 0} is finite :
|5;

convex

<400 (34)

jk+p

M
T
P
A1
) % ’ n
. y
I-' %
1 .
| )
: .
- B
> I

Figure 1: generated membership function

residusl values
e
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M

Figure 2-Comparison of measure and estimate
distributions.

Then the membership function for x , (k + p) is given by:

My () =ay, (V) /maxia,,, ()] Forj=ltor (35)
It is also possible to consider a Gaussian distribution for

)?jkﬂ, given by:

~ 1 (36)
Fiiey(0) = —=——=exp(~(x= X ;. ) /2 V},.,))
Jk+p \/m Jk+p r
B. Measuring the difference between estimates
The discrepancy between the distribution of X, ,, ~and

the Gaussian distribution is computed by:
for j=1tor (37)

01y =1- Jznmﬂ ([ @0 (¥ = 71y () k)

so that if Q,- pop =1 the generated distribution is similar with

a Gaussian distribution while if Q]. ke iS near to zero or

negative, the generated distribution is quite different from a

Measure

/ distribution
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Gaussian distribution. This parameter is important because
according with the degree of similarity with a Gaussian
distribution, the comparison with the measurement data will
be performed differently since to the measurement is
associated another Gaussian distribution whose standard
deviation factor is directly related with the accuracy of the
measurement device:

Fro ()= (38)

1
exp(—(x— X7, )" /(24)))
\27 A,
Normalization of this distribution provides a membership

function fj for the measure of Xj at time k+p:

k+p
F) =exp-e= X7, i) (39

Jk+p
Then, the detection of faults which here is based on a
discrepancy between the measurement and the estimation of

X Jk+p
functions, see figure 3. Then it is possible to compute a

membership function for the intersection of the
corresponding fuzzy sets by:

can be performed by comparing their membership

Wy ()= 4, (00, (x) X ER, for j=1top (40)
A
ff L

1

» 17

Xy
Figure 3. Comparison of a Gaussian and a general
membership functions

which can be characterized, if it not identically null, by the
following parameters.
Its mean value:

X, = [, xde/ [w,,, (x)de (@D
Bjjip Bjkip

Its maximum value: X = max w,., (x) (42)

Its base ratio: b7, == ”B}‘}ip / "E’?kw (43)

where B;}gp is the minimum convex covering set of

w0 . . w0
B}, given by: B, = {x| Wiy > 0} (44)
Its medium cut set ratio:
w pwo.5 pwo
e =B |BIE., (45)

where é;"k"i is the minimum convex covering set of

BV given by:

Jjk+p
s _ {x c R‘ Wi, (X)>0.5 n;gx{wa (y)}} (46)

Jk+p

Given for state component j a typical fault diagnosis curve
such as:
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Figure 4. Fault membership function for state component ;

C. Computation of the more likely discrepency
It is then possible using a set of practical rules based on
" v - Tw wmax
parameters X Ay X ip Vikey Qinp> X iy Xy -

jk+p?
b, ,and 7, . to compute the more likely discrepancy

5Xjk+p

current time k+p. For instance when:

between the measurement of Xj and its estimate at

Qjip =1 then 6Xjk+p ~ Xjk+p _X;lk+p S
and when:
Oy, 0 then &, = X7 = X, (48)

Then considering all the state components at current time
k+p, the likelihood of a fault at current time k+p will be given

by:

= maxlat ot )49
with a fault generalization degree given by:
it = min 6| e

j=lior

VI. APPLICATION TO A ROTORCRAFT

The considered system is shown in figure 5 where rotors
one and three are clockwise while rotors two and four are
counter clockwise. The main simplifying assumptions
adopted with respect to flight dynamics in this study are a
rigid cross structure, constant wind, negligible aerodynamic
contributions resulting from translational speed, no ground
effect as well as small air density effects and negligible
response times for the rotors.

A. Rotorcraft dynamics

The rotor forces and moments are given by:

F=fo® ie{l,23,4} (51-1)
M,=kF=kfo ie{l,2,3,4  (51-2)
IMECS 2012



Figure 5: The considered rotorcraft

Where f and k are positive constants and @ is the rotational
speed of rotor i. These speeds and forces satisfy the
constraints:

<w <o

i, max
F;' max ~— f wmax

Since the inertia matrix of the rotorcraft can be considered
diagonal with I, = I,,, the roll, pitch and yaw moment
equations may be written as:

e{1,2,3,4} (52-1)
e{1,2,3,4} (52-2)

n <

0<F,

1.
i

p=((F~Fy)+hk g r/l, (53-1)
G=((F~Fy)+hypr)/ 1, (53-2)
F=(k (Fy~F +Fy~F)/ L., (53-3)

where p, g and r are the roll, pitch and yaw body angular
rates. Here y, =1 -1,) and k,=(1, -1.), where I, I,

and [, are the inertia moments in body-axis, and / is the
length of the four arms of the rotorcraft.

Let ¢, @and w be respectively the bank, pitch and heading
angles, then the Euler equations relating the derivatives of the
attitude angles to the body angular rates, are given by:

$=p+ig(@)(sing g+cosg r) (54-1)
0 = cos ¢ q—sing r (54-2)
v =(singqg+cos¢gr)/cosd (54-3)

In this study the wind is given in the local Earth reference

frame by v_v=(wx w, wz). The wind is supposed

constant while the ground effects are neglected. Since the
rotorcraft operates at low speeds, the drag can be neglected.
Then the acceleration a=(a, a, a.) of the centre of

gravity, taken directly in the local Earth reference frame is
given by:

a, = (1/m)((cos(y)sin(@) cos(g) + sin(y) sin(g)) F') (55-1)
a, =(1/m)((sin(w)sin(f) cos(¢) — cos(y)sin(g)) F)  (55-2)
a, = g—(1/m)(cos(8)cos(g) F) (55-3)

where x, y and z are the centre of gravity coordinates, m is the
total mass of the rotorcraft and:
F=F+F,+F+F, (56)
In equations (47-1) and (47-2), the effects of the rotor
forces appear as differences so, we define new attitude inputs
ug and u,, as:
u =F-F u,=F-F (57)
In the heading and position dynamics, the effects of rotor
forces and moments appear as sums, so we define new
guidance inputs u,and u, as:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

uw,=(F+F)~(R+F) uw=F=F+FK+FR+F (58
w=[u, u, u, u.] (59)

Equations (47-1), (47-2) and (47-3) are rewritten:
p=Uu,+k,qr)/ 1, (60-1)
qg=u,+kspr)/1, (60-2)
F=ku,/l, (60-3)

B. Rotorcraft Discretized Dynamics

Adopting a first order discretization of the rotorcraft
dynamics with a time step 8, we get the discrete rotorcraft
flight dynamics model:

Xy =X 5 (‘x4,k + tan(xz,k ) sm(x k) X5t tan(xz k ) Cos(xl,k ) Kok )

Xy g =Xy + 5~(cos(xI

|
) Xsp = Sln(xl A) Xok
Xyp = Xgp T S (Sin(xl k) Cos(xz k ) X5y T (Cos(x”\ )/COS Kok )) Yok
)-u,
Ju,

(61)
Xy =Xy +0- (a/l
X =Xs5, +0° ((“/I kXX,
Xepn = X +0- ((k/l )'”r,k)
Xgp = X7t S- ((1/’”) (COS(ka ) Sin(xz,k ) Cos(xl,k )+ Sin(xz k ) m( )) )
Xg o = Xgy T S ((1/’”) (Sin(xz,k ) Sin(xz,k ) Cos(xl,k )7 Cos(x3 k ) Sm( )) )
X a1 = Xg e S (_ g+ (l/m)- Cos(xz,k ) COS(xl k ) Uy

where the state vector X, is given by:

Tk XX,

’

Xk:[¢k O, Wi Pi 9 T X W Z.k] (62)
where ¢, is the bank angle, g, 1s the pitch angle, y, is the

heading direction, p, is the roll rate,q, is the pitch rate, r; is
the yaw rate , x,, y,, z, are the components of the rotorcraft

translational speed in the Earth reference frame.

figure 6 displays the corresponding error histograms,
showing that the Gaussian hypothesis for modeling is
acceptable in the current case.

Here we have applied the state distribution generation
method proposed in section 4.. It has been supposed that the
nine components of the state of the discrete version rotorcraft
are measured while the first component of this state is the flat
output from which the other two state components can be
reconstructed (here p = 1) for one period before current
decision time. To generate an initial distribution using the
flatness relations and take into account the errors present in
the flat outputs measurements, two values have been chosen
for each output randomly to activate relation (30), leading to
27{rra+) = 28 = 256 different initial estimates.

Then applying twice relation (33) we get at current time a
state distribution of 256 X 2 = 512 samples. These 572
samples are generated on line at each discrete instant and
allow to estimate probabilistic distributions so that a fault test
can be performed by comparison with the direct
measurements of x, (= p), x;(=q) and x (=r).

Figure 7 displays the same tests when at time 0 a faulty event
induces a 10% loss of mass for the rotorcraft with

consequences on the inertia parameters /  and / W
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Figure 7. Distribution comparison for x5 = ¢ with fault
att = 0.06 sec, t = 0.12 sec

VII. CONCLUSION

This communication proposes a new approach to detect
faults occurring in nonlinear systems whose discrete
dynamics are differencially flat. The proposed approach has
been illustrated in the case of a rotorcraft. The proposed
approach can be improved in different ways: other
distribution generation schemes could be considered easily
and compared with the one adopted here while the generated
distribution could be used directly in the fault detection tests
avoiding the gaussian hypotesis which has been adopted here
for sake of simplicity.
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