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Abstract. We present an analytical solution to the decoherence time for the spin measurement and
the diagonalization of the density matrix of spin variables in the Stern-Gerlach experiment. This
solution requires the calculation of the Pauli spinor with a spatial extension, which is not found in
quantum mechanics textbooks. With this full spinor and the measured position of the particle we
demonstrate the three postulates of quantummeasurement: quantization, spectral decomposition and
wave function reduction. The transition from a quantum superposition to a statistical mixture is well
explained in this way, but not the single result that always emerges from a particular experiment.
The spinor spatial extension also allows the introduction of the de Broglie-Bohm trajectories which
give a very simple explanation of the particles’ impact.
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INTRODUCTION

In 1922, by studying the deflection of a beam of silver atoms in a strongly inhomo-

geneous magnetic field (cf. FIG. 1) Otto Stern and Walter Gerlach [1] obtained an ex-

perimental result that contradicts the common sense prediction: the beam, instead of

expanding, splits into two separate beams giving two spots of equal intensity N+ and

N− on a detector, at equal distances from the axis of the original beam. Historically, this

is the experiment which helped establish the spin quantization. Theoretically, it is the

seminal experiment posing the problem of measurement in quantum mechanics. Today

it is the theory of decoherence with the diagonalization of the density matrix that is put

forward to explain the first part of the measurement process [2, 3, 4, 5].

FIGURE 1. Schematic configuration of the Stern-Gerlach experiment.
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However, although these authors consider the Stern-Gerlach experiment as funda-

mental, they do not propose a numerical simulation of the measurement process or a

calculation of the spin decoherence time.

The aim of this paper is to present an analytical solution to this decoherence time and

the diagonalization of the density matrix. This solution requires the calculation of the

Pauli spinor with a spacial extension as the equation:
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Quantum mechanics textbooks [6, 7, 8, 9] do not take into account the spatial extension

of the spinor (1) and simply use the simplified spinor without spatial extension:
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However, as we shall see, the different evolution of the spatial extension between the two

spinor components will have a key role in the explanation of the measurement process.

This spatial extension enables us, in following the precursory works of Takabayasi [10],

Bohm [11, 12] and Dewdney et al. [13], to revisit the Stern and Gerlach experiment,

to explain the decoherence and to demonstrate the three postulates of the measure:

quantization, spectral decomposition and wave function reduction.

THE STERN-GERLACH EXPERIMENT

Silver atoms contained in the oven E (Fig. 1) are heated to a high temperature and escape

through a narrow opening. A second aperture, T, selects those atoms whose velocity,

v0, is parallel to the y-axis. The atomic beam crosses the gap of the electromagnet A1

before condensing on the detector, P1 . Before crossing the electromagnet, the magnetic

moments of the silver atoms are oriented randomly (isotropically). In the beam, we

represent the atoms by their wave function; one can assume that at the entrance to

the electromagnet, A1, and at the initial time t = 0, each atom can be approximatively

described by a Gaussian spinor in z given by (1) corresponding to a pure state. The

variable y will be treated classically with y = vt. σ0=10
−4m corresponds to the size

of the slot T following Oz. The approximation by a Gaussian initial spinor will allow

explicit calculations. Because the slot is much wider following Ox, the variable x will

be also treated classically. For the silver atom, we have m = 1.8× 10−25 kg, v0 = 500

m/s (with T=1000 K). In (1), θ0 and ϕ0 are the polar angles characterizing the initial

orientation of the magnetic moment, θ0 corresponds to the angle with the z-axis. The

experiment is a statistical mixture of pure states where the θ0 and the ϕ0 are randomly

chosen: θ0 is drawn in a uniform way from [0,π] and that ϕ0 is drawn in a uniform way

from [0,2π].
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The evolution of the spinor Ψ =

(
ψ+

ψ−

)
in a magnetic field B is then given by the

Pauli equation:
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where µB = eh̄
2me

is the Bohr magneton and where σ = (σx,σy,σz) corresponds to the

three Pauli matrixes. The particle first enters an electromagnetic field B directed along

the z-axis, Bx = B′0x, By = 0, Bz = B0−B′0z, with B0 = 5 Tesla, B′0 =
∣∣∣∂B

∂ z

∣∣∣= 103 Tesla/m

over a length ∆l = 1 cm. On exiting the magnetic field, the particle is free until it reaches

the detector P1 placed at a D= 20 cm distance.

The particle stays within the magnetic field for a time ∆t = ∆l
v
= 2×10−5s. After the

magnetic field, at time t+∆t (t ≥ 0) in the free space, the spinor equals [12, 13, 14, 15]:
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Equation (4) takes into account the spatial extension of the spinor and we note that the

two spinor components have very different z values. All interpretations of this paper are

based on this equation.

THE DECOHERENCE TIME

We deduce from 4) the probability density of a pure state in the free space after the

electromagnet:
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Figure 2 shows the probability density of a pure state (with θ0 = π/3) as a function of z

at several values of t (the plots are labelled y= vt). The beam separation does not appear

at the end of the magnetic field (1 cm), but 16 cm further along. It is the moment of the

decoherence. The decoherence time, where the two spots N+ and N− are separated, is

then given by the equation:

tD ≃
3σ0− z∆

u
=

(3σ0− z∆)mv

µBB
′
0∆l

= 3×10−4s. (7)
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FIGURE 2. Evolution of the probability density of a pure state with θ0 = π/3.

This decoherence time is usually the time required to diagonalize the marginal density

matrix of spin variables associated with a pure state [16]:
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( ∫
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For t ≥ tD, the product ψ+(z, t +∆t)ψ−(z, t +∆t) is null and the density matrix is

diagonal: the probability density of the initial pure state (4) is diagonal:

ρS(t+∆t) = (2πσ2
0 )
−1

(
cos2 θ0

2
0
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2

)
(9)

PROOF OF THE POSTULATES OF QUANTUM MEASUREMENT

We then obtain atoms with a spin oriented only along z (positively or negatively). Let

us consider the spinor Ψ(z, t +∆t) given by equation (4). Experimentally, we do not

measure the spin directly, but the z̃ position of the particle impact on P1. If z̃ ∈ N+, the

term ψ− of (4) is equal to zero and the spinor Ψ is proportional to

(
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)
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eigenvectors of σz:
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If z̃ ∈ N−, the term ψ+ of (4) is equal to zero and the spinor Ψ is proportional to(
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)
, the other eigenvector of σz:
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Therefore, the measurement of the spin corresponds to an eigenvalue of the spin

operator Sz =
h̄
2
σz. It is a proof of the postulate of quantization.

Equation (9) gives the probability cos2 θ0

2
(resp.sin2 θ0

2
) to measure the particle in the

spin state + h̄
2
(resp.− h̄

2
); this proves the spectral decomposition postulate.

By drilling a hole in the detector P1 to the location of the spot N+ (Fig.1), we select the

atoms that are all in the spin state |+〉=

(
1

0

)
. The new spinor of this atoms is obtained

by making the component Ψ− of the spinor Ψ identically zero at the time when the atom
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crosses the detector P1; at this time the component Ψ− is indeed stopped by detector P1.

The future of the silver atom after crossing the detector P1 will be guided by this new

(normalized) spinor. The reduction of the wave function is therefore not linked to the

electromagnet, but to the detector P1 causing an irreversible elimination of the spinor

component Ψ−.

Finally, it remains to provide an explanation of the individual impacts of silver atoms.

The spatial extension of the spinor (1) allows to take into account the particle’s initial

position z0 and to introduce the Broglie-Bohm trajectories [13, 14, 17, 18, 19] which are

the natural assumption to explain the individual impacts.

CONCLUSION

We conclude that the resolution in space and time of the Pauli equation is essential to

theoretically obtain spatial quantization and decoherence time in the Stern-Gerlach ex-

periment. The joint use of a measured position and a spatial spinor enables us to demon-

strate the three quantum measurement postulates. The de Broglie-Bohm trajectories are

then used to provide a natural explanation to the particles’ impacts. The result of the

Stern-Gerlach experiment is not the measure of the spin projection along the z-axis, but

the orientation of the spin either in the direction of the magnetic field gradient, or in

the opposite direction. It depends on the position of the particle in the wave function.

We have therefore a simple explanation for the non-compatibility of spin measurements

along different axes.
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