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Adaptive Sliding Mode Control for Quadrotor

Attitude Stabilization and Altitude Tracking
Hakim Bouadi, S. Simoes Cunha, A. Drouin and F. Mora-Camino

Abstract—Adaptive control algorithms are of interest in flight
control systems design not only for their capability to improve
performance and reliability but also for handling aerodynamic
parameter uncertainties, external disturbances and modeling
inaccuracies. In this paper, a direct adaptive sliding mode
control is developed for the quadrotor attitude stabilization and
altitude trajectory tracking. First, developed controller is applied
without considering disturbances and parameter uncertainties.
After, a centered white gaussian noise with some parameter
uncertainties are added to the considered output vector, mass
and inertia matrix, respectively. The synthesis of the adaptation
laws is based on the positivity and Lyapunov design principle.
Numerical simulations are performed showing the robustness of
the proposed control technique.

Index Terms—feedback linearization, adaptive control, adap-
tation mechanism, positivity principle, sliding mode.

I. INTRODUCTION

UNMANNED aerial vehicles (UAV) have known a grow-

ing interest thanks to recent technological advances,

especially those related to instrumentation which turn possible

the design of powerful systems (mini drones) endowed with

real capacities of autonomous navigation at reasonable cost

[1].

These flying devices have been used in many civilian and

military applications while new configurations and control

laws should be developed to insure their applicability to new

mission under more adverse environments. A special class of

UAVs, called quadrotors, has been studied recently by some

authors [1], [2], [3], [4], [5], [6]-[7]. These systems as many

other dynamic systems, present constant or slowly-varying

uncertain parameters.

Adaptive control provides many tools to tackle such sys-

tems. The basic idea in adaptive control is to estimate the

uncertain plant parameters or, equivalently, is to perform an

on-line estimation of the corresponding controller parameters

H. Bouadi is PhD student and he is with the Automation and Opera-
tional Research Laboratory (LARA) in the National Civil Aviation Institute-
ENAC. 07, Avenue Edouard Belin, 31400-Toulouse-France (phone: +33 (0)-6-
01-18-83-91, fax: +33 (0)-5-62-17-40-23 hakimbouadi@yahoo.fr,
Hakim.Bouadi@enac.fr.

S. Simoes Cunha is Associated Professor at Federal University of Itajuba
Brazil, Mechanical Engineering Institute, he has a post-doctoral position at
ENAC LARA, funded by CAPES sebas@unifei.edu.br

A. Drouin is PhD student and he is with the Automation and Operational
Research Laboratory (LARA) in the National Civil Aviation Institute-ENAC
poinix@gmail.com

F. Mora-Camino is Professor at the National Civil Aviation
Institute and he is the director of the Automation and Operational
Research Laboratory (LARA) at Air Transportation Department
moracamino@hotmail.fr.

Manuscript received September 30, 2011.This work was supported by
Automation and Operational Research Laboratory of Air Transportation
Department in the National Civil Aviation institute in Toulouse-France.

based on the measured system signals, and to use the estimated

parameters in the control input computation [8], [9], [10]-[11].

In this paper, The control of a quadrotor flying in an

environment subject to atmospheric perturbation is considered

where the controllability condition is checked. First, a dynamic

modeling of a quadrotor is considered taking into account

various parameters which can affect the dynamics of a flying

structure such as frictions due to the aerodynamic torques,

drag forces along (x, y, z) axis and gyroscopic effects. Then,

an adaptive sliding mode controller is synthesized in order to

stabilize both bank and pitch angles while tracking heading

and altitude trajectories and to compensate additive pertur-

bation and parameter uncertainties related to the mass and

inertia matrix of the quadrotor. Adaptation laws are developed

based-on Lyapunov approach where the asymptotic stability

is guaranteed. Finally, numerical simulations are displayed,

showing acceptable results for the proposed control solution.

II. FLIGHT DYNAMICS MODELING

Fig. 1. Quadrotor Configuration

The quadrotor has four propellers in cross configuration

where two pairs of propellers turn in opposite directions. By

varying the rotor speeds, one can change the lift forces and

create motion. Thus, increasing or decreasing evenly the four

propellers speeds together generates vertical motion.

Changing evenly the 2 and 4 propellers speed conversely

produces roll rotation coupled with lateral motion.

Pitch rotation and the corresponding lateral motion result

from 1 and 3 propellers speed conversely modified. Yaw

rotation is more subtle, as it results from the difference in

the counter-torque between each pair of propellers.
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To limit the complexity of the dynamics modeling, the

following assumptions are adopted [1]:

1. The quadrotor structure is rigid and symmetrical

2. The propellers are rigid

3. Thrust and drag forces are proportional to the square of

propellers speed rotation.

Under these assumptions, it is possible to describe its

flight dynamics as that of a rigid body under aerodynamic

forces and moments caused by the propellers rotation. Using

the formalism of Newton-Euler, the dynamics equations are

written in the following way [1]:

mζ̈ = Ff + Fd + Fg (1a)

JΩ̇ = −Ω ∧ JΩ+ Γf − Γa − Γg (1b)

where ζ is the position of the quadrotor centre of mass with

respect to the inertial frame E, m is the total mass of the

structure and J ∈ R
3x3 is a symmetric positive definite

constant inertia matrix of the quadrotor with respect to the

body fixed frame.

J =

⎛

⎝

Ix 0 0
0 Iy 0
0 0 Iz

⎞

⎠ (2)

Ω represents the angular velocity of the quadrotor expressed

in the body fixed frame such as:

Ω =

⎛

⎝

1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cosφ cos θ

⎞

⎠

⎛

⎝

φ̇

θ̇

ψ̇

⎞

⎠ (3)

where φ, θ and ψ are bank, pitch and heading angles, respec-

tively.

In the case when the quadrotor performs many angular

motions of low amplitude, Ω can be assimilated to [φ̇, θ̇, ψ̇]T .

Ff denotes the resultant of the forces generated by the four

rotors such as:

Ff =

⎛

⎝

cosφ cosψ sin θ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ

⎞

⎠

4
∑

i=1

Fi (4a)

Fi = Kpω
2
i (4b)

where Kp is a coefficient related to the lift force and ωi is

the angular rotor speed. Fd denotes the resultant of the drag

forces along (X,Y, Z) axis such as:

Fd =

⎛

⎝

−Kfdx 0 0
0 −Kfdy 0
0 0 −Kfdz

⎞

⎠ ζ̇ (5)

where Kfdx, Kfdy and Kfdz are positive translation drag

coefficients. Fg is the gravity force and it is expressed as

follows:

Fg =

⎛

⎝

0
0

−mg

⎞

⎠ (6)

Γf is the moment developed by the quadrotor according to the

body fixed frame such as:

Γf =

⎛

⎝

d(F3 − F1)
d(F4 − F2)

CD(ω2
1 − ω2

2 + ω2
3 − ω2

4)

⎞

⎠ (7)

d is the distance between the quadrotor centre of mass and the

rotation axis of propeller and CD is the drag coefficient. Γa

is the resultant of aerodynamic frictions torques such as:

Γa =

⎛

⎝

Kfax 0 0
0 Kfay 0
0 0 Kfaz

⎞

⎠ ‖Ω‖2 (8)

where Kfax, Kfay and Kfaz are the coefficients of aero-

dynamic frictions. Γg is the resultant of torques due to the

gyroscopic effects:

Γg =
4

∑

i=1

Ω ∧ Jr

⎛

⎝

0
0

(−1)i+1ωi

⎞

⎠ (9)

where Jr represents the rotor inertia.

Consequently the complete dynamic model which governs

the quadrotor is as follows:

φ̈ =
1

Ix

[

(Iy − Iz)ψ̇θ̇ −Kfaxφ̇
2 − JrΩθ̇ + dU2

]

(10a)

θ̈ =
1

Iy

[

(Iz − Ix)ψ̇φ̇−Kfay θ̇
2 + JrΩφ̇+ dU3

]

(10b)

ψ̈ =
1

Iz

[

(Ix − Iy)φ̇θ̇ −Kfazψ̇
2 + CDU4

]

(10c)

ẍ =
1

m

[

−Kfdxẋ+ (cosφ sin θ cosψ + sinφ sinψ)U1

]

(10d)

ÿ =
1

m

[

−Kfdy ẏ + (cosφ sin θ sinψ − sinφ cosψ)U1

]

(10e)

z̈ =
1

m

[

−Kfdz ż + (cosφ cos θ)U1

]

− g (10f)

where U1, U2, U3 and U4 are the control inputs of the system

which are written according to the angular velocities of the

four rotors as follows:
⎛

⎜

⎜

⎝

U1

U2

U3

U4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

Kp Kp Kp Kp

−Kp 0 Kp 0
0 −Kp 0 Kp

CD −CD CD −CD

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞

⎟

⎟

⎠

(11a)

Ω = ω1 − ω2 + ω3 − ω4 (11b)

The dynamic modeling developed above (10) is completed

by the following control inputs constraints:

0 � U1 � 4Kpω
2
max (12a)

−Kpω
2
max � U2 � Kpω

2
max (12b)

−Kpω
2
max � U3 � Kpω

2
max (12c)

−2CDω2
max � U4 � 2CDω2

max (12d)

The rotor is a unit constituted by D.C-motor actuating a

propeller via a reducer. The D.C-motor is governed by the

following dynamics:

V = RI + L
dI

dt
+Keω (13a)

KmI = Jr
dω

dt
+Krω

2 + Cs (13b)
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where V is the motor input tension. Ke and Km represent

the electrical and mechanical torque constant, respectively. Kr

is the load constant torque. R and Jr are the motor internal

resistance and the rotor inertia, respectively. Cs denotes the

solid friction.

Then the model which characterizes the rotor dynamics is:

ω̇i = bV + β0 + β1ωi + β2ω
2
i (14)

with:

β0 =
−Cs

Jr
β1 =

−KeKm

RJr
β2 =

−Kr

Jr
b =

Km

RJr

III. CONTROL DESIGN WITH PARAMETER UNCERTAINTY

To synthesize adaptive laws, it is assumed that some un-

certainty remains with respect to the main coefficients related

to the aerodynamic torques, inertia matrix and mass of the

system. The main control objective is here the stabilization

of bank and pitch angles while tracking heading and altitude

trajectories. In order to achieve safely this control objective a

nonlinear adaptive sliding mode control is developed.

Let X = [φ, φ̇, θ, θ̇, ψ, ψ̇, z, ż]T and U = [U2, U3, U4, U1]
T

be the state and the control input vectors, respectively. The

equations (10) can be written under the following affine state

representation such as:

Ẋ = f(X) + g(X)U (15a)

f(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2

a1x4x6 + a2x
2
2 + a3Ωx4

x4

a4x2x6 + a5x
2
4 + a6Ωx2

x6

a7x2x4 + a8x
2
6

x8

a9x8 − g

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15b)

and g(X) = [g1, g2, g3, g4] represents the control matrix:

g(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
b1 0 0 0
0 0 0 0
0 b2 0 0
0 0 0 0
0 0 b3 0
0 0 0 0
0 0 0 cos x1 cos x3

m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(16)

with:

a1 =
Iy − Iz

Ix
a2 =

−Kfax

Ix
a3 =

−Jr

Ix
a4 =

Iz − Ix

Iy

a5 =
−Kfay

Iy
a6 =

Jr

Iy
a7 =

Ix − Iy

Iz
a8 =

−Kfaz

Iz

a9 =
−Kfdz

m
b1 =

d

Ix
b2 =

d

Iy
b3 =

CD

Iz

The controllability matrix Υ for the system (15a) is given

by:

Υ =

[

g1, g2, g3, g4, adfg1, adfg2, adfg3, adfg4

]

(17)

where adfgi represents the Lie brackets such as:

adfgi = ▽gif −▽fgi (18)

det(Υ) =
b21b

2
2b

2
3 cosx

2
1 cosx

2
3

m2
(19)

It can be concluded that ∀(x1, x3) ∈ R
2 such that (x1, x3 �=√

2π
2

) and ∀(b1, b2, b3) ∈ R
∗3, the considered above system

(15a) is locally controllable over R8.

Let y = [φ, θ, ψ, z]T be the output vector. The relative

degree of the considered system is equal to 8 since:

ÿ1 = a1x4x6 + a2x
2
2 + a3Ωx4 + b1U2 (20a)

ÿ2 = a4x2x6 + a5x
2
4 + a6Ωx2 + b2U3 (20b)

ÿ3 = a7x2x4 + a8x
2
6 + b3U4 (20c)

ÿ4 = a9x8 +
cosx1 cosx3

m
U1 − g (20d)

then, no internal dynamics is associated with this output

vector. The equation (20a) can be rewritten under a linearly

parameterized form such as:

U2 = h1ÿ1 − λ1x4x6 − λ2x
2
2 − λ3Ωx4 (21)

with:

h1 =
1

b1
λ1 =

a1

b1
λ2 =

a2

b1
λ3 =

a3

b1

To synthesize the adaptive control law U2, it is assumed

that the full state vector components are available through the

measure and that the sign of h1 is known [12]. We assume

also that the parameters h1 and λi are unknown constants.

Now, let us choose a sliding surface σ1 such as:

σ1 = ẏ1 − v1 (22a)

v1 = φ̇d − k1ǫφ (22b)

ǫφ = φ− φd (22c)

where ǫφ represents the tracking error, φd is the desired

bank angle and k1 denotes a real positive parameter. Now

a candidate Lyapunov positive definite function V1(σ1) is

defined:

V1(σ1) =
1

2
σ2
1 (23a)

V̇1(σ1) = σ1

[

1

h1

(U2 + λ1x4x6 + λ2x
2
2 + λ3Ωx4)− v̇1

]

(23b)

then, if V̇1(σ1) = σ1σ̇1 � 0, asymptotic Lyapunov stability

will be guaranteed. For that the control law could be chosen

as:

U2 = ĥ1[φ̈d − k1ǫ̇φ − kσ1]− λ̂1x4x6 − λ̂2x
2
2 − λ̂3Ωx4 (24)

since the parameters λ1, λ2, λ3 and h1 are unknown, so they

are replaced by their estimates in the control law (24) and k

is a real positive parameter.

By replacing the synthesized control law expression (24)

in the time derivative equation of the sliding surface σ1, the

closed loop dynamics can be written such as:

h1σ̇1+kσ1 = λ̃1x4x6+ λ̃2x
2
2+ λ̃3Ωx4− h̃1[φ̈d−k1ǫ̇φ] (25)
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where λ̃i and h̃1 represent the estimation errors related to the

controller parameters:

λ̃i = λi − λ̂i (26a)

h̃1 = h1 − ĥ1 (26b)

The closed-loop dynamics (25) shows that if the estimation

errors related to the controller parameters converge to zero,

then the tracking error dynamics tend to zero exponentially as

shown:

h1σ̇1 + kσ1 = 0 (27)

To synthesize an adaptation mechanism, the positivity and

Lyapunov design principle is applied in order to determine

the adaptation laws which allow the on-line estimation of

the unknown controller parameters ĥ1 and λ̂i. Consequently

another Lyapunov positive definite function V2(σ1, λ̃i, h̃1) is

introduced:

V2(σ1, λ̃i, h̃1) =
1

2
|h1|σ

2
1 +

1

2γ1

[

h̃2
1 +

3
∑

i=1

λ̃2
i

]

(28)

where γ1 denotes the gain adaptation. The idea is to choose
˙̂
h1 and

˙̂
λi such that V̇2(σ1, λ̃i, h̃1) � 0. Since:

V̇2(σ1, h̃1, λ̃i) = σ1

|h1|

h1

[

λ̃1x4x6 + λ̃2x
2
2 + λ̃3Ωx4

− h1(φ̈d − k1ǫ̇φ)− kσ1

]

−
1

γ 1

[

h̃1
˙̂
h1 +

3
∑

i=1

λ̃i
˙̂
λi

]

(29)

choosing the adaptation laws
˙̂
h1 and

˙̂
λi such as:

˙̂
λ1 = γ1sgn(h1)σ1x4x6 (30a)

˙̂
λ2 = γ1sgn(h1)σ1x

2
2 (30b)

˙̂
λ3 = γ1sgn(h1)σ1Ωx4 (30c)

˙̂
h1 = −γ1sgn(h1)σ1(φ̈d − k1ǫ̇φ) (30d)

implies that:

V̇2(σ1, h̃1, λ̃i) = −|k|σ1
2 (31)

and the global tracking convergence of the adaptive control

system is guaranteed.

The next control and adaptation laws are obtained by

following the same steps presented above, therefore:

U3 = ĥ2[θ̈d − k2ǫ̇θ − k′σ2]− λ̂4x2x6 − λ̂5x
2
4 − λ̂6Ωx2 (32)

with:

˙̂
λ4 = γ2sgn(h2)σ2x2x6 (33a)

˙̂
λ5 = γ2sgn(h2)σ2x

2
4 (33b)

˙̂
λ6 = γ2sgn(h2)σ2Ωx2 (33c)

˙̂
h2 = −γ2sgn(h2)σ2(θ̈d − k2ǫ̇θ) (33d)

and

U4 = ĥ3[ψ̈d − k3ǫ̇ψ − k′′σ3]− λ̂7x2x4 − λ̂8x
2
6 (34)

with:

˙̂
λ7 = γ3sgn(h3)σ3x2x4 (35a)

˙̂
λ8 = γ3sgn(h3)σ3x

2
6 (35b)

˙̂
h3 = −γ3sgn(h3)σ3(ψ̈d − k3ǫ̇ψ) (35c)

and

U1 =
1

cosx1 cosx3

[

λ̂9x8+ m̂(g+ z̈d−k4ǫ̇z −k′′′σ4)

]

(36)

with

˙̂
λ9 = −γ4σ4x8 (37a)

˙̂m = −γ4σ4(z̈d − k4ǫ̇z + g − k′′′σ4) (37b)

where the sliding surfaces σ2, σ3 and σ4 are such as:

σ2 = ẏ2 − θ̇d − k2ǫθ (38a)

σ3 = ẏ3 − ψ̇d − k3ǫψ (38b)

σ4 = ẏ4 − żd − k4ǫz (38c)

and ǫθ, ǫψ and ǫz denote the tracking errors related to the

pitch, heading and altitude, respectively:

ǫθ = θd − θ (39a)

ǫψ = ψd − ψ (39b)

ǫz = zd − z (39c)

Adopted control strategy is shown in the Fig. 2 below:

Fig. 2. Adopted Control Strategy

IV. NUMERICAL SIMULATION

The simulation results are obtained based on the real pa-

rameters in Table. 1 shown below.

1. Results without perturbation are shown in Fig. 3 to Fig.

10.

2. Flight with parametric uncertainties:

Two cases are treated. First, for an uncertainty of 20% on

m and 10% on (Ix, Iy, Iz). After, for an uncertainty of

35% on m and 15% on (Ix, Iy, Iz). Desired trajectories

tracking and parameters estimation are shown below (Fig.

11 to Fig. 14):
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Fig. 3. Desired trajectories tracking related to the bank, pitch, heading angles
and altitude, respectively

Fig. 4. Simulation results of inertial moments estimation

Fig. 5. Control inputs

V. CONCLUSION

In this paper, a direct adaptive sliding mode control have

been developed in order to stabilize roll and pitch motions

while tracking heading and altitude trajectories of a quadrotor.

During simulations, two cases are treated. the First one is

considered for an uncertainty of 20% on the quadrotor mass

Fig. 6. Desired rotors velocities tracking

Fig. 7. Bank controller parameters estimation

Fig. 8. Pitch controller parameters estimation

Fig. 9. Heading controller parameters estimation

m and 10% on the inertia matrix diag(Ix, Iy, Iz) while the

second case is for an uncertainty of 35% on m and 15%
on inertia matrix. Both of them are subject to an additional
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Fig. 10. Altitude controller parameters estimation

Fig. 11. Desired trajectories tracking for uncertainties of 20% on m and
10% on (Ix, Iy , Iz)

Fig. 12. Inertia matrix and mass estimation for uncertainties of 20% on m
and 10% on (Ix, Iy , Iz)

centered white gaussian noise.

Controller parameters estimation is based on the positivity

and Lyapunov design principle. Considered unknown coeffi-

cients are related to the aerodynamic torques, inertia matrix

and mass, respectively.

Fig. 13. Desired trajectories tracking for uncertainties of 35% on m and
15% on (Ix, Iy , Iz)

Fig. 14. Inertia matrix and mass estimation for uncertainties of 35% on m
and 15% on (Ix, Iy , Iz)

The effectiveness of the adaptive control laws have been

evaluated by numerical simulations, showing good conver-

gence results.

Further study will focus in a full state control of the

quadrotor engaged in complex trajectory tracking.
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TABLE I
QUADROTOR GENERAL PARAMETERS

Parameter Value

Mass (Kg) 0.486

Distance d (m) 0.25

Ix (N.m/rad/s2) 3.8278×10−3
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