
HAL Id: hal-00938499
https://enac.hal.science/hal-00938499

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A ground holding model for aircraft deconfliction
Nicolas Durand, Cyril Allignol, Nicolas Barnier

To cite this version:
Nicolas Durand, Cyril Allignol, Nicolas Barnier. A ground holding model for aircraft deconfliction.
DASC 2010, 29th IEEE/AIAA Digital Avionics Systems Conference, Oct 2010, Salt Lake City, United
States. pp 2.D.3-1 - 2.D.3-10, �10.1109/DASC.2010.5655481�. �hal-00938499�

https://enac.hal.science/hal-00938499
https://hal.archives-ouvertes.fr

A GROUND HOLDING MODEL FOR AIRCRAFT DECONFLICTION

Nicolas Durand, DSNA/DTI/R&D, Toulouse, France

Cyril Allignol, DSNA/DTI/R&D, Planning Optimization Modeling Team, Toulouse, France

Nicolas Barnier, Laboratoire d’Optimisation du Transport Aérien, ENAC, Toulouse, France

Abstract

In the SESAR traffic growth predictions, traffic
complexity will become an issue that the current
Air Traffic Management organization is not able
to handle. The 4D trajectory concept offers new
perspectives for deconflicting the traffic by ground-
holding aircraft before they take-off. This paper
studies the possible complexity reduction achievable
by optimizing the aircraft take-off times. Therefore
a simple model is introduced to detect pairwise
3D possible conflicts and define conflicting take-
off time differences. Two resolution algorithms are
tested on a real traffic data sample collected in
the French airspace. The first one is based on
a Constraint Programming model of the problem
and ensures the optimality of the maximum delay
required to solve every conflict. The second one uses
an evolutionary computation algorithm to minimize
the mean delay among the aircraft population. A
sliding window model is introduced to reduce the
size of the problem and to regularly update the
current situation. Experimental results performed
in the French airspace with fast time simulation
show that with perfect 4D trajectory, every conflict
over flight level 290 can be solved by delaying
less than a quarter of the traffic within a range of
delays varying from 1 to 90 minutes and a mean
delay of 4 minutes. The Constraint Programming
approach gives better results than the evolutionary
computation approach. Adding uncertainty around
4D trajectories dramatically degrades the results.

Introduction

The SESAR program is anticipating the future
growth of air traffic in Europe. In this context, the
Episode 3 [1] project has aimed at assessing the
performance of new ATM concepts, such as 4D
trajectory planning and strategic deconfliction. ATC
performances in Europe are limited by the hourly

capacity constraints defined on each en-route ATC
sector to limit the rate of entering aircraft. The cur-
rent ground holding slot allocation process ensured
by the CFMU (Central Flow Management Unit)
allocates departure slots (that must be respected
within a -5/+10 minutes margin) in order to respect
these limits. Much research has been conducted to
optimize the CFMU algorithm [2], [3]. However
these approaches did not address the conflict pair
resolution problem, but only try to respect sector
capacity limits not necessarily related to the traffic
complexity [4].

In the context of 4D trajectories, solving conflicts
far in advance might become possible and prevents
from defining complexity indicators that are hard to
validate. Current equipment does not allow aircraft
to fly perfect 4D trajectories and the results obtained
in this arcticle can only give a theoretical cost of
complexity reduction. The Air Traffic Management
System will probably always need to be structured
with different levels of granularity and time horizons
in order to be able to handle uncertainties, unpre-
dictable events and emergencies.

In the following sections, we briefly introduce the
related work and the context of the research project.
Then we give a description of the model chosen.
Next we introduce the Evolutionary Computation
approach and the Constraint Programming model
that are compared using real data in the following
section. The last section deals with sensitivity of
the results to uncertainties. We conclude by outlin-
ing the further work that needs to be adressed to
enhance the approach.

Related Work and Context of the Study

Many results were obtained using Constraint Pro-
gramming (CP) approaches in the air traffic man-
agement domain. [3] has for example introduced a
new approach to address the sector capacity con-
straint that prevents the peak effect due to the usual

definition of sector capacities (number of aircraft
entering a sector per time period). CP approaches
have also been successfully used to optimize the
number of flight levels necessary to separate the
routes having the biggest traffic flows [5]. Evolu-
tionary algorithms have been successful in many
different applications, such as short term conflict
detection and resolution ([6], [7]), 3D conflict free
network definition ([8], [9]) or taxiing optimization
on big airports [10]. All these problems involve
large data sets, are combinatorial, and deal with
a large number of constraints that are difficult to
handle with classical optimization methods.

In Europe, en-route sector capacities are limited
below bounds defined over given time periods (usu-
ally one hour) by local experts, the Flow Manage-
ment Position (FMP) Controllers in each Air Traffic
Control Center (ATCC). The CFMU first identifies
the overloaded sectors with the CFMU pre-tactical
tool for network optimization PREDICT. The Com-
puter Assisted Slot Allocation (CASA) tool [11]
computes a slot allocation for some aircraft involved
in the most constrained areas. CASA is able to deal
with many operational constraints and updates, but
is based on a greedy algorithm that cannot guarantee
a solution that satisfies all the constraints or that is
optimal.

The traffic complexity is difficult to measure
and the sector capacities, expressed as a number
of aircraft entering the sectors over a time period
do not necessarly reflect the controller’s workload.
Gianazza [4] compared this measure to the moments
when subsets of sectors are split or merged and
showed very different complexity profiles. Recent
work such as [12] uses a more precise and complex
CP model to balance the traffic over the sectors in
a control center of the upper airspace. Barnier [13]
used CP to optimize the sectors opening schedules
to match more closely the predicted traffic. Baptiste
and Tan Dac [14] also used CP to redesign airspace
sectorization with a better balancing.

In this paper, we propose to estimate the cost of
directly solving all conflicts in the upper airspace
with ground holding, provided that aircraft are able
to follow their trajectories accurately. Therefore we
introduce a model of this large scale combinatorial
optimization problem based on a sliding window
principle.

Modeling the problem

In the model, aircraft estimate their 4D trajecto-
ries a few minutes before departure and send them
to a centralized unit that first detects 3D pairwise
potential conflicts and check if the aircraft take-
off times are compatible. In many situations, no
3D conflicts occur, or the current take-off times of
the pair of aircraft are not conflicting. When a 3D-
conflict occurs, the difference of take-off times cre-
ates a constraint between the aircraft pair concerned.
Clusters of conflicts are the transitive closure of the
potential 3D-conflict pairs.

A. Conflict Detection

Real traffic data are provided by the CATS1

simulator [15], which takes as input all of the flight
plans in a given airspace for a given day of traffic,
and outputs the corresponding 4D trajectories.

To detect all “significant” conflicts, CATS dis-
cretizes trajectories with a δt = 15 s time step,
which is small enough to detect every conflict.

Trajectories are then probed pairwise2 for po-
tential conflicts, ignoring those that could only
occur for greater delays than the given maximal
one ∆max. The separation norm is thus tested for
each pair of points of the two probed trajectories
(up to p = 1300 points per trajectory for up to
n = 9500 flights in O(n2p2), as observed in the
largest instances simulated by CATS) as illustrated
on figure 1 in the horizontal plane. Note that tra-
jectory enclosing bounding boxes or sweep line
techniques [16] could be used to lower the detection
complexity, but it is here considered as a static data
production phase and its efficiency is not a primary
concern of the present study.

Though the maximal allowed delay ∆max can be
seen as a parameter of the search algorithm only,
it also affects conflict detection. Indeed, when the
maximal allowed delay is increased, the size of the
problem grows as well, as more and more flights
tend to be in potential conflict. Ultimately, if a
24 h-delay would be allowed, the conflict detection
could be done regardless of time, as any two space-
conflicting trajectories would generate a constraint.

1The Complete Air Traffic Simulator developed at
DSNA/DTI.

2Note that the conflict detection for two given flights is
symmetrical, so that only ordered pairs are considered.

pik

p
j
l

i

j

d < 5 Nm & d < 1000 ft
h v

Figure 1. Detection of conflicting points.

So, whenever a particular instance has been proved
inconsistent, it has to be generated again with higher
values of the maximal delay, which will capture
later potential conflicts on the trajectory pairs and
increase the size of the instance.

Operationally, flights originating outside the Eu-
rocontrol countries cannot be delayed, so their delay
variable will be fixed to 0 in our constraint model,
reducing the number of variables but tightening the
constraints as well and offering less opportunities
for optimization. Constraints corresponding to con-
flicts occurring between two such flights will of
course be discarded as we cannot delay the flights to
solve them. Such remaining conflicting cases would
have to be taken care of by other ATC or ATFM
techniques that will not be addressed in this study.

B. Conflicts Constraints

To compute the constraints of our model, the
trajectories (up to 9500 flights for one day of traffic
in the French airspace) are pairwise probed for
couples of conflicting points.

We define a set D of decision variables:

D = {δi,∀i ∈ [1, n]}

of finite domain [0, max_delay] that represents the
delay associated with each of the n flights (between
6000 and 8000 after processing for our experi-
ments). The value of max_delay is typically chosen
as 90 min and increased as needed when no solution
is found (up to 300 min in our experiments). As
explained in the previous section, the size of the
instance grows with max_delay.

It was shown in [17] that pairwise conflict
constraint could be expressed in the following way:
if δi and δj are respectively the delays of aircraft i

and j then aircraft i and j are not in conflict if

dij = δi − δj 6∈ [lb1, ub
1
] ∪ . . . ∪ [lbq, ub

q
]

where [lbk, ub
k
] are time intervals representing

different possible conflict zones between the two air-
craft. Most of the time, q = 0, which means that the
two trajectories are not conflicting or q = 1 which
means that they have one conflicting zone. When
a pair of flights are conflicting on several disjoint
times over their entire trajectories (as illustrated on
figure 2), q > 1.

1561
1621

 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240

Figure 2. Three potential conflicts between two flights: one
near Paris airport at low altitude and two other en-route at the
cruising altitude of the lower flight. The gray scale corresponds
to time (in minutes) along the trajectory, the lighter the later.

1) Further Instance Processing: The takeoff and
landing part of trajectories are truncated around
airports within a given radius (usually 10 NM) as
the traffic is considered to be handled with specific
procedures by the TMA control services in these
zones.

After the computation of the conflict constraints,
the whole instance is scaled down to a more rea-
sonable time step than the 15 s used during conflict
detection. We ensure that the original forbidden in-
tervals are strictly included in the scaled ones, with
appropriate interval arithmetic operations which
can possibly merge conflicting disjoint intervals. A
1 min time step was chosen for the resolution: a
smaller time step would not have been realistic for
a departure time, whereas a greater one would have
reduced the set of feasible solutions. Furthermore,

a 1 min time step seems compliant with the SESAR
objectives of ±3 min precision for takeoff time.

In addition, the flight level of the detected con-
flicts were filtered, for example to only take into ac-
count conflicts occurring within the upper airspace
(from FL290 and above). The minimal and maximal
altitude of each conflict is recorded during the de-
tection stage and a conflict is discarded if it entirely
occurs below or above the specified airspace slice.

It is also possible to filter the time interval during
which the conflicts may occur, taking the time
bounds of the allowable delay into account. Any
conflict strictly occurring outside the given time
interval is then discarded.

Eventually, all the flights that do not have any
conflict with any other flight are withdrawn from
the instance.

2) Conflict Extension: To improve the robustness
of our solutions towards uncertainty on the departure
times of the flights, we add an extra parameter ext

that extends conflicting intervals by a fix amount of
time. Such an extension of ext minutes stretching
the start and the end of a conflict will be able
to manage uncertainties of ± ext

2
minutes on the

departure slot (see the last section), at the price of
an increase in the cost of the solutions.

We expect that this extension scheme may as
well be able to diminish the effects of other sources
of uncertainty (e.g. vertical and ground speed) re-
garding the number of remaining conflicts during
simulation.

C. A Sliding Forecast Time Window model

In order to limit the size of the problem and to
be reactive to uncertainties, the whole day is not
treated at once, but only aircraft scheduled for take-
off during the next Tw minutes are considered. Tw

represents the lookahead time also called forecast

time window. The situtation is reconsidered every
σ minutes with σ << Tw. σ is the time step
used in the model to make the Tw time window
slide. This approach ensures that the problem can
be updated every σ minutes : if an aircaft needs to
cancel or delay its departure for external reasons,
it will be able to free its slot and be reconsidered
later on. Aircraft that are already airborne at the
current time are taken into account as constraints.
This is also the case for aircraft scheduled in the

next An minutes (see figure 3) because an advance
notice time is required to assign any delay to an
aircraft. In practice, this advance notice time An

can be longer or shorter than σ. In the numerical
results, this value was set to 0 because it does not
affect the quality of the solution. Figure 3 gives
an example of the evolution of an aircraft take-off
slot when the forecast time window slides. At the
first step (current time=0) the aircraft is delayed to
take-off at T1. Because T1 is far enough from the
current time (more than An + σ minutes ahead, in
the dotted zone), the slot will still be modifiable
when the current time is σ (second line). When
the time window slides (current time=σ), the delay
might be reduced and a slot chosen at T2 which is
still modifiable. At current time 2 σ the delay can
be reduced again and a slot chosen at T3 which
belongs to the notification zone. After this current
time (2σ) no modification is possible because at the
next step (current time=3σ), the take-off slot will be
too close to the current time (less than the advance
notice required).

2T

3T

4T

time=0

time=

time=

time=

2

3

1initT

modifiable zone

notification zone

advance notice period

nA
T

Tw

σ

σ

σ

σ

Figure 3. Sliding forecast time window.

The size of the forecast time window is an
important parameter. If it is too big, the size of
the problem will include a very large number of
variables and the resolution might be more difficult.
If it is too small, the solutions found might be
worse and the total delay induced over the day much
higher. This will be debated in the results section.

Evolutionary Computation Approach

Classical Evolutionary Computation principles
such as described in the literature [18], [19] were

used for this approach.

D. Fitness function

The cost function used in this part is simply the
sum of the delays over the aircraft population.

Solutions respecting the separation constraints
cannot be built easily. Consequently, we need to
include the separation criteria in the fitness function.

The fitness function chosen is:

F =
n −

∑n
i=1

(δi

δmax

)

1 + nrc

where n is the number of aircraft and nrc is the
number of remaining conflicts.

The fitness function increases when the number
of remaining conflicts and delays decrease. It takes
its values in [0, n].

E. Crossover operator

The conflict resolution problem is partially sepa-
rable as defined in [20], [21]. In order to increase
the probability of producing children with a better
fitness than their parents, principles applied in [20]
were used. For each aircraft i of a population ele-
ment, a local fitness Fi value is defined as follows:

Fi =
1 − (δi

δmax

)

1 + nrci

where nrci is the number of remaining conflicts
involving aircraft i.

Figure 4 presents the crossover operator. First two
population elements are randomly chosen. For each
parent A and B, fitness Ai and Bi of aircraft i are
compared. If Ai < Bi, the children will take aircraft
i of parent A. If Bi < Ai, the children will take
aircraft i of parent B. If Ai = Bi children randomly
choose aircraft Ai or Bi or even a combination of
Ai and Bi.

F. Mutation operator

For each candidate to mutation, the delay of an
aircraft having one of the worst local fitnesses is
modified. If every conflict is solved, an aircraft is
randomly chosen and its parameters changed. In
practice, a number m is randomly chosen in the
interval [1, n

2
] and we pick up m times an aircraft

to find the most constrained aircraft among these m

trials. The delay of this aircraft is then either locally
optimized or randomly modified with a probability

aircraft 6

aircraft 5

aircraft 3

aircraft 2

aircraft 1

aircraft 4

1−α α 1−αα

father A father B

A

B

B1

B2

B3

B4

B5

B6

A5 # B5

A1

A2

A3

A4

A5

A6

C C

B

A

B5 # A5

child 1 child 2
A1<<B1

B3<<A3

Figure 4. Crossover operator

of 50%. We could be tempted to always locally op-
timize the delay of the worst aircraft, but this would
make the algorithm become very deterministic and
lead to a premature convergence of the algorithm.

The crossover and mutation operators are more
deterministic during the first generations because
there are many conflicts to solve. They focus on
making feasible solutions. When the solutions with-
out conflicts appear in the population, they become
less deterministic.

Sharing: The problem is highly combinatorial
and may have many local optima. In order to prevent
the algorithm from a premature convergence, the
sharing process introduced by Yin and Germay [22]
is used. The complexity of this sharing process
has the great advantage to be in n log(n) (instead
of n2 for classical sharing) if n is the size of
the population. The distance used to compare two
population elements p and q is:

D =

∑n
i=1

|δp
i − δ

q
i |

n

G. Parameters

In the experiments, the following parameters were
empirically chosen: the size of the population was
set to 100, 20% of the population is crossed, 60% is
muted, the selection uses the stochastic remainder

without replacement. A sharing process is used. As
time to solve a problem is limited, the number of
generations is limited to 500.

Constraint Programming strategy

H. Cost Function

For this approach, the cost is simply defined as
the maximal allocated delay, to ensure equity among
the various postponed flights:

cost = max{δi,∀i ∈ [1, n]}

However, the overall sum of the delays is of utmost
importance as well for the quality of a solution
and we will take it into account within the search
strategy to provide realistic max-optimal solutions
during the resolution of the problem.

I. Search Strategy

The constraints of the problem are reminiscent
of the disjunctive mutual exclusion constraints often
used to model scheduling problems [23]. At a coarse
grain, we could consider each conflicting area as a
machine on which to process two tasks of different
lengths (depending on the speed of the aircraft).
Several conflicts along a trajectory could even be
seen as the ordered tasks of a given job, as in the
Job-shop Scheduling Problem (JSP).

However, the comparison does not hold much
further. First, the time intervals between any two
conflict-tasks of the same trajectory are fixed, as
only one delay variable is associated with each flight
(unlike the JSP where all tasks are only related
with precedence constraints). Second, to consider
a potential conflict in three dimensions only, as
the transitive closure of the overlapping conflicting
segments, with task lengths proportional to the time
spent by the aircraft within the area, is misleading.
In this setting, the conflict associated with two
catching-up flights on the same route would be
the entire trajectory, preventing them from being
airborne at the same time! Obviously, our model
is much more precise and allows two aircraft on the
same route to be separated by 5 NM only. Third, the
number of “conflict machines”, if not quadratic in
the number of “flight jobs” as it could ultimately
grow for arbitrary instances, is quite large and
cannot be easily related with any known standard
scheduling problem.

Nevertheless, the branching scheme of our search
strategy to solve this essentially disjunctive prob-
lem is inspired by standard scheduling techniques.

For instance, trying to start the search by directly
labelling the delay variables δi may impede the
search because of thrashing (i.e. repeatedly fail
over the same constraint), as the constraints are
expressed over the differences dij . In this case, a
more efficient filtering can be obtained by feeding
the propagation of the arithmetic constraints with
new domain bounds for the dij auxiliary variables.

In this respect, our search strategy first tries
to order pairs of conflicting flights by adding the
constraint dij < lb or dij > ub in the case of a
single conflicting interval. If there are several holes
in the domain of dij , branching is repeated with the
bounds of the remaining holes. The variable dij with
the highest sparsity, i.e. the smallest ratio between
the domain size and the difference of the domain
bounds, is chosen first for branching.

To compensate for the cost being defined as the
maximal delay only, disregarding the total amount
of time, we choose to branch first within the dij

interval corresponding to the minimum potential
increase for its delay variables δi and δj . Such an
interval would be the closest to 0, while if dij

were far from 0, then at least one delay would be
large. Whenever the search backtracks over such a
decision, this interval is discarded and we branch
on the next one recursively.

When all conflicts are ordered and there are no
more holes in the domain of the dij , we start
labelling the decision variables δi with a standard
dom/deg selection heuristic: the variable with the
smallest domain, and the highest number of con-
straints in case of tie, is dynamically selected. Then,
the values closest to 0 are probed first to attempt to
keep the total amount of delay as low as possible.

After the first solution is found, the branch and
bound algorithm proceeds by dichotomy on the cost
domain to find the optimal solution with respect to
minimization of the maximal allocated delay, while
keeping low the overall amount of delay thanks to
the search strategy.

Experimental results

J. Evolution of the problem size

Simulations were performed using real flight plan
data on the Complete Air Traffic Simulator (CATS)
developed by the French DSNA. Simulations were

run on the French airspace on a heavy day of traffic
(October 10, 2008). Figure 5 shows the evolution
of the number of aircraft that can be delayed during
the day, with different forecast time windows. The
problem sizes increase until 5 a.m. and reach a
peak at 8 am. They decrease at the end of the
day when the traffic starts decreasing. 8 different
time windows were tested from 15 to 360 minutes
and also considering the whole day at once (1440
minutes). Figure 6 shows that the number of aircraft
that can be delayed (dotted line) and the total
number of aircraft (solid line) at the peak hour (8
am) grow linearly with the forecast time window
width (in minutes).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20

sw=15
sw=30
sw=45
sw=60
sw=90

sw=120
sw=180
sw=360

Figure 5. Evolution of the problem size for different forecast
time windows.

Simulation results also show that it is not possible
to separate the traffic into smaller problems that
can be solved independently because the 3D-traffic
clusters generally involve most of the current traffic,
especially during peak hours.

K. Comparison of results with no uncertainty

Table I gives the number of aircraft delayed, the
maximum delay, the total sum of the delays, the
mean delay over the delayed aircraft, and the com-
putation time (on an Intel Xeon 2.66GHz processor)
for different time windows. In the simulation, only
conflicts over FL290 were considered, and σ =
15 min. The problem had 6184 variables over the
day for 8693 flights.

With the CP approach, all the conflicts can be
solved by delaying less than a quarter of the aircraft.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

vars_vs_window
size_vs_window

Figure 6. Total number of aircraft (solid) and problem size
(dotted) at 8 am as a function of the forecast time window size.

Tw nb acft Max Sum Mean/ Comput
(min) delayed delay (min) delayed time(s)

CP
90 1392 (22%) 88 5102 3.67 2096

120 1390 (22%) 84 4782 3.44 2435
180 1391 (23%) 84 4739 3.41 2830
360 1388 (22%) 84 4785 3.45 6093
1440 1385 (22%) 84 4677 3.38 24

EC
30 1184 (19%) 87 8197 6.92 21584
45 1153 (19%) 84 9205 7.98 32264
60 1119 (18%) 90 10146 9.07 43123
90 1091 (18%) 88 10673 9.78 69853

120 1101 (18%) 88 11755 10.68 97153
180 1097 (18%) 88 13731 12.52 172675
360 1092 (18%) 88 17103 15.66 470355
1440 1076 (17%) 89 35590 33.08 507155

TABLE I

COMPARISON OF RESULTS FOR THE 2 APPROACHES AND

DIFFERENT Tw

The mean delay is smaller than 4 minutes and the
maximum delay smaller than 88 minutes. When
increasing the Forecast Time Window Tw the mean
delay decreases but the computation time increases.

With the EC approach, all the conflicts can be
solved by delaying less than a fifth of the aircraft.
The mean delay is close to 7 minutes for Tw =
30 min but it increases with Tw. An explanation
could be that when the size of the problem increases
the EC algorithm does not converge as easily to a
good solution and returns a solution that is worse

Ext Delayed Max Sum Mean/ Time Rem
del (min) delayed (sec) Conf

CP - 90 minutes sliding window
2 3543-57% 244 45789 12.92 3181 0
4 4581-73% 351 286912 62.63 5364 0

CP - whole day optimization
2 3514-56% 88 42634 12.13 3499 0
4 4526-72% 336 283907 62.73 2294 0
6 4866-78% 817 759753 156.14 2676 0

EC - 90 minutes sliding window
2 2437-39% 90 81405 33.40 111401 0
4 2543-41% 90 90463 35.57 119171 279
6 2497-40% 90 89181 35.72 124746 592

EC - whole day optimization
2 1355-22% 500 371669 274.29 87012 921
4 1056-17% 500 287232 272.00 99077 3573

TABLE II

COMPARISON OF APPROACHES FOR DIFFERENT

UNCERTAINTY PARAMETERS, WITH A 90 MINUTES SLIDING

TIME WINDOW OR FOR THE WHOLE DAY (1440 MINUTES).

than when the size of the problem is smaller. The
computation times are much higher than those ob-
tained with the CP approach.

Results show that the CP approach is much more
efficient in time resolution, total and mean delay,
but tends to delay more aircraft than the Evolution-
ary Computation approach. The maximum delay is
slightly higher in the EC approach. The resolution
time increases with Tw in both approaches but the
growth is higher for the EC approach.

L. Influence of uncertainty

Uncertainties on take-off times are very frequent
and can be caused by many different factors. In
order to make the previous approach robust to
uncertainties, we need to prevent aircraft from being
in conflict even if their take-off times are not precise.
Therefore the value of the ext parameter (described
in the modeling section) in the model should be
increased.

Table II compares results for different values of
ext with a 90 minutes sliding time window or for
the whole day (1440 minutes) of traffic.

An uncertainty of ±1 minute (ext = 2) requires
to delay more than twice as many aircraft as with
no uncertainties, with the CP approach. With the
Evolutionary Computation approach, the number of
aircraft delayed is almost twice the number found

with no uncertainties. The delay increase is huge
(9 times for the CP, and 8 times for the EC). For
ext = 4 (uncertainty of ±2 minutes on the take-off
time), delays obtained with the CP approach are far
too big to be acceptable in a real context. The EC
algorithm cannot even solve every conflict within a
reasonable computation time.

The target figures for efficiency within SESAR
are:

• at least 98% of flights departing on time (on-
time departure being defined as actual depar-
ture less than 3 min before or after scheduled
departure),

• the average departure delay of delayed flights
must not exceed 10 min.

The first target would correspond to ext = 6
minutes. Our results show the limits of the concept.
In order to meet this target, we probably need to
combine our strategy to others such as, for example,
an efficient flight level allocation in order to separate
the main flows of aircraft.

Conclusion

This article introduces an original ground holding
approach to solve all potential conflicts occurring
above a given flight level a few hours or minutes
in advance with a sliding window model. Rather
than trying to respect sectors capacities constraints,
we model each possibly conflicting situation be-
tween any two aircraft and impose adjustements
of departure times to keep them separated, with
the hypothesis that aircraft could precisely follow
their planned 4D trajectories. The resulting problem
size can be reduced by only looking at the next
Tw minutes and reconsidering the situation every σ

minutes.
Two different algorithms were compared to al-

locate the delays to aircraft. The first one is an
evolutionary algorithm that uses the partial separa-
bility of the problem to define efficient crossover
and mutation operators. The other one is based on
a Constraint Programming (CP) approach and uses
the FaCiLe constraint library developed at ENAC.
It is based on a branch and bound algorithm that
minimizes the maximum delay on every aircraft.

Simulations were performed using real flight plan
data on the Complete Air Traffic Simulator (CATS)

developed by French DSNA. Simulations were run
on the French airspace on a heavy day of traffic
(October 10, 2008) focusing on conflicts over Flight
Level 290. The sample dealt with 8693 flights that
generated 1418 conflicts above FL 290. Results
using the Constraint Programming approach are
better than those obtained with the Evolutionary
Algorithm. They show that every conflict could be
solved by delaying 22% of the flights with a mean
delay of 4 minutes and a maximum delay of 84
minutes.

We have also presented a first step toward tak-
ing uncertainties into account by extending the
forbidden intervals of conflicting flights. However,
an extension as small as 4 min, which is able
to cope only with a 2 min uncertainty on the
departure time generates tremendous amounts of
delays, far above SESAR performance objectives.
We plan to overcome these issues and further assess
the possible outcomes of 4D trajectory planning in
the context of Episode 3 WP4 and address larger
(European) instances with various techniques like
combining our delay algorithm with a prior flight
level allocation, repeatedly solving the problem on
a sliding time window or solving the remaining
conflicts with a CATS resolution module.

This research is a primary approach to reduce the
traffic complexity by solving conflicts with ground
holding. Simulations on real data showed that most
conflicts could be solved by ground holding aircraft
in a 4D trajectory context. However the model
remains very unrealistic since it does not take into
account many uncertainty parameters. For example
winds can largely modify the trajectory predictions.
Further work is currently being done on the ro-
bustness of such solutions, that can be achieved
by reducing the update frequency of the model
and increasing the size of forbidden take-off time
intervals.

References

[1] R. Graham and D. Young, “Preparing an initial assessment
of the SESAR concept of operations “EP3: Single eu-
ropean sky implementation support through validation”,”
Eurocontrol Experimental Centre, France, Tech. Rep.,
2006.

[2] M. Dalichampt, E. Petit, U. Junker, and J. Lebreton, “In-
novative slot allocation (ISA),” Eurocontrol, Tech. Rep.,
1997.

[3] N. Barnier, P. Brisset, and T. Rivière, “Slot allocation with
constraint programming: Models and results,” in Interna-

tional Air Traffic Management R&D Seminar ATM-2001,
Santa Fe (NM), USA, December 2001.

[4] D. Gianazza and K. Guittet, “Selection and evaluation of
air traffic complexity metrics,” in 25th DASC, 2007.

[5] N. Barnier and P. Brisset, “Graph coloring for air traffic
flow management,” in CPAIOR’02: Fourth International

Workshop on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimisation

Problems, Le Croisic, France, March 2002, pp. 133–147.
[6] N. Durand and J. Alliot, “Optimal resolution of en route

conflicts,” in 1rst USA/Europe Seminar, 1997.
[7] S. Mondoloni and S. Conway, “An airborne conflict

resolution approach using a genetic algorithm,” in AIAA

Guidance, Navigation, and Control Conference, August
2001.

[8] D. Gianazza and N. Durand, “Separating air traffic flows
by allocating 3d-trajectories.” in 23d DASC, 2004.

[9] T. Riviere, “Redesign of the european route network for
sector-less,” in 23rd DASC, 2004.

[10] J.-B. Gotteland and N. Durand, “Genetic algorithms ap-
plied to airport ground traffic optimization,” in CEC2003,
2003.

[11] Basic CFMU Handbook - General & CFMU Systems,
6th ed., Eurocontrol CFMU, Brussels, February 2000.

[12] P. Flener, J. Pearson, M. Ågren, C. Garcia Avello,
M. Çelitkin, and S. Dissing, “Air-traffic complexity reso-
lution in multi-sector planning,” Journal of Air Transport

Management, vol. 13, no. 6, pp. 323–328, November
2007.

[13] N. Barnier, “Application de la programmation par con-
traintes à des problèmes de gestion du trafic aérien,” Ph.D.
dissertation, Institut National Polytechnique de Toulouse,
December 2002.

[14] H. Tran Dac and P. Baptiste, “Airspace sectorization by
constraint programming,” in RIVF’03, 2003.

[15] J.-M. Alliot, J.-F. Bosc, N. Durand, and L. Maugis,
“CATS: A Complete Air Traffic Simulator,” in 16th DASC,
1997.

[16] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, Computational Geometry – Algorithms

and Applications. Springer, 1998.
[17] N. Barnier and C. Allignol, “4d-trajectory deconfliction

through departure time adjustment,” in 8th USA/Europe

Air Traffic Management Research and Development Sem-

inar, 2009.
[18] D. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning. Reading MA Addison Wesley,
1989.

[19] Z. Michalewicz, Genetic algorithms + Data Structures =

Evolution Programs. Springer-verlag, 1992.
[20] N. Durand and J.-M. Alliot, “Genetic crossover operator

for partially separable functions,” in Genetic Program-

ming, 1998.
[21] N. Durand, J.-M. Alliot, and J. Noailles, “Automatic

aircraft conflict resolution using genetic algorithms,” in
Proceedings of the Symposium on Applied Computing,

Philadelphia. ACM, 1996.
[22] X. Yin and N. Germay, “A fast genetic algorithm with

sharing scheme using cluster analysis methods in multi-
modal function optimization,” in Proceedings of the Arti-

ficial Neural Nets and Genetic Algorithm International

Conference, Innsbruck Austria, C. R. R.F.Albrecht and
N. Steele, Eds. Springer-Verlag, 1993.

[23] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-

Based Scheduling, Applying Constraint Programming to

Scheduling Problems, ser. Kluwer’s International Series in
Operations Research & Management Science. Springer,
2001.

29th Digital Avionics Systems Conference

October 3-7, 2010

	Conflict Detection
	Conflicts Constraints
	Further Instance Processing
	Conflict Extension

	A Sliding Forecast Time Window model
	Fitness function
	Crossover operator
	Mutation operator
	Parameters
	Cost Function
	Search Strategy
	Evolution of the problem size
	Comparison of results with no uncertainty
	Influence of uncertainty
	References

