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Abstract. An extension of the reduced Reformulation-Linearization Technique constraints
from quadratic to general polynomial programming problems with linear equality constraints
is presented and a strategy to improve the associated convex relaxation is proposed.

1. Introduction

Reduced RLT constraints (rRLT) are a special class of Reformulation-Linearization Technique
(RLT) constraints, that apply to nonconvex (both continuous and mixed-integer) quadratic pro-
gramming problems subject to linear equality constraints [2, 4, 3]. rRLT are obtained by replacing
some of the quadratic terms with suitable linear constraints. These turn out to be a subset of the
RLT constraints for quadratic programming [7].

We present an extension of the rRLT theory to the case of general polynomial programs. Then,
we show a strategy to choose the basis of a matrix involved in the rRLT constraints generation so as
to tighten the bound of the associated convex relaxation. This allows to improve the performance
of a spatial Branch-and-Bound algorithm applied to nonconvex NLP and MINLP problems where
such convex relaxation is computed at each node.

2. Extending rRLT to polynomial programs

Let n be the number of variables, q the degree of the polynomials in the targeted problem and
N = {1, . . . , n}, Q = {2, . . . , q}. For each monomial xj1 · · ·xjp

, p ∈ Q, appearing in the problem,
we define a finite sequence J = (j1, . . . , jp) and consider defining constraints of the following form:

wJ =
∏

ℓ≤|J|

xjℓ
(2.1)

(for |J | = 1, i.e. J = (j), we also define wJ = xj). For all p ∈ Q, J ∈ N p and any permutation
π in the symmetric group Sp we have that wJ = wπJ by commutativity. We therefore define an
equivalence relation ∼ on N p stating that for J, K ∈ N p, J ∼ K only if ∃π ∈ Sp such that J = πK.
We then consider the index tuple set N̄ p = N p/∼ to quantify over when indexing variables wJ .

We multiply the original linear constraints Ax = b by all monomials
∏

ℓ≤p−1

xjℓ
and replace them

by the corresponding added variables w(J′,j), where J ′ ∈ N̄ p−1. This yields the following rRLTS:

∀p ∈ Q, J ′ ∈ N̄ p−1 A wJ′ = bwJ′ , (2.2)

where wJ′ = (w(J′,1), . . . , w(J′,n)). We then consider the companion system:

∀p ∈ Q, J ′ ∈ N̄ p−1 A zJ′ = 0. (2.3)

Since (2.3) is a linear homogeneous system, there is a matrix M such that the companion system
is equivalent to Mz = 0, the columns of which are indexed by sequences in N̄ p. We let B ⊆ N̄ p
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and N ⊆ N̄ p be index sets for basic and nonbasic columns of M . We define the following sets:

C = {(x, w) | Ax = b ∧ ∀p ∈ Q, J ∈ N̄ p(wJ =
∏

ℓ≤|J|

xjℓ
)}

RN = {(x, w) | Ax = b ∧ ∀p ∈ Q, J ′ ∈ N̄ p−1(A wJ′ = bwJ′) ∧

∀J ∈ N(wJ =
∏

ℓ≤|J|

xjℓ
)}.

Theorem 1. For each partition B, N into basic and nonbasic column indices for the companion

system Mz = 0, we have C = RN .

3. Tightening the convex relaxation

Replacing C with RN for some nonbasis N effectively replaces some monomial terms with lin-
ear constraints, and therefore contributes to simplify the problem. A convex relaxation for the
reformulated problem is readily obtained by applying monomial convexification methods in the
literature [5, 6, 1]. We observe that for any given linear system there is in general more than one
way to partition the variables in basics and nonbasics. Hence the set B can be chosen in such a
way as to decrease the discrepancy between the feasible region and its convex relaxation. Given
f : X ⊆ R

n → R and the sets S = {(x, w) | w = f(x)} and S̄ = {(x, w) | f(x) ≤ w ≤ f̄(x)},

where f(x), f̄(x) are respectively a convex lower and a concave upper bounding function for f

(and hence S̄ is a convex relaxation of S), the convexity gap between S and S̄ can be defined as
the volume V (S) of the set S̄. Explicit expressions of V (S) can be derived for a quadratic term
x2

i , for a bilinear term xixj using the Cayley-Menger formula in 3 dimensions, and for a general
monomial, exploiting associativity recursively to rewrite it as product of lower degree monomials
and using the preceding results.

Let B, N be the basic/nonbasic sets of column indices of the companion system, which we can
write as MBzB + MNzN = 0. The elements of B, N are sequences J ∈ M . For S ⊆ M and
p ∈ Q we define V S,p =

∑

J∈S

|J|=p

VJ and V S =
∑

p∈Q

V S,p. If, for all p ∈ Q, V N,p < V β,p then the

total convexity gap of RN is smaller than that of C. Thus, we aim to find N such that V N,p is
minimized, or equivalently, to find B such that V B,p is maximized for all p ∈ Q. This yields the
multi-objective problem:

∀p ∈ Q maxV B,p

MB is a basis of (2.3)

}

(3.1)

It can be shown that (3.1) is equivalent to a single-objective problem: any solution B of (3.1)
maximizing V B also maximizes V B,p for all p ∈ Q. In this way, we have derived a technique to
choose a good basis for the companion system so as to improve the chances of tightening the lower
bound of the convex relaxation associated to rRLT.

Preliminary computational experiments carried out on a set of randomly generated instances of
the convex Quadratic Knapsack Problem (cQKP) show that the proposed strategy is promising in
improving performances of a spatial Branch-and-Bound algorithm.
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