Reduced RLT constraints for polynomial programming
Sonia Cafieri, Pierre Hansen, Lucas Létocart, Leo Liberti, Frédéric Messine

To cite this version:
Sonia Cafieri, Pierre Hansen, Lucas Létocart, Leo Liberti, Frédéric Messine. Reduced RLT constraints for polynomial programming. EWMINLP10, European Workshop on Mixed Integer Nonlinear Programming, Apr 2010, Marseille, France. pp 205-207. hal-00938438

HAL Id: hal-00938438
https://enac.hal.science/hal-00938438
Submitted on 15 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reduced RLT constraints for polynomial programming

SONIA CAFIERI
PIERRE HANSEN
LUCAS LÉTOCART
LEO LIBERTI
FRÉDÉRIC MESSINE

Abstract. An extension of the reduced Reformulation-Linearization Technique constraints from quadratic to general polynomial programming problems with linear equality constraints is presented and a strategy to improve the associated convex relaxation is proposed.

1. Introduction

Reduced RLT constraints (rRLT) are a special class of Reformulation-Linearization Technique (RLT) constraints, that apply to nonconvex (both continuous and mixed-integer) quadratic programming problems subject to linear equality constraints [2, 4, 3]. rRLT are obtained by replacing some of the quadratic terms with suitable linear constraints. These turn out to be a subset of the RLT constraints for quadratic programming [7].

We present an extension of the rRLT theory to the case of general polynomial programs. Then, we show a strategy to choose the basis of a matrix involved in the rRLT constraints generation so as to tighten the bound of the associated convex relaxation. This allows to improve the performance of a spatial Branch-and-Bound algorithm applied to nonconvex NLP and MINLP problems where such convex relaxation is computed at each node.

2. Extending rRLT to polynomial programs

Let n be the number of variables, q the degree of the polynomials in the targeted problem and $\mathcal{N} = \{1, \ldots, n\}$, $Q = \{2, \ldots, q\}$. For each monomial $x_{j_1} \cdots x_{j_p}$, $p \in Q$, appearing in the problem, we define a finite sequence $J = (j_1, \ldots, j_p)$ and consider defining constraints of the following form:

$$w_J = \prod_{\ell \leq |J|} x_{j_{\ell}} \quad (2.1)$$

(for $|J| = 1$, i.e. $J = (j)$, we also define $w_J = x_j$). For all $p \in Q$, $J \in \mathcal{N}^p$ and any permutation π in the symmetric group S_p we have that $w_J = w_{\pi J}$ by commutativity. We therefore define an equivalence relation \sim on \mathcal{N}^p stating that for $J, K \in \mathcal{N}^p$, $J \sim K$ only if $\exists \pi \in S_p$ such that $J = \pi K$. We then consider the index tuple set $\mathcal{N}^p = \mathcal{N}^p/\sim$ to quantify over when indexing variables w_J.

We multiply the original linear constraints $Ax = b$ by all monomials $\prod_{\ell \leq p-1} x_{j\ell}$ and replace them by the corresponding added variables $w_{(J', j)}$, where $J' \in \mathcal{N}^{p-1}$. This yields the following rRLTS:

$$\forall p \in Q, J' \in \mathcal{N}^{p-1} \quad A w_{J'} = b w_{J'} \quad (2.2)$$

where $w_{J'} = (w_{(J',1)}, \ldots, w_{(J',n)})$. We then consider the companion system:

$$\forall p \in Q, J' \in \mathcal{N}^{p-1} \quad A z_{J'} = 0. \quad (2.3)$$

Since (2.3) is a linear homogeneous system, there is a matrix M such that the companion system is equivalent to $M z = 0$, the columns of which are indexed by sequences in \mathcal{N}^p. We let $B \subseteq \mathcal{N}^p$

Keywords: polynomial, MINLP, sBB, convex relaxation, RLT.
and $N \subseteq N^p$ be index sets for basic and nonbasic columns of M. We define the following sets:

\[
C = \{(x, w) | Ax = b \land \forall p \in Q, J \in N^p(w_j = \prod_{t \leq |J|} x_{j_t})\}
\]

\[
R_N = \{(x, w) | Ax = b \land \forall p \in Q, J' \in N^{p-1}(A w_{j'} = bw_{j'}) \land \forall J \in N(w_J = \prod_{t \leq |J|} x_{j_t})\}.
\]

Theorem 1. For each partition B, N into basic and nonbasic column indices for the companion system $Mz = 0$, we have $C = R_N$.

3. Tightening the convex relaxation

Replacing C with R_N for some nonbasis N effectively replaces some monomial terms with linear constraints, and therefore contributes to simplify the problem. A convex relaxation for the reformulated problem is readily obtained by applying monomial convexification methods in the literature [5, 6, 1]. We observe that for any given linear system there is in general more than one way to partition the variables in basics and nonbasics. Hence the set B can be chosen in such a way as to decrease the discrepancy between the feasible region and its convex relaxation. Given $f : X \subseteq \mathbb{R}^n \to \mathbb{R}$ and the sets $S = \{(x, w) | w = f(x)\}$ and $\bar{S} = \{(x, w) | f(x) \leq w \leq \bar{f}(x)\}$, where $f(x), \bar{f}(x)$ are respectively a convex lower and a concave upper bounding function for f (and hence \bar{S} is a convex relaxation of S), the convexity gap between S and \bar{S} can be defined as the volume $V(S)$ of the set S. Explicit expressions of $V(S)$ can be derived for a quadratic term x_j^2, for a bilinear term $x_i x_j$ using the Cayley-Menger formula in 3 dimensions, and for a general monomial, exploiting associativity recursively to rewrite it as product of lower degree monomials and using the preceding results.

Let B, N be the basic/nonbasic sets of column indices of the companion system, which we can write as $M_B z_B + M_N z_N = 0$. The elements of B, N are sequences $J \in J$. For $S \subseteq J$ and $p \in Q$ we define $V^{S, p} = \sum_{J \in S} V_J$ and $V^S = \sum_{p \in Q} V^{S, p}$. If, for all $p \in Q$, $V^{N, p} < V^{B, p}$ then the total convexity gap of R_N is smaller than that of C. Thus, we aim to find N such that $V^{N, p}$ is minimized, or equivalently, to find B such that $V^{B, p}$ is maximized for all $p \in Q$. This yields the multi-objective problem:

\[
\begin{align*}
\forall p \in Q & \quad \max V^{B, p} \\
M_B & \text{ is a basis of } (2.3)
\end{align*}
\]

It can be shown that (3.1) is equivalent to a single-objective problem: any solution B of (3.1) maximizing V^B also maximizes $V^{B, p}$ for all $p \in Q$. In this way, we have derived a technique to choose a good basis for the companion system so as to improve the chances of tightening the lower bound of the convex relaxation associated to rRLT.

Preliminary computational experiments carried out on a set of randomly generated instances of the convex Quadratic Knapsack Problem (cQKP) show that the proposed strategy is promising in improving performances of a spatial Branch-and-Bound algorithm.

Bibliography

