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Abstract—In this paper, we discuss, through a simple example,
the impact of two different but equivalent formulations used by
standard local optimization solvers (here fmincon of MatLab).
We show that even if the two formulations are equivalent in a
mathematical sense (no loss of global optima) it is not completely
true in a numerical way; using 1000 starting points, we show that
it is quite difficult for the designer to find a starting point yielding
a convergence of the algorithm to a local minimum and to find
better points yielding the global solution (previously found using
a global optimization algorithm). Furthermore, we discuss how
to deal with the insertion of the integer variable p, representing
the number of pole pairs of the machine, inside the problem of
design which uses a standard local continuous optimization code
to be solved.

Keywords: analytical model, formulation, local optimization,
inverse problem, design, electrical machine, mixed integer non-
linear programming.

I. INTRODUCTION

The interest of the electromagnetical actuators design com-

bining optimization algorithms and analytical models has

already been shown in a lot of works, [5]–[8], [10], [11], [13],

[14]. The design of electromechanical actuators is understood

as an inverse problem, i.e. from the characteristic values given

by the schedule of conditions (for example the torque), obtain

the structure, the dimensions and the material compositions of

the actuator constitutive parts, [1], [2].

In [9], we have shown that even for optimal dimensioning

problems which can be formulated as continuous-constrained

optimization problems, it was really difficult to find the

global optima using classical optimization algorithms, like

Lagrangian Augmented Techniques [5], [14]. Moreover, we

have shown that exact global optimization based on interval

analysis can be perfectly adapted to solve these kinds of

problem [2], [7]–[9].

Unfortunately, the exact global algorithm named IBBA (for

Interval Branch and Bound Algorithm [3], [4], [7], [12]),

is difficult to implement on a computer (about 10000 lines

of a Fortran90 code), and nowadays, it does not exist an

industrial version of IBBA or of a similar one. Furthermore,

its application to solve such problems is not so easy and it

often needs to develop or to adapt some parts of the code.
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Concerning stochastic algorithms, such as genetic algo-

rithms or simulated annealing, they are difficult to be effi-

ciently used to solve this kind of problems due to the equality

and inequality constraints which define many small realizable

domains.

In fact, the inverse problems of the electromechanical ac-

tuators design are more general than optimal dimensioning

problems, see [2]. Thus, these problems must be formulated

as mixed-constrained optimization problems, see [1], [2] for

more complete formulations.

In this paper, we discuss about the impact of different

formulations on the efficient use of a deterministic local

optimization solver (fmincon of MatLab), through a simple

example of a slotless electrical rotating machine with magnetic

effects. This example was first presented in [5] and also studied

in a lot of papers such as [5], [8]–[11], [14].

The design problem can be formulated as follows:











































min πβla
D
λ

(D − 2e − la)
s.t. Γem = π

2λ
(1 − Kf )

√
krβEchED2(D + E)Be

Ech = AJcu = krEJ2
cu

Kf = 1.5pβ e+E
D

Be = 2laP

D ln( D+2E

D−2(la+e) )
C = πβBe

4pBiron
D

p = πD
∆p

(1)

where D(m) is the bore diameter, λ the diameter over length

ratio, la(m) the thickness of the permanent magnets, E(m) the

winding thickness, C(m) the thickness of yoke, β the polar arc

factor, Be(T ) the magnetic field in the air-gap, Jcu(A/m2)
the current areal density, Kf a semi-empiric magnetic leakage

coefficient (established by numerical simulations), e(m) the

thickness of the mechanical air gap, p the number of pole

pairs, kr a coefficient of occupation, Biron the magnetic field

in the iron, Γem the electromagnetical torque, P the magnetic

polarization and ∆p the polar step. For this study, we fix

Γem = 10N.m, P = 0.9T , kr = 0.7, Biron = 1.5T ,

Ech = 1011A/m and ∆p = 0.1m the polar step as in [5].

The other parameters can vary inside the following intervals:

D(m) ∈ [0.01, 0.5], λ ∈ [1, 2.5], la(m) ∈ [0.003, 0.05],
E(m) ∈ [0.001, 0.05], C(m) ∈ [0.001, 0.05], β ∈ [0.8, 1],
Be(T ) ∈ [0.1, 1], Jcu(A/m2) ∈ [105, 107], Kf ∈ [0.01, 0.3],
e(m) ∈ [0.001, 0.005] and p ∈ {1, · · · , 10}. Furthermore, the

function to be minimized corresponds to the magnet volume

(Vm = πβla
D
λ

(D − 2e − la)).
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This problem is mixed (the parameter p is an integer

number) and also non-homogeneous (some parameters, such

as Jcu, have high values and the others are quite small, such

as D, e, ...). The designer must take care about this point.

In Section II, we present two different but equivalent

formulations of the design problem and we discuss about their

efficiency when the optimization problem is solved using the

function ’fmincon’ of MatLab7. In Section III, we discuss

about the fact that the parameter p representing the number of

pole pairs can become an integer variable of the optimization

code. This yields a mixed-integer non-linear optimization

problem which is difficult to solve using classical continuous

local search algorithms such as fmincon of MatLab. Some

concluding remarks are given in Section IV.

II. FORMULATIONS AND STARTING POINTS

One of the main difficulty in the use of a deterministic local

optimization algorithm is the introduction of a starting point to

initialize it. Then, we have three possibilities: (i) the algorithm

converges to a local solution; (ii) the algorithm works very

slowly and, after a while, it reaches the maximum number of

iterations or of function evaluations (here, both are fixed to

30000); (iii) the algorithm does not converge and fails.

If we are on stage (ii), we can restart the algorithm by

increasing the maximum number of iterations and of function

evaluations but it could not work (case (iii) or still case (ii)).

In this section, p is fixed to 5 and we discuss about the two

following formulations:
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Formulation 1:

- D,λ, la, E, C, β, Jcu, Kf , e: 9 variables.

- Be is a function depending on D,λ, ...
- Equations in (1) yield 5 equalities constraints

and 2 inequality ones: 0.1 ≤ Be(D,λ, ...) ≤ 1.
- Add constraints to the bounds of the variables.

(2)
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Formulation 2:

- D,λ, la, E, C, β, Jcu, Kf , e, Be: 10 variables.

- Equations in (1) yield 6 equalities constraints.

- Add constraints to the bounds of the variables.

(3)

These two explicit formulations are:

• Formulation 1:
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Vm(D,λ, ...) = πβla
D
λ

(D − 2e − la)

Γem = π
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√

krβEchED2×
(D + E)Be(D,λ, ...)

Ech = AJcu = krEJ2
cu

Kf = 1.5pβ e+E
D

C = πβBe

4pBiron
D

p = πD
∆p

Be(D,λ, ...) ≥ 0.1
Be(D,λ, ...) ≤ 1

(4)

Where Be(D,λ, ...) is defined as an auxiliary function

and returns 2laP

D ln( D+2E

D−2(la+e) )
.

• Formulation 2:
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C = πβBe

4pBiron
D

p = πD
∆p

(5)

D define the initial domain where the solution is searched

for; it defines lower and upper bounds for all the vari-

ables.

Mathematically this two formulations are equivalent because

the only difference is the addition of a new variable Be ∈
[0.1, 1] in Formulation 2 and the transformation of 2 inequality

constraints into an equality one. Therefore, this reformulation

involves nothing in the mathematical point of view: any

solution (global minimum) of Formulation 1 is also a solution

for Formulation 2 and conversely.

Table I presents numerical results obtained for the two

described formulations, using the same starting points. These

starting points are randomly generated between the bounds

of the variables by using the function ’rand’ of MatLab (for

Formulation 2, one random number is necessary for Be). Some

attentions must be paid to discard the fact that using some

random numbers, some evaluations of negative logarithms

could be performed.

TABLE I
COMPARISON BETWEEN FORMULATIONS 1 AND 2: p = 5

Formulation 1 Formulation 2

% local min 44.4% 39.6%
% best min 3.5% 4.6%

best min value 7.3581e−5 7.3571e−5

worst local min 1.1524e−3 1.1679e−3

best CPU-time 0.00s 0.00s
worst CPU-time 25.97s 23.75s

x0 = mid 8.4162e−4 —-

We performed 1000 iterations of ’fmincon’ for each for-

mulation using 1000 randomly generated starting points. In

the first line of Table I we give the percentage of starting

points yielding a local minimum (the percentage of failure

is quite high). In the second line, we show the percentage

yielding the best solution found during the 1000 iterations

(comparison of the values at 10−7). This percentage is very

low, confirming that a lot of care must be paid in the choice

of a good starting point. In the following of the table, the

best and worst values of local minima and the best and

worst CPU-times used for one iteration are reported. The

last line indicates that taking the starting point in the middle

of the hypercube defined by the bounds of the variables,

Formulation 1 provides a bad solution and Formulation 2

does not converge; this proves the non-equivalence of the
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two formulations in a numerical sense. However, we note that

the two formulations provide similar results. The percentage

of time when the two formulations provide equivalent local

values (within a tolerance of 10−7) at the same iteration is

about 3.3%. We remark that Formulation 2 is more efficient

providing best convergence to the best local minimum (which

is the global one); it seems to be more efficient to use this

formulation with the introduction of a new variable Be because

the expressions of the equations to be satisfied become less

complicated.

The best found local solutions for Formulation 1 and

Formulation 2 are the following:

Best local min Formulation 1 Formulation 2

D∗

= 0.159155 0.159155

λ∗

= 2.5 2.5
l∗a = 0.003 0.003

E∗

= 0.002636 0.002809

C∗

= 0.005033 0.004911

β∗

= 0.8 0.8
B∗

e = 0.377488 0.368305

J∗

cu = 7361029.21 7130912.95

K∗

f = 0.153328 0.160244

e∗ = 0.001431 0.001441

Thus, the two formulations provides two similar best local

solutions.

Moreover, we note that the number of pole pairs fixed to

p = 4 yields a best local minimum equal to 8.4272e−5 for

Formulation 1 and 8.4097e−5 for Formulation 2, which are

about 15% larger than the value corresponding to the case

p = 5.

In the next section, we discuss how to deal with p as an

integer variable of the optimization problem yielding a difficult

mixed integer non-linear program.

III. INTEGER PARAMETER

In such a dimensioning problem, the number of pole pairs p
was previously considered as a fixed parameter, p = 5. In fact,

Quasi-Newton algorithms such as fmincon of MatLab needs

continuous formulations and twice differentiable functions. As

a consequence, integer parameters must be dealt with attention.

In the literature, the integer parameter p is usually con-

sidered as a continuous one. The user has to convert the

obtained real value of p into an integer one, [5], [11]. Here,

by considering p ∈ [1, · · · , 10], we performed a multistart

method with 1000 starting points (randomly generated) and

the results are presented in Table II, where p∗ corresponds to

the best found local minimum and pmid to the local minimum

found using the middle of the the domain as a starting point.

The best found local minima for Formulation 1 and Formu-

TABLE II
COMPARISON BETWEEN FORMULATIONS 1 AND 2 WITH p ∈ [1, 10]

Formulation 1 Formulation 2

% local min 51.7% 58.1%
% best min 1.4% 1.8%

best min value 6.9894e−5 6.9851e−5

p∗ 4.8617 4.8603

worst local min 1.3261e−3 1.3740e−3

best CPU-time 0.00s 0.02s
worst CPU-time 15.02s 20.47s

x0 = mid 8.8957e−4 2.2991e−4
pmid 3.4728 3.7814

lation 2 are:

Best local min Formulation 1 Formulation 2

D∗

= 0.154754 0.154707

λ∗

= 2.5 2.5
l∗a = 0.003 0.003

E∗

= 0.003066 0.002659

C∗

= 0.00506 0.005356

β∗

= 0.8 0.8
B∗

e = 0.37953 0.401686

J∗

cu = 6825814.56 7329490.86

K∗

f = 0.153290 0.137949

e∗ = 0.001 0.001

p∗

= 4.861748 4.8603

We can note that these two solutions are different even if their

corresponding volume values are very close to each other.

From results in Table II, we remark that Formulation 2 gives

again the best results in terms of the percentage of the found

local minima and of the best found local minimum. The real

values of the number of pole pairs p in both cases are very

close and larger than 4.86, thus confirming that the integer

value p = 5 (used for experiments discussed in Section I) is

a good choice.

Note that only 31 starting points over 1000 provide close

optimal solutions where the values of the volume differ at most

of 10−7.

If we fix p∗ = 5, which is the integer value the most close

to p∗, we obtain the following table containing the values of

the equalities constraints. They must be close to 0 (less than

10−8) to be considered as satisfied constraints:

Functions Formulation 1 Formulation 2

Va = 6.9894e−5
6.9851e−5

eq1 = 9.7964e−5
3.7897e−4

eq2 = −4.7982e−5
−8.2906e−5

eq3 = −4.3537e−3
−3.9579e−3

eq4 = 1.3943e−4
−1.2990e−5

eq5 = 1.3826e−1
1.4987e−4

eq6 = — 1.3974e−1

Of course, the equality constraints are now not satisfied and

therefore one has to change some values of the solution

previously found. In the following, we discuss some of these

possibilities to deal with the integer parameter.

Another possibility to deal with the fact that p is integer,

is to insert a new equality constraint which is satisfied when

p ∈ {1, · · · , 10}:

(p − 1) × (p − 2) × · · · × (p − 10) = 0.
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Numerical results for both formulations are shown in Table III,

where again p∗ corresponds to the best found local minimum.

TABLE III
COMPARISON BETWEEN FORMULATIONS 1 AND 2 WITH

(p − 1) × · · · × (p − 10) = 0

Formulation 1 Formulation 2

% local min 31.0% 30.9%
% best min 0.2% 0.6%

best min value 7.3587e−5 7.3676e−5

p∗ 5 5

worst local min 1.3885e−3 1.3885e−3

best CPU-time 0.02s 0.02s
worst CPU-time 10.84s 14.01s

x0 = mid — —

The best found local solutions for Formulation 1 and

Formulation 2 are:

Best local min Formulation 1 Formulation 2

D∗

= 0.159155 0.159155

λ∗

= 2.5 2.5
l∗a = 0.003 0.003

E∗

= 0.003441 0.002053

C∗

= 0.004545 0.005556

β∗

= 0.8 0.8
B∗

e = 0.340905 0.416680

J∗

cu = 6443484.74 8342409.94

K∗

f = 0.183394 0.127555

e∗ = 0.001424 0.001331

p∗

= 5 5

As in the results previously discussed, the two solutions are

different even it close values are found for the volume of

magnet.

Note that in this case only 49 starting points over 1000

provide close optimal solutions where the values of the volume

differ at most of 10−7.

Another strategy to deal with p consists in starting from the

real solutions given in Table II, and changing the last added

equality constraint to a lower degree polynomial expression as

follows:

(p − ([p∗] − 1)) × (p − [p∗]) × (p − ([p∗] + 1)) = 0,

where [p∗] represents the most close integer value of p∗. In

our experiments, we used for p∗ the value 4.86 that was found

by the two formulations for the continuous problem. Results

are reported in Table IV.

TABLE IV
COMPARISON BETWEEN FORMULATIONS 1 AND 2 WITH

(p − 4) × (p − 5) × (p − 6) = 0

Formulation 1 Formulation 2

% local min 25.9% 26.8%
% best min 1.3% 2.6%

best min value 7.3572e−5 7.3663e−5

p∗ 5 5

worst local min 1.3885e−3 1.3885e−3

best CPU-time 0.02s 0.02s
worst CPU-time 10.75s 12.14s

x0 = mid 7.3482e−4 —
pmid 4 —

We note that the percentage to find a local minimum is a

little lower than in the previous case, while the percentage

to find the best local minimum is significantly improved.

Therefore, this seems to show that it is beneficial to reduce

the zone of research, concentrating the efforts around p = 5,

in order to improve the chances to find the global minimum.

The best found local minima for Formulation 1 and Formu-

lation 2 are:

Best local min Formulation 1 Formulation 2

D∗

= 0.159155 0.159155

λ∗

= 2.5 2.5
l∗a = 0.003 0.003

E∗

= 0.003201 0.002108

C∗

= 0.004671 0.005497

β∗

= 0.8 0.8
B∗

e = 0.340905 0.412257

J∗

cu = 6680741.53 8231696.33

K∗

f = 0.1749434 0.130198

e∗ = 0.001440 0.001345

p∗

= 5 5

Again the two solutions differ, dispite of equivalent values of

the volume of the magnet.

We remark that only 30 starting points over 1000 provide

close optimal solutions, where the values of the volume differ

at most of 10−7.

In Figures 1 and 2 we compare the two formulations in

terms of the percentage of found local minima and the per-

centage of best found local minima respectively, considering

the different choices of p discussed above. So, these figures

summarize the results presented in Tables I to IV.

Fig. 1. Percentages of found local minima

From Figure 1, one can see that there is not a clearly most

efficient method to find the largest number of local solutions.

This actually depends on the considered problem. We can note

that considering the parameter p as a variable, the second

formulation seems to be more efficient.

In Figure 2, it is most clear that, using the second formu-

lation, a higher number of starting points allows to obtain

the best found local solution. Thus, as the values of the

percentage of best found local solution are low, we can have

more confidence on the local solutions found by the second

formulation in order to provide the global solution.
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Fig. 2. Percentages of best found local minima

IV. CONCLUSION

We have presented two reformulations of a design problem,

showing that the designer must take care about the formulation

of the problem in order to make more efficient the use of a

local standard algorithm such as that proposed by MatLab in

fmincon.

First, we have discussed the solutions found using the two

formulations, where the number of pole pairs is fixed to 5

and 4. Formulation 2 provides the best percentage of local

solutions found.

Second, we have discussed about the fact that p has to be an

integer variable, providing a mixed integer non-linear problem.

Using the two formulations and some different strategies

to deal with the integer variable, we have remarked that

Formulation 2 is again most efficient in providing the best

local solution. However, the two best local solutions, found

using one or the other formulation, are different but give the

same value of the volume of the magnet. Furthermore, using

the middle of the domain as a starting point, we found that

Formulation 1 provides a solution which is in general far from

the best one, while using Formulation 2 the process never

converges.
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