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A DISTRIBUTED COMPUTING ENVIRONMENT
FOR ATC DATA ANALYSIS

Karine Puechmorel, ENAC Dept. MI, 31055 Toulouse, France
Daniel Delahaye, CENA, 31055 Toulouse, France

Introduction

ATC data exchange is taking on increasing
importance in both operational and experimental
contexts.

From the operational point of view,
information sharing between actors in the ATC
system is the key to congestion reduction and
safety. Data exchange allows traffic prediction, thus
with an adequate model, the expected delay on
flights may be obtained. With this value one may
perform flight planning so that congestion is
reduced and in turn delay itself. While this concept
has been validated in the Collaborative Decision
Making (CDM) project, there is a need for a global
system allowing communication from any part of
the world. Since data are generally expressed in
different coordinate systems, it is necessary to
perform conversions before being able to process
them. It would be a great interest to have a built-in
conversion process so that anybody willing to
retrieve flight data may do that without caring about
the referential in which data have been acquired.

Closely related to the problem of congestion
reduction through flight planning is the computation
of complexity metrics ([1], [2]). Those values will
help the ATC system in finding out which area of
airspace controllers must care about. Knowing that
may lead to either better load balancing between
control sectors or to designing new routes for
aircraft.

On the other hand, designing future control
aids requires extended experimentation and data
analysis. Unfortunately, no standard exists for
retrieving relevant information and this slows down
the development process in many cases. The
starting point of our work was precisely for dealing
with different data formats between a variety of
software. The problem of data exchange in
simulation is complicated by the fact that in some
experiments, real traffic is merged with simulated

traffic, or simulation scenarios may change at a
given time. This requires that the data storage
system be able to unambiguously distinguish
between simulation parts.

This paper addresses this problem through the
use of a space-time distributed database that works
in conjunction with a differential geometry library
and a space-time location protocol. Once a user
connects to the database, he specifies a time-space
referential, which describes a projection map for
earth coordinate representation and a time zone. All
subsequent requests will be made implicitly using
this referential from the user point of view, while
data may be stored and processed intemnally in
another referential. Each connection is thus
associated with a conversion context object that
performs the actual transformations. Since the client
accesses data always by making queries through
this object, conversion is made transparent.

A second point that has been treated is the
time-space location problem: by using an octree
structure on both spatial dimension and time, it is
possible to find a hierarchical time-space partition
in which event retrieval is fast. Within this frame,
several individual ATC databases may be gathered
in a distributed computing environment.

Combining the two features that are automatic
conversion and space-time partitioning and database
assignment, it is possible to construct a fully
distributed, referential independent database
system. The remaining point to be treated is how to
specify the time-space area of interest and
conversion context. For that, we have introduced a
resource descriptor, similar to the URI/URL used in
Web communications. This new descriptor is
named UEL (Uniform Event Locator) and allows
specification of all relevant information in a single
character string:

e Earth model (Sphere, WGS84, ...) and chart
(Stereographic, Mercator, Lambert) used.



e Spatial area and time interval in which the
events must lie.

e  Whether data comes from real or simulation
traffic.

The tools that have been developed for
achieving this goal will now be described more
thoroughly.

Differential Geometry Library

Manifolds

Differentiable manifolds are the natural objects
for geographic information processing since they
describe sets that are equipped with a collection of
charts (a concrete example of such charts being
geographic maps). A chart allows to locally
represent the manifold as a vector space, in which
classical calculus is defined. Amongst the useful
computations that may be done on a vector space,
differential calculus deserves some special attention
since it govemns all flight mechanical equations.
Being able to extend differential calculus on
manifolds, which are only locally vector spaces, is
the great achievement of differential geometry. For
that, one must be able to define the notion of speed
vector regardless of the chart used for performing
the computation: this will yield to the concept of
tangent vector. Furthermore, one may in many cases
add a Riemannian structure on the manifold, which
allows the computation of arc length.

Mathematical Preliminaries
From the mathematical point of view, a class
C™ manifold is a set M equipped with a collection

of charts [3] which are couples: (Ua,gx),., with
Ueza subset of M and ¢k a one to one mapping

from Uz to an open subset Oz of a given banach
space E. The subsets (Ux ), must form a covering
of M, that is:

UmUa=M

The change of charts applications:
@@y must be of class C" . This last requirement

allows application of differential calculus within a
chart and still to be able to change to another chart
while retaining all differential properties up to order
of derivation r.

The sphere S={IER3EH|=1} with the collection of

the two stereographic projections at respectively
north and south poles is an example of a
differentiable manifold. Note that one may use a
wider set of charts (for example Lambert
projections), but at least two charts must be used.
Of course the ellipsoid is again a differentiable
manifold, with properties close to that of the sphere
(in fact, ellipsoid earth models are so close to
spheres that in many cases, little error occurs from
confusing both). '

Figure 1 shows how two stereographic
projections give rise to a differentiable manifold
structure on the sphere.

Chart change

TN N

Image of a point
under the stereographic
projection
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Figure 1. Stereographic Projections Giving Rise To A Differentiable
Manifold Structure



Our implementation follows closely the
mathematical definition.

First, the underlying abstract set must be
defined. Since we will be dealing with infinite sets,
it is not possible to store all points and use the
standard implementations of the set. The only way
of specifying sets will be by going back to the
axiomatic definition. Sets are assumed to be
elements of a collection called the universe (note
that this collection will NOT be a set). Elements
may be tested for fulfilling a property, and those for
which the property is true form a set.

Implementation of that is more straightforward
than it may seems at first sight, and is summarized

in the UML diagram of Figure 2.
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Figure 2. Set Class Diagram

The universe object is used as a container
and factory for generating new instances of
Elements. Elements are indeed logical sets, with
standard meet, join and diff operations defined on
them. The defining property of the set is specified
by the “contains” operation that concrete sets must
override (default behavior of “contains™ is to retum
- false for all but the _empty Elements). Each
element has a name, that may be left null, in which
case the element is anonymous, and a unique
identifier (integer number) generated by the
universe. Elements may be constructed from
clementary Boolean operations: logical and for the
meet, logical or for the join, logical not for the
complementary set and so on.

The universe is responsible for the destruction
of objects (garbage collection). Depending on the
implementation language, this may require writing
a garbage collector. We have developed both Java
and C++ version of the library, the last one being
much faster and ideally suited for heavy load

applications. In this case, a standard mark-and-
sweep algorithm performs garbage collection.

The Element class can act as the underlying set
for the Manifold implementation. The other part of
Manifold will be the set of charts. Implementing a
chart is somewhat awkward since one must
associate a subset of the manifold with the chart.
Although our Element class allows an easy
construction of subsets, it is convenient to be able to
generate a defining property by enforcing the image
of the subset to be a polygonal area. Of course, a
chart is itself an instance of an Element so that
manifold points may be tested for being in the
domain of the chart. In fact, since the domains must
cover the whole manifold, it is sufficient for the
manifold to be viewed as a set of charts.

Any concrete chart must implement the
following operations:

e Take an element of the manifold and
compute its image as a vector if the point is
in the domain of the chart, otherwise, raise a
“NotInDomain” exception.

e Take a vector and find its inverse image as
an element of the manifold if the initial
vector is in the image of the domain of the
chart, otherwise raise a “NotInCodomain”
exception. The returned value is an Element
that belongs to the manifold. The actual type
of that Element is in fact a Manifold.Point,
which is an inner class of manifold with
some extra information added (in a concrete
manifold, this is mainly the so-called
intrinsic coordinates, like the latitudes and
longitudes for spheres and ellipsoids).

e Compute the image of a vector by a change
of map, raising a “DomainMismatch”
exception if the operation cannot be
completed.

Concrete Manifold for ATC Applications

Two concrete classes of Manifold have been
derived, the sphere and the ellipsoid, which cover
all our needs for geographic applications, Nineteen
built-in earth models have been defined, the most
useful being WGS84 and SPHERE (Standard
radius of 6370997 meters). Amongst available
charts, the most commonly used are stereographic,



Mercator and Lambert. A total of 30 different
projections are implemented with their inverse.
Manifold points are Elements with two real values
for the latitude and longitude respectively. Since we
are dealing with ATM, a third one is added for the
altitude.

All manifold points are Elements, so may be
named and retrieved by their name (in fact a hash
table is associated with concrete manifolds so that
the process of querying for a given point is fast).
This feature allows an easy definition of beacons
and reference points. Objects than are instance of
carth models may read an XML [4] beacon file at
creation and store the resulting points in the hash
table. This allows entering known beacons for a
country or area, which is under the responsibility of
the database owning the object.

Some very usual projection maps may be
defined similarly at creation time through an XML
file. For example, most French radar information is
stored in the Cautra IV coordinate system, which is
a Sphere Lambert projection. Here is an extract of
the file where Cautra IV is defined:

<node name="cautra4">
<map>
<entry key="Type" value="Lambert" />
<entry key="Latitude" value="47" />
<entry key="Longitude" value="0" />
<entry key="extX" value="1e6" />
<entry key="extY" value="1e6" />
</map>
</node>

Tangent Vectors
Let M be aclass Cr manifold with charts

(U, ),.; - A tangent vector to M at the point
xeM is a class of equivalence among triples
(U.pv) with (U,p) a chart with xsU,¢(x)=0 (such
a chart is said to be centered at x) and ve E with
respect to the equivalence relation:

UpvEVww)
if

w=Dlyog- |o(v)

In other words, a tangent vector represents a
kind of speed vector, which may be expressed in
different charts but with a formula for computing
the different representations.

The implementation of the tangent vector class
is straightforward:

¢ A manifold Point, which is the origin of the
tangent vector.

e A chart centered at that Point (centering is
tested when the constructor is called).
A vector.
A Boolean class method testing for equality
(same equivalence class).

The tangent vector object is used for coding
aircraft speed: since it is chart independent, correct
format of retrieved and queried data is insured.

Library Features

The differential geometry library allows
several usual operations and constructs, like
differential calculus on manifolds. At the moment,
it is far for being complete, but powerful tools are
available for ATM applications:

¢ Riemannian manifolds implemented. This
means that paths length may be computed.
Geodesic curves between two manifold
points may be constructed, but this feature is
limited to spheres and ellipsoids.

e Simple lie algebra computations, like the lie
bracket. This is important for trajectory
planning, since the lie group of
rotations/translations acts on the natural
configuration space for the flight mechanics.

UEL Definition

UEL stands for “Uniform Event Locator” an
acronym derived from the well-known URL [5]. It
gives a unified view of events in space and in time
and allows information processing in a referentially
independent way. For example, French ATC data
are mainly stored in CAUTRA 4 format, which is a
Lambert projection, while some others are stored in
latitude/longitude coordinates. The UEL formalism
allows to make queries and to obtain results in a



referential specified by the user, regardless of the
internal storage referential. We will now describe
more accurately how an UEL in organized.

The Context

This is the first field in the UEL. It refers to
the source of data, that is real traffic or simulation.
The ATC context will always refer to a real
situation, while other names may be used for
storing and retrieving data from simulations. Each
context is stored independently from the others in
the database.

The Earth Model

This field is separated from the context by a
colon *:” and indicates in which model of the earth
the query will be done. This may be important for
high accuracy or wide area computation, in which
case the difference between a spheroid model and
an ellipsoid model is significant. For now, only the
standard spheroid and some ellipsoids (including
WGS84) are implemented, since they will cover
most of the users needs. However, introducing new
models is simple, since the underlying
implementation is that of a differentiable manifold.

The Sector Location

Airspace is divided in polygonal areas called
sectors. Those polygons are almost always defined
in local maps since their spatial extents are small
enough to replace geodesics by straight lines.
Elementary sectors may be gathered into control
areas and ultimately into countries. This
~ hierarchical structure is referred to in the third part
of the UEL. Each element of the hierarchy is either:

e A named polygonal area. Existing sectors
belong to that category.

e A specified polygonal area. Those are given
as succession of vertices, which may be
again named or specified. Specified
polygons are versatile, but somewhat
awkward to enter by hand. They are most
useful in software generated UELs,

e A cluster of polygonal areas, which is again
a polygonal area.

Optional Arguments

The last part of the UEL is similar in syntax to
the optional arguments of a URL. It is separated by
a question mark ‘?” and organized in pairs
‘variable=value’. Amongst these, the following are
very useful in practice:

MapType="projection type’. Specify a
projection for the data. Expects to find a
MapParameters="(list)” somewhere!

MapName="name’. Specify a map for the data
by its name. Understandably, the name must be
present in the system.

TimeZone="name’. Specify a time referential.

First="date’, Last="date’. Filters the events so
that only those occurring between those dates are
taken into account.

UELs in Practice

Like URLs, UELs are primarily intended for
information retrieval on a network of databases.
Because data may be scattered over several
machines, a resolution protocol has been defined.
However, since search criteria are space and time
locations, UEL resolution is based on servers
storing polygonal managed area and time segments.
Once a connection request is made to a specified
UEL, the query is propagated upwards in the
hierarchy of servers until one has a managed area
containing the whole specified area (and also for the
time segments). From this server, the query is
processed downwards through the hierarchy to the
physical databases. Unlike the case of name
resolution which occurs in network protocols,
things are made more complicated when the query
area is not managed by a single database, in which
case it must be split in several pieces, each
associated with a physical database. Connections
are established as 1 client to 7 servers, with »>1.

Database Organization

Overall Design

A successful connection request through a
UEL will first result in the creation of an instance of
the conversion context object that will manage all
incoming information preprocessing and outgoing



information post processing. Conversion contexts
are uniquely associated with connections even if
different requests use the same UEL, and are
deleted when the connection is closed. Before the
conversion context, all data is in the internal storage
format (it is recommended that this format will be
WGS84 latitude/longitude/altitude since this is the
preferred choice for published space data).

Requests to the database are done with XML
queries. Triggers may be entered so that the user
will be notified by an XML message of some event
occurring in the database. Common triggers include
new tracks coming, new strips emitted, flight plan
entered or updated, security alertsli, etc.

Tables

The following tables are implemented in the
current version;

¢ Flight plan information including departure
and arrival beacons, departure time and
estimated arrival time, aircraft type.

e Flight plans segments defined by beacons
and estimated arrival time.

e Beacons defined by name and position.
They are implemented as Points in the
reference manifold (sphere or ellipsoid).

s  Sector definitions as lists of beacons or
named points. Sectors are always polygonal,
with geodetic segments.

® Track events (Radar data) with time,
position, speed vector (tangent vector to the
reference manifold), aircraft identifier (must
be unique in the database). Transponder
code is optional.

e Security events (TCAS alerts).

Connection

Client Side
The following steps describe connections to
the database from the client side:

¢ Make a UEL request to the UELResolver
service.

e Upon completion of the resolving process,
the UELResolver retumns a set of
connections with the physical network
locations of the services responsible for the
time-space area defined in the UEL. Note
that this must be a set since a UEL may

overlap several areas of responsibility. An
empty set is returned if no databases can be
found for managing the UEL. Note that an
empty set is returned even if some databases
have their responsibility area inside the
UEL, but do not cover the whole of it.
Malformed UELs or Communication
Failures raise the corresponding exceptions.
The elements of the set of connections are
provided with all conversion procedures
needed and are ready to be used. However,
the physical connection process is submitted
to late binding, that is, socket opening is
delayed until a request is made in the
responsibility area of the particular database
addressed. On the other hand, connections
are closed inside the pool after a user-
defined timeout or in case of reaching the
maximum number of connections (in this
case, the least recently used is closed).
When a request is made to a given UEL, the
UELResolver finds the relevant connection
and opens it if necessary, according to the
late binding principle. Connections require
an authentication with a pair user/password
that is associated with rights granted on the
database. For safety and confidentiality
reasons, connections are opened using
SSLSockets.

Request retums are XML documents.

Some requests create triggers on the server.
Those procedures are fired when a given
condition is met (in our experimental
implementation, those are ATC events as
defined in the simulation tool used).
Triggers may be chained and several clients
may be associated to event triggers. A
trigger returns an XML document
corresponding to the request made. Event
triggers are useful for broadcasting database
changes to interested clients. The traffic
simulator that we have used for our
experiments is based on message passing,
the destination of messages being
determined by matching a regular
expression against the message body.
Triggers offer the same functionality, but
add a lot of new features, like the ability to
interact with the database. Some event
triggers are not accessible or customizable



for all users since this may result in a drastic
reduction of performance. This is the case
for radar track acquisition that occurs
frequently. Allowing computer expensive
requests to be processed on those events will
overload the server when traffic is high. In
order to avoid this, only authorized users
may create event triggers with the custom
query procedure. In any case, standard event
triggers have the higher priority. Triggers
programming and compilation are still under
development, although most frequently used
functionality is implemented.

¢ Connections remain open until the timeout
expires or the connection set object is
deleted. This choice has been made to favor

Incoming
connections

CORBA
Middleware

speed at the expense of allowing fewer
connections. When a client disconnects, a
message is sent to all servers involved.

Server Side

From the server side, the connection is made to
the connection manager service, which is in charge
of processing incoming requests and dispatching
them. Several physical databases may be under the
control of a single connection manager and
extended services may be made available, like
trajectory prediction. Services under the
responsibility of the connection manager are
accessed via CORBA. The overall architecture is
summarized in Figure 3.

Figure 3. Services Communication

Space-Time Responsibility Domains

This is the core of the information retrieval
system. Each database is in charge of some areas of
the earth for given time segments. Efficient data
access depends on setting up a fast search structure,
adapted to this kind of information. Several
structures exist for spatial segmentation, the more
widely used being:

¢ Quad and Oct trees.
¢ Delaunay triangulations.

The first of these takes points and constructs a
hierarchical decomposition of the space in
rectangular cells. The construction of the tree is
done by successive insertion of points: each time a

point is inserted, the tree is searched for locating the
cell in which it lies, then that cell is split into 4
subcells (or 8 for a 3-dimensional space) sharing the
inserted point as common vertex. The procedure is
summarized below.




The solid lines show the cell decomposition at
the first stage, then the dashed ones show what
happens after a new point insertion.

For our application, Oct trees must be used
since we are dealing with 3-dimensional data (two
dimensions for the spatial location and one for the
time). Tree structure is essentially very fast for
point location: this is of major importance in our
application since UEL resolution and query
processing is made through point and area location
procedures. Oct trees must be kept as balanced as
possible in order to allow fast processing.
Furthermore, points must be chosen such that the
granularity is fine enough to accurately represent
the ATC sectors.

Top level UELResolvers are in charge of
coarse subdivision, while individual databases have
a list of elementary cells as their responsibility
domain. Each cell may be linked to more than one
UELResolver or database since responsibility
domains may overlap. In the case of multiple
databases linked to the same reference cell, the
previous level UELResolver will send the whole list
of databases eligible to process the requested UEL
to the calling client. The actual spatial segmentation
on that list is performed by API procedures on the
client machine. This avoids unnecessary
computation on the server machines, thus reducing
the time-consuming tasks on those critical parts of
the system.

Caching
Since most requests deal with events closely
located in space and time, like trajectory retrieval,
caching data is very important for sustained
performance under heavy load conditions.
However, things are made harder than usual
because of the spatio-temporal nature of events.
Most requests fall into two categories:
o Queries about parts of trajectories fora
given set or aircraft.
¢ Queries about a given spatial area (generally
for traffic analysis and monitoring).

This suggests the use of the following heuristic
for caching data:

e New radar tracks are always cached and
stored until the associated flights leave the

responsibility area or the maximum memory
depth has been reached.

e Each time a request is made on flights in a
given area, all associated trajectories are
fetched into memory, with a maximum
length.

e Old trajectories (from the access time point
of view) in cache are dumped to database
when timing out or if memory is low.

e Cache is physically organized as a hash
table based on the flight identifier
(necessarily unique).

Because of the structure of space-time in cells,
caching is done with elementary cells. This means
that all events related to a given space-time area
will be covered by such cells, then each cell will be
fetched into the cache.

Overall performance with this procedure is
very satisfactory: in fact, on our test system, the
network communication was only a fraction of the
total CPU time used by the ATC data generation
and analysis system.

Further Work

The UEL resolving system has been used for
about 8 months now and has proved workable. We
are currently seeking to develop a air traffic
navigator, based on the same concepts as Web
Browsers. The idea is to allow the user to enter an
UEL, then display a radar image of the area
referenced by this UEL. Since all queries are made
using XML, it is quite simple to implement Web
services for accessing databases. Selecting a flight
with a pointing device will result in information
display about it, the level of accuracy depending on
the user class. UEL navigators may thus be used on
control positions as powerful tool for controllers.

The second way of improving our computing
environment is by adding services extending data
processing. Among them, it is planned to release a
traffic simulator and a trajectory generation tool.

Conclusion

We have presented a distributed ATC database
system that can be used to retrieve and process data
that are spatio-temporal. The ability to specify areas



of interest by means of a unified descriptor, the
UEL, allows the design of versatile ATM systems.
Furthermore, since part of the project was the
coding of a differential geometry library, many
functions may be used for flight mechanics
applications.

Due to the hierarchical structure, it is easy and
fast to select databases responsible for a given UEL,
so that the overhead induced by the protocol is
nearly transparent for the user. The ATC database is
in an early development stage, but it has been
intensively tested for the computation of traffic
complexity metrics.
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