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Introduction

Air traffic control organizes air flows in order
to ensure flight security (in terms of collision risks)
and to increase the capacity of the route network
planes are flying on. According to the nature of
traffic, the three following types of control can be
distinguished:

e airport control : management of taxi,
taking-off and landing periods.

e approach control : traffic management
immediately before landing or after take-
off, in an a area close to the airport.

e en-route control : concerns mainly traffic
cruising between airports.

Currently, about 7500 movements are detected
over France, which is a crossroads for the whole
European airspace. To deal with this traffic
demand, airspace 1s divided into elementary sectors,
which are managed by air navigation controllers.
The role of controllers is to separate all aircraft in
the sector while maintaining an efficient traffic
flow. For several years, a constant increase of air
traffic has provoked more and more congestion in
control sectors. There are two possible approaches
to reduce this congestion:

1. Adapting demand to existing capacity. This
method consists in allocating take-off timeslots
to planes to make sure that sector capacities are
respected. At operational level, this allocation is
done by the CFMU (Central Flow Management
Unit).

2. Adapting capacity to demand. This method
consists in modifying incrementally route
network or sectorization whenever capacity is
out passed in a given sector. The result is to

maintain traffic flow in the sector until next out
passing.

In the two preceding approaches, the capacity
of a sector is measured by the number of aircraft
flying across the sector during a given time period.
The observation of controlled sectors shows that
sometimes, controllers accept planes beyond the
capacity threshold, while in other situations, they
refuse traffic before capacity is reached. This
phenomenon clearly shows that the operational
metric alone cannot account for controller's
workload. The goal of this study is to synthesize a
traffic complexity indicator in order to better
quantify the congestion in an air sector, which will
be more relevant than a simple number of aircraft.
More precisely, our objective is to build some

- metrics of the intrinsic complexity of the

distribution of traffic in the airspace. Those metric
must capture the level of disorder of any traffic
distribution but they have to be able to identify any
organization structure. Usually, metrics are focused
on the speed vector distribution and the associated
disorder metric captures a part of some potential
traffic distribution disorder. As a matter of fact the
real objective of those works is to measure the
disorder or the level of organization of a set of
trajectories in a 4D space (3D for the space and
1D for the time).

Those metrics are relevant for many
applications in the air traffic management area. For
instance, when a sectoring is designed [1], the
sectors have to be balanced from the congestion
point of view and for the time being, only the
number of aircraft is used to reach this objective .
Another example where a congestion metric is
needed is the traffic assignment [2], [3] for which
an optimal time of departure and a route are



searched in order to reduce the congestion in the air
sector then a more precise measure of the
congestion is needed to reach this goal. This
complexity indicator may also be used to design
new air networks, for the dynamic sectoring
concept, to define some Free Flight areas etc ... .

Complexity metrics would enable to qualify
and quantify the performance of the Air Traffic
services providers and permit a more objective
consultation between airlines and providers.

NASA has recently proposed a control
workload model, obtained by statistical regression
on radar traffic samples. The workload thus
calculated uses more sophisticated indicators such
as the number of planes on a steady course,
climbing up, climbing down, the number of
conflicts etc. The present study consists in inferring
new complexity metrics from observation vector
speeds in control sectors, thus completing the
NASA model with measures of vector disorder.

Two class of metrics are then presented . The
first class is based on geometrical observations and
produce local disorder metrics. Relative speed and
relative distance between aircraft are used to build
such metrics.

The second class is based on topological
entropy. In this approach, traffic in the sector is
considered as a dynamical system in which the
evolution through time of trajectories respects fluid
mechanics criteria. Topological makes it possible to
compare current situation (on a given time scale)
with a completely organized situation (parallel
flows with relative speeds equal to zero). the
obtained measure can quantify the level of traffic
intrinsic interaction in a control sector. The a priori
knowledge of future evolution of plane trajectories
(flight plans knowledge, prediction of radar
positions) is intrinsically taken into account by the
dynamical system. The first part of this paper
presents the previous related works. The second one
gives an extension propose some extension of the
geometric approach and the third one resents a new
air traffic complexity concept based on the
dynamical systems. The results produce by such
metrics are then presented in the fourth part.

Previous Related Works

The airspace complexity is related with both
the structure of the traffic and the geometry of the
airspace. Different efforts are underway to measure
the whole complexity of the airspace.

Significant research interest in the concept of
ATC complexity was generated by the “Free
Flight” operational concept. Integral to Free Flight
was the notion of dynamic density. Conceptually,
dynamic density is a measure of ATC complexity
that would be used to define situations that were so
complex that centralized control was required [4].

Windemere inc [5] proposed a measure of the
perceived complexity of an air traffic situation. This
measure is related with the cognitive workload of
the controller with or without the knowledge of the
intents of the aircraft. The metric is human oriented
and is then very subjective.

Laudeman et al from NASA [5] have
developed a metric called « Dynamic Density »
which is more quantitative than the previous one
and is based on the flow characteristics of the
airspace. The « Dynamic Density » is a weighted
sum of the traffic density (number of aircraft), the
number of heading changes (> 15°), the number of
speed change (> 0.02 Mach), the number of altitude
changes ( > 750 ft), the number of aircraft with 3-D
Euclidean distance between 0-5, the number of
altitude changes ( > 750 ft), the number of aircraft
with 3-D Euclidean distance between 0-25, the
number of conflicts predicted in 0-25 nautical
miles, the number of conflicts predicted in 2540
nautical miles and the number of conflicts predicted
in 40-70 nautical miles. The parameters of the sums
have been adjusted by showing different situation
of traffic to several controllers. Finally, B.Sridhar
(NASA 1998) [7] developed a model to predict the
evolution of this metric in the near future. Efforts to
define “dynamic density” have identified the
importance of a wide range of potential complexity
factors, including structural considerations.

A few previous studies have attempted to
include structural considerations in complexity
metrics, but have done so only to a restricted
degree. For example, the Wyndemere Corporation
proposed a metric that included a term based on the
relationship between aircraft headings and a
dominant geometric axis in a sector [5]. The



importance of including structural considerations
has been explicitly identified in recent work at
Eurocontrol. In a study to identify complexity
factors using expert judgment analysis, “Airspace
Design” was identified as the second most
important factor behind traffic volume [8].

The previous models do not take into account
the intrinsic traffic disorder which is related to the
complexity. The first efforts related with disorder
can be found in [9]. In this paper two new metrics
related with disorder in space and speed are
developed and are shown to be very adapted to
compare situations of traffic. When a set of aircraft
is considered in a sector, it is possible to identify
different areas for which the structure of traffic is
different. For example, it is possible to identify
some high density zones and clusters of traffic with
strong disorder. This identification is done by our
brain which investigate the different structure and is
able to recognize structure symmetries. When two
aircraft are considered, it is possible to define their
relative distance and relative speed (see Figure 1).

Figure 1. Relative Distance And
Relative Speed

The relative distance is given by:
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In the same way, the relative speed is define as
follow:
v, =V, -,

In the following "d—u

l will represent the

relative distance vector d,j .

It can be easily shown that the derivative of
this norm is given by:

#l 73
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Where “.” is the scalar product.

This norm is used to define aircraft proximity
measure:

dy

N o _g
Prox(i)=1+Y e *
-

where

i is the current aircraft for which the local
density is computed

N is the whole number of aircraft
« is a weighted coefficient
R is a neighborhood distance

The exponential function is here to give much
more weight to the aircraft, which are close to the
current aircraft. Then, each aircraft is located on the
density axe on a position between 1 to N.

This paper ([9]) presents also a metric of
disorder related to the speed vectors of aircraft: The
global convergence of an aircraft “i” is the a
weighted sum of all the convergence between pairs

of aircraft:
del | [de]] E
d | *| at

d |

Conv(i) = i

J#i
Where 1 o 1s the set function function on R

Those indicators Prox and Conv are very
adapted to describe the level of contraction or
divergence of the local speed vector field associated
to an aircraft.

G. Aigoin has extended and refined these
concepts using a cluster-based analysis [10].

Two aircraft are said to be in the same cluster
if the product of their relative speed and their
proximity (a function of the inverse of the relative
distance) is above a threshold.



Figure 2. A Cluster Based Analysis
Considers Both Intra And Inter Cluster
Complexities

An example of cluster is given in Figure 2. For
each cluster, a matrix of relative dependence
between aircraft is computed and the whole
complexity of the cluster is then given by a
weighted sum of some matrix norm. Those norms
give an aggregated measure of the level of
proximity of aircraft in clusters and the associated
convergence with the relative speed. From the
cluster matrix it is also possible to compute the
difficulty of the cluster. The difficulty captures
how hard it is to solve this cluster.

Multiple clusters can exist within a sector, and
their interactions must also be taken into account.
A measure of this interaction has been proposed by
G. Aigoin [10]. This technique allows multiple
metrics of complexity to be developed such as
average cluster complexity, maximum and
minimum cluster complexities, and complexity
speeds.

The traffic itself is not enough to describe the
complexity associated with an airspace. The impact
of the structure on the controller workload can be
found on the paper []. This paper shows how strong
the structure of the traffic (airways) , sectors etc ...
is related with the control workload.

Another approach is based on the fractal
dimension of the airspace (see []). Fractal
dimension is a metric comparing traffic
configurations resulting from various operational
concepts. It allows in particular to separate the
complexity due to sectorization from the
complexity due to traffic flow characteristics. A
complete description may be found in “Airspace
fractal dimensions and applications”. The
dimension of geometrical figures is well-known : a
line is of dimension 1, a rectangle of dimension 2,

etc. Fractal dimension is simply the extension of
this concept to more complicated figures, whose
dimension may not be an integer. The block count
approach is a practical way of computing fractal
dimensions : it consists in describing a given
geometrical entity in a volume divided in blocks of
linear dimension d and counting the number of
blocks contained in the entity (N). The fractal
dimension (D) of the entity is thus :

_lim 108&Y)
-0 lo g(d)

The application of this concept to air route
analysis consists in computing the fractal dimension
of the geometrical figure composed of existing air
routes. An analogy of air traffic with gas dynamics
then shows a relation between fractal dimension
and conflict rate (number of conflicts per hour for a
given aircraft) :

e at constant fractal dimension, the conflict
rate is linear with the number of aircraft.

o the log of conflict slope is linear with
fractal dimension.

Fractal dimension also provides information on
the number of degrees of freedom used in the
airspace : a higher fractal dimension indicates more
degrees-of-freedom. This information is
independent of sectorization and does not scale
with traffic volume. Therefore, fractal dimension is
a measure of the geometrical complexity of the
traffic pattern.

Geometric Disorder Metrics

Covariance Metric

When a set of vector speeds is observed, it
seems to be relevant to compute a disorder metric
based on the covariance matrix associated to such a
set. This matrix is given by:

cov=v'y
—T =T =T —r T
where V =[v1 v, V3o .. Wy :l



The straight computation of the matrix do not
take into account the distance between aircraft and
could produce a high level of disorder for aircraft
which are away from each other which is not
relevant for the ATC purposes. The proposed metric
compute local disorder factor which are aggregated
by taking into account the relative distance between
aircraft. The first step consist in the computation of
relative speed between pairs of aircraft.

dvx
v, =V, -V, =|a,
dv

The associated covariance matrices are then
computed:

cov, =v,7,

oy

Those pair wise covariance matrices are then
weighted by a factor depending of the relative

distance:
_ (ol

The local level of disorder is then related with
the determinants of those new weighted matrices. In
order to avoid condition problems, those weighted
matrices are first written as singular value
decomposition:

@, COV, =L, S, U}

a,

The local disorder factor associated with the

aircraft pair # is then given by:
Cy= H S
ESy>

The covariance disorder metric is just the
summation over all aircraft pair of the factor ¢;; :

Con =2 2.6

i j.ge

As it can be seen in the result section, such a
metric is able to identify disorder of speed vector
but is not adapted in a situation where aircraft are
organized in a curl moving. As a mater of fact, the
metric “sees” the speed vectors of aircraft in
disorder even if the situation is completely

organized and very easy to control from the ATC
point of view. So, speed vector disorder metric is
necessary to characterized the ATC system but is
not enough to address all situations. The Koenig
metric has then been developed.

Koenig Metric

This metric is computed for a set of aircraft
which can be determined by a neighborhood . The
position of the space barycenter is first computed by
using the positions of the aircraft:

i=1
The normalized kinetic moment is then given
by:

m, = =V Ad,
o

where A is the vector product.

W

d]’G

which away from the barycenter have more weight
than the ones which are closer. The average kinetic
moment located on the barycenter is then given by:

The normmalization by avoid that aircraft .

M, =N
G _‘K{';mi

The dispersion of the kinetic moment is given
by:

1 i=N

Cov,, = FZ[;: —E]F _E}T

i=l

The normalization by the factor % avoid that

the induced metric depends of the number of
aircraft. The disorder associated to the kinetic

moment D, is the square root of the trace norm of
the matrix COV,, :

D, =[COV, |

" T



Then, when D,, is very small compare to

e

moving.

Based on those factors, a normalized Koenig
metric can be build:

, it means the aircraft are organize in curl

Koenig = D,
D, + 'A7G‘

This metric can evolve from 0 to 1 (0 means
that the set of aircraft is organized in a curl moving
and 1 means that no curl tendency can be identify).

A computation of such a metric on some traffic
situation is given in the results section.

The geometrical metrics previously developed
are very well adapted to capture a feature of the
complexity but have to aggregated together to
produce a relevant metric for the ATC system.

If a more complex organization structure (out
of translation or curl) has to be captured, those
geometric metrics will fail and a more powerful
model is needed and dynamical system are very
adapted to address this problem.

Dynamical System

Introduction

This metric is based on the modeling of the set
of trajectories by a dynamical system. This enable
to identified different structures of organization of
the set of speed vector organization. The first
approach presented here is limited to the real time
analysis of a set of speed vector. The next step
which is in progress will take into account a set of
trajectories in a 4D space.

Principle

The key idea of this metric is to model the set
of aircraft trajectories by a dynamical system. A
linear dynamical system is control by the following
equation.

X=AX+B
where X is the state vector of the system:

X =

N % K

The eigen values of the matrix A control the
evolution of the system. The real part of those eigen
values is related with the convergence or
divergence property of the system in the direction
of the eigen vector. When such a eigen value has a
positive real part the system is in expansion mode
and when it is negative the system is in contraction
mode. On the other end , the imaginary parts of
eigen values are related with the level of rotation
organization of the system. Depending of those
eigen values, a dynamical system can evolve in
contraction, expansion, rotation or a combination of
those three modes. Figure 3 shows examples of
evolution with different eigen values. From a
situation with two aircraft moving in parallel at the
same speed, it shows the position and the speed
vectors after a small period of time “d”.

m
o — % —_ i

[ e -
Figure 3. Evolution Examples

Figure 4. Eigen Values Properties

The eigen value properties can be summarized
in the complex coordinates (see Figure 4). In this
coordinate system, the vertical ellipse identifies



different organized situation (in translation, in
rotation or both).

A dynamical system can then be considered as

amap 7 from the state space X to itself. Based on

this mapping 7", one can define the topological
entropy (or kolmogorov entropy) of dynamical
system which measure the level of mixing of X by
T . This entropy is associated with the changes of

the relative distances between points from X by T .

The topological entropy of a dynamical system is
then a disorder indicator of the distribution of
aircraft. This entropy is not a statistical metric and
is very adapted to the air traffic control system for
which there are few aircraft in the sectors.

Kolmogorov Entropy Computation

The kolmogorov entropy is computed with the
help of the eigen value decomposition of the matrix
A:

A=LDU*

where S is the diagonal matrix of the eigen
values. Based on the observations of aircraft
(positions and speed vectors) , the associated
dynamical system has to be adjusted with the
minimum error. This fitting has been done with a
Least Square Minimization method.

For each aircraft 7 considered, it is supposed
that position X, and the speed vector V, are given.

An error criterium between the dynamical
system model and the observation is computed:

E=§HVT-(A.Z+§H

In order to use matrix forms the following

matrices are introduced.
X X X .. Xy
Y= W Yo Vi . Yy
zll z! Z3 P zN
1 1 1 .. 1

VX, VX, WX, .. VX,
V=lw, w, W, .. wy
vz, vz, vz, .. vz,

a, a, a; b
C=|ay a, a; b,

a, a, a, b,

With such matrices the error criterium E can
be written:

E=f-cx|
To minimize E is the same as to minimize;

E* =y -cx|'.

The problem is to find the matrix C which
minimize such a criterium. By using the matrix

derivation properties, the gradient of £ is given
by:

VE =2 -CX)XT
The optimum is givenby V. E* =0.
SCXX =v.XT

The optimum matrix C,, is then given by:
-1
C.=VX (xx")

The expression X’ .(X b )-l is the pseudo
inverse of the matrix X and can be written as:
X" (xx" V' =’ S7R
where S is the diagonal matrix of the singular
values.

This singular value decomposition is very
helpful in order to avoid condition troubles. The
matrix C is finally given by

C=VI'S'R

The matrix A is then extracted from the
matrix C, and the associated eigen value
decomposition is given by:



A=LDU"

The eigen value of the matrix D are complex
number. In order to produce a scalar metric, the
larger absolute value of the real part of those
complex eigen values is computed. The sign of this
larger real part is related with the mode of the
system (contraction or expansion). If those eigen
values are drawn in the complex coordinates, it
gives information about the level of
contraction/expansion of the system and also it
rotation tendency.

Results

Different traffic samples have been generated in
order to compare the previous metrics. The first one
consist in a full symmetric convergence of eight
aircraft (see Figure 5). The full trajectories of
aircraft are shown on this figure with the initial
positions symbolized by the arrows.

Figure 5. Eight Aircraft Converging At The
Same Point

The second test is given by a random
convergence of 41 aircraft (see Figure 6).

Figure 6. Aicraft (41) Converging In The
Same Area

_The computation of the covariance metric on
the first sample is given in Figure 7.
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Figure 7. Covariance Metric For 8
Aircraft Converging At The Same Point

When aircraft are away from each other the
metric is very small and increase with the reduction
of the relative distance. The speed vectors being the
same during this simulation, the change of the
metric is-only due to the relative distance evolution.
When the convergence is more fuzzy like in the
situation of the Figure 6, the evolution of the
covariance metric is more soft but identifies clearly
the maximum of interaction between trajectories
(see Figure 8). When such a metric is applied on
full curl moving (see Figure 9), this metric identify
disorder but the Koenig metric stay at zero meaning
that the situation is full organized in a curl.
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Figure 8. Covariance Metric For A
Fuzzy Convergence With 41 Aircraft

The evolution of the larger eigen value of the
matrix A is given on the Figure 10. The metric
begin to be negative because aircraft are first
converging and is positive after the crossing
(divergence). The discontinuity identify clearly the
conflict. As it can be seen on the complex
coordinates system (see Figure 11) , no curl moving
is detected by the metric. This graph presents the



Figure 9. Eight Aircraft In Curl Moving
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Figure 10. Larger Real Part For 8
Aircraft Converging At The Same Point
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Figure 11. Loci Of Eigen Values For
Eight Aircraft Converging At The Same
Point

are conjugate. The loci start from left part (negative
real part) and finish on the right (positive real part);
between the metric identify some rotation
tendencies. The full curl moving can be very well
identifies by such as it can be seen on the Figure 14.
The graph represents the eigen values loci for eight
aircraft organized in a full curl moving. The loci
degenerate into two single point on the imaginary
axes which mean that the associated dynamical
system is organize in a full curl.
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Figure 12. Eigen Values Properties
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41 In A Fuzzy Convergence

loci of the complex eigen values. For this
experiment, the locus is located only on the real
axe. Each cross represents the position of an eigen
value.

In the case of the fuzzy convergence, the
metric first identifies a soft converging situation,
reaches a maximum when aircraft are in the central
area of crossing and begins to be positive when
divergences are more important than divergences
(see Figure 12). The associated loci of the eigen
values is given in Figure 13. The two eigen values
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Figure 14, Loci Of The Eigen Values For
8 Aircraft In A Full Curl Moving




Finally, the Kolmogorov entropy has been
computed in a unrealistic situation for which eight
aircraft are first converging in a spiral moving and
go on by a divergence on the same spiral. The
moving is the a mix of convergence/divergence and
curl (see Figure 15). The associated loci is given in
Figure 16 and shows two conjugate complex
number moving from the left part (convergence
(negative real part)) to the right part (divergence
(positive real part)).

Moving
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Figure 16. Loci Of The Eigen Value
For 8 Aircraft In A Spiral Moving
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Figure 17. Larger Real Part Of The
Eigen Values For 8 Aircraft In A
Spiral Moving

The associated real part of those complex
number, which is in this case the Kolmogorov
entropy is given in Figure 17.

Those initial results have shows that dynamical
system modeling is a very good candidate to
measure the complexity of a traffic situation on
control sector. This metric is now computed for En
route sectors in France and is compared with the
real controller workload.

Further Works

The previous dynamic system is controlled by
a linear equation and is then adapted for situations
where such a modeling is relevant. Many situations
belong to this class but some others are better
modeled by a non-linear dynamical system. The
extension of the Kolmogorov entropy is based on
the construction of a vector field.

The basic idea of a vector field is to define a
non-linear function f : R* — R? describing the
spatial evolution of speed in the considered sector :
f=(f..f,./.)" associates a 3-dimensional speed
vector to each point of the considered space.

The constraints on f are the following
f(x,)=v,, ie[l,N] )
where N is the number of aircraft in the sector,

{v,. },e o their observed speeds. These conditions

ensure that the resulting dynamical system will
give realistic speed values aircraft are located. But
these constraints alone cannot define a unique
dynamical system. In fact, there is an infinite
number of dynamical systems that satisfy the
conditions given in equation (1). Therefore, another
criterium must be added to obtain only one solution.
Following Chen and Suter (see [11]), we force the
dynamical system to minimize the following
integral~:

[efvaivs|’ + pVeurl]f @

The reason to choose this particular integral is
based on the shape of the observed trajectories.
Indeed, the integral curves of the vector field show



the trajectories that can be inferred from the values
of f, values which only take into account the current
positions and speeds of the planes. If the
information given by the field is to be valuable, the
resulting trajectories must be realistic (that is, close
to the observation), even though past and future
positions are not considered. As the planes we deal
with are airliners, their observed trajectories are
regular~: the direction and module of the speed
vector of a given plane vary slowly. Therefore, to
be realistic, the vector field must have limited local
variation, hence the choice of criterium [13], which
minimizes the divergence and rotational of the field.

« and [ are parameters used to tune the

criterium~: their values determine which of the
divergence and rotational is the more constrained.
For instance, setting @ at a much higher value than
B will lead to a fully rotational field, the

divergence being constant.

The solution to the minimization problem,
respecting the interpolation conditions, is known~:
Amodei and Benbourhim have proved in [14] that
it is the sum of a vector kemel and a linear system~:

N — —_— -
%)= arofx - x,.’|)+ AX+B
i=]
@ is a known spline function which describes
the finer variations of the vector field.

The resulting f is a 3-dimensional vector field,
able to give a value of speed in any point of the
sector.

_ An example of global field construction is

given in Figure 18, for which eight aircraft are
organized into two curl moving. The aircraft on the
left are moving counter clockwise and the ones on
the right circle are moving clockwise. The global
field is the summation of the linear part and the
spline part.

The evolution of the field is analyzed by
calculating the eigen values of the gradient matrix
in every grid point. Indeed, the real part of the eigen
values with the greatest module is representative of
the local variation of the field~: if it is negative, the
vector field is locally contracting; if it is positive,
the vector field is locally diverging. Because of the
minimization of criterium (2) , such local variations
are due to an interaction between aircraft. It is thus

possible to obtain a complexity map of the sector.
As the positions and speed vectors that determine
the vector field are radar observations made at one
given instant, the complexity map is time-
dependent and thus gives instantaneous
information. This work is still in progress and is
completed by the time extension in order to address
trajectories set complexity.
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Figure 18. Global Field

Conclusion

This paper has presented new concepts to
address the air traffic complexity modeling
problem. Two new geometrical metrics have been
introduced and have been found very useful to
capture typical features of traffic complexity. The
covariance metric is very adapted to identify
disorder in a set of speed vectors and can be applied
for En route airspace ( En route airspace is the
airspace between airports). Similarly, the Koenig
metric identifies easily the curl movement
organizations and can be applied to areas around
airports where Air Traffic Control procedures
impose turns on aircraft trajectories.

In order to have a more aggregated metric,
gathering many features of the geometrical metrics,
dynamical system modeling of the air traffic system
has been proposed. Based on a linear modeling, the
Kolmogorov entropy associated to air traffic
distributions, has been shown to be relevant to
measure the intrinsic complexity of the speed
vectors. This metric is able to capture any speed
vector organization of the air traffic.



Afterwards, a non-linear dynamical system has
been proposed and will be used to develop
complexity maps for any airspace. The next step,
which is in progress, will extend this last non-linear
model into the time dimension in order to compute
the complexity of a set of trajectories in a 4D space.
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