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Abstract

This paper present a new air traffic complexity metric based on non-linear dynamical systems. The

goal of this metric is to identify any trajectory organisation in the traffic pattern in order to quantify

the associated control difficulty. Many others works have proposed metrics in the past, but they usually

identify one feature of the complexity and were not able to address any pattern organization. A full

vector field can be summarized by the equation of a dynamical system which describe and control the

evolution of a given state vector ( ~X = [x, y, z]T ). The key idea of our work is to find a dynamical system
which modelizes a vector field as close as posible to the observations given by the aircraft positions (and

speeds). Two approaches are then presented. The first one is based on a linear dynamical system and

produce an aggregate complexity metric. The second one, which is the main part of this paper, uses a

non-linear dynamical system modeling which fits the observations without error. Such a modeling enable

to identify high (low) complexity areas on a map and addresses trajectory segments instead of vector field

which is more relevant for the air traffic management application (the air controller sees speed vectors

on his screen but works on trajectory segments in his mind in order to produce resulution scenario (past

and future)). A collocation techniques has been used to speed up the computation of the associated

complexity metric in order to address large areas with many aircraft. Such a metric is very adapted to

compare different traffic situations for any scale (sector or country).

Keywords : Complexity, Dynamic Systems, Topological Entropy, Control Workload.
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1 Introduction

Air traffic control organizes air flows in order to

ensure flight safety and to increase the capacity of

the route network. Currently, about 7500 are regis-

tered everyday over France, which is a crossroad for

the whole European airpsace. This traffic generates

a huge amount of control workload and the airspace

is then divided into elementary sectors which are

managed by air navigation controllers. For several

years, a constant increase of air traffic has induced

more and more congestion in the control sectors.

Two strategies can then be applied to reduce such

a congestion. The first one consist in adapting the

demand to the existing capacity (slot-route alloca-

tion, collabarative decision making etc...). The sec-

ond one adapts the capacity to the demand (modifi-

cation of the air network, of the sectorization, new

airportsetc ...). For the two preceding approaches,

the capacity of a sector is measured by the number of

aircraft flying across the sector during a given period

of time. The observation of controlled sectors shows

that sometimes, controllers accept planes beyond the

capacity threshold, while in other situations, they

refuse traffic before the capacity is reached. This

phenomenon clearly shows that the operational met-

ric alone cannot account for controller’s workload.

The goal of this study is to synthesize a traffic com-

plexity indicator in order to better quantify the con-

gestion in air sector, which will be more relevant

than a simple number of aircraft which is indepen-

dent of the traffic configuration. More precisely, our

objective is to build some metrics of the intrinsic

complexity of the traffic distribution in the airspace.

Those metrics must capture the level of disorder (or

organization) of any traffic distribution. Usuallly,

metrics are focused on the speed vector distribution

and the associated disordermetric captures only some

features of the traffic complexity. The real objective

of our work is to build a metric which measures the

disorder or the organization of a set of trajectories in

a 4D space (3D for the space and 1D for the time).

Those metric are relevant for many applications

in the air traffic management area. For instance,

when a sectoring is designed [3], the sectors have

to be balanced from the congestion point of view

and for the time being, only the number of aircraft is

used to reach this objective. Another example where

a congestion metric is needed is the traffic assign-

ment [2, 4] for which an optimal time of departure

and a route are searched for each aircraft in order

to reduce the congestion in the airspace. Complex-

ity metric may also be used to design new air net-

works, for dynamic sectoring concept, to define fu-

ture ATM concepts (Free Flight) etc....Complexity

metrics would enable to qualify and quantify the

performance of the Air Traffic service providers and

enable a more objective consultation between air-

lines and providers.

The work presented in this paper is based on the

dynamical systems modeling of the air traffic. A dy-

namical system describes and controls the evolution

of a given state vector. If such a vector is given by

the position of aircraft ~X = [x, y, z]T , a dynamical

system associates a speed vector ~̇X = [vx, vy, vy]T

to each point in the airspace. So, a full vector field

can be summarized by the equation of the dynamical

system. The key idea is to find a dynamical system

which modelize a vector field as close as possible to

the observations given by the aircraft positions (and

speeds). Based on this dynamical system modeling,

a trajectory disorder metric can be easily computed.

In a first part, this paper will summarize the pre-

vious related works. The second part will present

a linear dynamical system modeling for which the

complexity metric can be represented into a com-

plex coordinate system. In this system, it is very

easy to identify any speed vector organization pat-

tern. The third part introduces a non linear extension

of the previous dynamical system modeling. Such a

modeling is exact and can fit the observations with-

out error. Such a non linear modeling can be used

to produce maps of complexity by identifying ar-

eas with high(low) complexity. This extension can

also address time extension of the model and can

then work straightly on the trajectory segments in-

stead of speed vectors. A collocation techiques has

been used to speed up the computation of the asso-

ciated complexity; mainly when such a computation

is done on large areas like countries.

2 Previous related works

The airspace complexity is related with both the

structure of the traffic and the geometry of the airspace.

Different efforts are underway to measure the whole

complexity of the airspace.

Significant research interest in the concept ot ATC

complexity was generated by the “Free Flight” op-

erational concept. Integral to Free Flight was the

notion of dynamic density. Conceptually, dynamic

density is a measure of ATC complexity that would

be used to define situations that were so complex

that centralized control was required [15].

Windemere inc [11] proposed a measure of the

perceived complexity of an air traffic situation.This

measure is related with the cognitive workload of
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the controller with or without knowledge of the in-

tents of the aircraft. The metric is human oriented

and is then very subjective.

Laudeman et al fromNASA [13] have developed

a metric called “Dynamic Density” which is more

quantitative than the previous one and is based on

the flow characteristics of the airspace. The “Dy-

namic Density” is a weighted sum of the traffic den-

sity (number of aircraft), the number of heading changes

(¿15), the number of speed changes (¿0.02 Mach),

the number of altitude changes (¿750 ft), the number

of aircraft with 3-D Euclidian distance between 0-25

nautical miles, the number of conflicts predicted in

25-40 nautical miles. The parameters of the sums

have been adjusted by showing different situations

of traffic to several controllers. Finally, B.Sridhar

from NASA [16], has developed a model to prodict

the evolution of the metric in the near future. Ef-

forts to define “Dynamic Density” have identified

the importance of a wide range of potential com-

plexity factors, including structural considerations.

The traffic itself is not enough to describe the

complexity associated with an airspace. A few pre-

vious studies have attempted include structural con-

sideration in complexity metrics, but have done so

only to a restricted degree. For example, the Wyn-

demere Corporation proposed a metric that included

a term based on the relationship between aircraft

headings and dominant geometric axis in a sector [11].

The importance of including structural considera-

tion has been explicitly identified in recent work at

Eurocontrol. In a study to identify complexity fac-

tors using judgment analysis, “Airspace Design” was

identified as the second most important factor be-

hind traffic volume [12].The impact of the structure

on the controller workload can be found on the pa-

per [9, 10]. Those papers show how strong the struc-

ture of the traffic (airways, sectors, etc...) is related

with the control workload.

The previous models do not take into account the

intrinsic traffic disorder which is related to the com-

plexity. The first efforts related with disorder can be

found in [6]. This paper introduces two classes of

metrics which measure the disorder of a traffic pat-

tern. The first class is based on geometrical proper-

ties and proposed new metrics which are able to ex-

tract features on the traffic complexity such as prox-

imity (measures the level of aggregation of aircraft

in the airspace), convergence (for close aircraft, this

metric measures how strongly aircraft are closer to

each other) and sensitivity (this metric measure how

the relative distance between aircraft is sensible to

the control manouver). The second class is based on

a dynamic system modeling of the air traffic and use

the topological entropy as a measure of disorder of

the traffic pattern.

G.Aigoin has extended and refined the geomet-

rical class by using a cluster based analysis [1]. Two

aircraft are said to be in the same cluster if the prod-

uct of their relative speed and their proximity (a func-

tion of the inverse of the relative distance) is above

a threshold. For each cluster, a metric of relative

dependence between aircraft is computed and the

whole complexity of the cluster is then given by a

weighted sum of the matrix norm. Those norms

give an aggregated measure of the level of proxim-

ity of aircraft in clusters and the associated conver-

gence. From the cluster matrix, it is also possible

to compute the difficulty of a cluster (it measures

how hard it is to solve a cluster). Multiple clusters

can exist within a sector, and their interactions must

also be taken into account. A measure of this in-

teraction has been proposed by G.Aigoin [1]. This

technique allows multiple metrics of complexity to

be developed such as average complexity, maximum

and minimum cluster complexities, and complexity

speeds.

Another approach based on fractal dimension has

been proposed by S.Mondoloni and D, Liang in [14].

Fractal dimension is a metric comparing traffic con-

figurations resulting from various operational con-

cepts. It allows in particular to separate the com-

plexity due to sectorization from the complexity due

to traffic flow features. The dimension of geomet-

rical figures is well-known: a line is of dimension

1, a rectangle of dimension 2,etc.... Fractal dimen-

sion is simply the extension of this concept to more

complecated figures, whose dimension may not be

an integer. The block count approach is a practical

way of computing fractal dimensions: it consists in

describing a given geometrical entity in a volume di-

vided into blocks of linear dimension d and counting

the number of blocks contained in the entity N .The

fractal dimensionD0 of the entity is thus :

D0 = lim
d→0

log N

log d

The applicatin of this concept to air route analysis

consists in computing the fractal dimension of the

geometrical figure composed of existing air routes.

An analogy of air traffic with gas dynamics then

shows a relation between fractal dimension and con-

flict rate (number of conflicts per hour for a given

aircraft). Fractal dimension also provides informa-

tion on the number of degrees of freedom used in the

aispace: a higher fractal dimension indicates more

degrees of freedom. This information is indepen-

dent of sectorization and does not scale with traffic
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volume. Therefore, fractal dimension is a measure

of the geometrical complexity of a traffic pattern.

Some new geometrical metrics have been devel-

oped in [5]which are able to capture the level of dis-

order or the level of aorgainization for some traffic

patterns. For instance, in a curl moving, the speed

vector are very different even if the global moving is

full organized without any changes in the relatives

distance between aircraft. To capture those features,

the covariance and the Koenig metrics have been de-

veloped. The first one is able to identify disorder or

organization of translation movings. The second one

identify organized curl moving.

All the previous metrics capture only one fea-

ture of the complexity and are not able to produce

an aggregate metric which can capture all the pos-

sible situations (high-low density, how-low conver-

gence, translation organization, curl organization etc

...). The topological entropy (kolmogorov entropy)

is the only metric which is able to capture most fea-

tures of the complexity. The non-linear form is even

able to identify any trajectories organizations (air-

craft following the same path at the same speed).

The next section will describe this metric in detail

for the linear and the non-linear forms.

3 Linear Dynamical SystemMod-

eling

3.1 Principle

This metric is based on the modeling of the set

of trajectories by a linear dynamic system. This en-

able to identify different structure of organization of

the aircraft speed vectors such as translation, curl

organizations or a mix of them.

The key idea of this metric is to model the set

of aircraft trajectories by a linear dynamical system

which is controlled by the following equation :

~̇X = A. ~X + ~B

where ~X is the state vector of the system :

~X =





x

y

z





The eigen values of the matrixA control the evo-

lution of the system. The real part of those eigen

values is related with the convergence or the diver-

gence property of the system in the direction of the

eigen vector. When such a eigen value has positive

real part, the system is in expansion mode and when

Situation à t
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Figure 1: Impact of the eigen values on the dynamic

of a system
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Figure 2: Impact of the eigen values on the dynamic

of a system

it is negative the system is in contraction mode. On

the other end, the imaginary part of the eigen val-

ues are related with the level of curl organization

of the system. Depending of those eigen values, a

dynamical system can evolve in contraction, expen-

sion, rotation or a combination of those three modes.

The figure 1 shows examples of evolutions with dif-

ferent eigen values. The initial situation consist in

two aircraft moving in parallel at the same speed

and three possible evolutions are then drawn after

a time period d. In the first case, the eigen value is

real and negative; the system evolves in a contrac-

tion mode and the two aircraft are converging. The

second situation represent a diverging evolution for

which the eigen value is real and positive. It must be

noticed that in the two previous situations, the dis-

tance between aircraft changes with time. The last

evolution is associated with a full imaginary eigen

value for which the aircraft stay a the same distance

from each other in a curl moving.

The evolution properties of the system related

with the position of the eigen values can be summer-

ized in the complex coordinate system (see figure 2).

In this coordinate system, the vertical ellipse iden-

tifies the organized situations (in translation, curl or

both).
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A dynamical system can then be considered as

a map T from the state space X to itself. Based
on this mapping T , one can define the topological

entropy (or Kolmogorov entropy) of the dynamical

system which measure the level of mixing of X by
T . This entropy is associated with the changes of

the relative distances between points from X by T .

The topological entropy of a dynamical system is

then a disorder indicator of the distribution of the

aircraft in the considered airspace. This entropy is

not a statistical metric and is very adapted to the air

traffic control system for which there are few aircraft

in the sectors.

3.2 Kolmogorov Entropy Computation

The kolmogorov entropy is computed with the

help of the eigen value decomposition of the matrix

A :

A = L.S.UT

where S is the diagonal matrix of the eigen val-

ues. Based on the observations of the aircraft (posi-

tions and speed vectors), the dynamical system has

to be adjusted with the minimum error. This fit-

ting has been done with a Least Square Minimiza-

tion method. For each considered aircraft i, it is

supposed that position ~Xi = [xi, yi, zi]
T and speed

vector ~Vi = [vxi, vyi, vzi]
T are given. An error cri-

terium between the dynamical system model and the

observation is computed :

E =

i=N
∑

i=1

∥

∥

∥

~Vi −
(

A. ~Xi + ~B
)∥

∥

∥

In order to use matrix forms the following ma-

trices are introduced.

X =









x1 x2 x3 ... xN

y1 y2 y3 ... yN

z1 z2 z3 ... zN

1 1 1 ... 1









V =





vx1 vx2 vx3 ... vxN

vy1 vy2 vy3 ... vyN

vz1 vz2 vz3 ... vzN





C =





a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3





With such matrices, the error criterium E can be

written :

E = ‖V − C.X‖

To minimize E is the same as to minimize :

E2 = ‖V − C.X‖
2

The problem is to find the matrix C which minimize

such a criterium. By using the matrix derivation

properties, the gradient of E2 is given by :

∇CE2 = −2.(V − C.X).XT

The optimum is given by∇CE2 = 0

⇔ C.X.XT = V XT

The optimum matrix Copt is then given by :

Copt = V.XT .(X.XT )−1

The expressionXT .(X.XT )−1 is the pseudo inverse

of the matrixXT and can be writen as :

XT .(X.XT )−1 = LT .S−1.R

where S is the diagonal matrix of the singular val-

ues of the matrix XT . This singular value decom-

position is very helpful in order to avoid condition

troubles. The matrix C is finally given by :

C = V.LT .S−1.R

The matrix A is then extracted from the matrix C,

and the associated eigen value decomposition is given

by :

A = L.D.UT

The eigen values of the matrixD are complex num-

bers. In order to produce a scalar metric, the larger

obsolute value of the real part of those complex eigen

values is computed. The sign of this larger real part

is related with the mode of the system (contraction

or expansion). If those eigen values are drawn in

the complex coordinates, it gives information about

the level of contraction/expansion of the system and

also its curl tendency. Such a metric can identify

any speed vector organization (translation, curl or

both) because it is sensitive to relative distances be-

tween aircraft. An example of computation of such

a metric is given on figures 3,4,5. The traffic simu-

lation consists in 41 aircraft involved in a fuzzy con-

vergence 3. The evolution of real part of the larger

eigen value is given on figure 4. As it can be noticed,

the metric begins to be negative showing the situ-

ation is globally converging and after the crossing

the metric becomes positive indicated the situation

is now globally diverging. If such eigen value is rep-

resented in the complex coordinate system (see fig-

ure 5), the locus of the conjugate eigen value begins

from the right side and move to the left side. The

eigen value having an imaginary part means the sys-

tem have a global curl moving during the crossing.

5



Figure 3: Fuzzy convergence of 41 aircraft

Figure 4: Evolution of the larger real part

Figure 5: Evolution of the larger eigen value in the

complex coordinate system

Linear system dynamical systemmodeling enable to

produce an aggregate metric associated to any traf-

fic situation and can recognize any global organiza-

tion pattern. If detail metric is needed in order to

indentify high (low) complexity areas, a non-linear

dynamical system has to be used.

4 Non Linear extension

Interpolating splines are common tools in the

field of numerical analysis. Those applications are

optimal with respect to a cost functional that con-

trols the smoothness of the solution and allows ex-

act interpolation at given points [18]. One of the

most elementary example of such family of appli-

cations is given by piecewise third order polynomi-

als, named cubic splines, which give the smoothest

interpolation with respect to the second derivative.

Many generalizations of splines have been introduced,

like vector splines [17] and splines on manifolds [8].

All those spline models may be used for static data,

but dynamical system modelling requires time to be

taken into account. Dynamical splines may be con-

structed as solutions to a optimal linear control prob-

lem. More specifically, let a controlled system :

dx

dt
= Ax + bu (1)

y = Ctx (2)

with A, b, C matrices, x the state vector and u the

command. The dynamic interpolation problem is to

find the command u0 that realizes the minimum of

the functional :

λ

2

∫ T

0

u2(t)dt +
1

2

m
∑

i=1

(y(ti) − yi)
t
(y(ti) − yi)

where the yi, i = 1 . . .m are the values to be taken

by the system at times ti, i = 1 . . .m. The solution

of this problem is known as smoothing spline and

is computed as a linear combination of elementary

kernel functions :

kti
(t) =

{

Ct exp(A(ti − t)) t ≤ ti
0 t > ti

This approach can be used to obtain smooth trajec-

tories from samples.

4.1 Div-Curl Splines

Computing topological entropy for a given trafic

situation requires interpolating a vector field given

only samples (positions and speeds of aircraft at a
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given time). Vector spline interpolation seeks for

the minimum of a functional of the form :

1

2

∫

D

‖LX(x)‖2dx +
1

2

m
∑

i=1

‖X(xi) − Vi‖
2

where X is a vector field defined on a domain D ⊂
R

n,L is an elliptic differential operator and (xi, Vi)i=1...m

are the interpolation data [7]. By introducing the ad-

joint operator Lt, optimal vector field can be shown

to be a linear combination of shifted version of the

elementary solution kernel of the PDE LtL. A spe-

cial case is the so-called “div-curl” splines with the

criterion :
∫

R2

α‖∇divX‖2 + β‖∇curlX‖

with α, β positive reals. Relative values of these re-

als controls the smoothness of the approximation by

focusing on constant divergence or constant curl.

4.2 Topological entropy computation

Combining trajectory extrapolation based on dy-

namic splines with vector spline interpolation yields

a dynamic vector field model of the trafic suitable

for evaluating topological entropy.

4.3 Vector dynamic splines

Mixing the previous approach, we will seek for

an optimal solution of a dynamic interpolation prob-

lem, namely find a time-dependent vector fieldX(t, x)
defined on [0, T ]×D and continuously differentiable

up to order 2 in time coordinate that minimize :

∫ T

0

∫

D

‖
∂X(t, x)

∂t
‖2 + α‖LX(t, x)‖2dxdt

under the constraints :

X(ti, xi) = Vi, i = 1 . . .m

where α is a positive real. This value controls the

relative importance of the vector field variation thru

time over the discrepancy of X as measured by the

differential operator L. Taking α = 0 will yield to a
constant vector field over time, while α → +∞ will
focus on the differential part.

4.4 Variational problem

Let L be an elliptic differential operator of or-

der p with constant coefficients. Lt will denote the

adjoint operator of L. We will assume in the fol-

lowing that the vector field X has fixed value at 0
and T and that for all t ∈ [0, T ], X(t, .) belongs
to the sobolev space Hp. Furthermore, the mapping

ttoX(t, .)must be a least two time continuously dif-
ferentiable.

Let γ : [0, T ] → Cp(Rn, Rn) a variation of
X (that is time-dependent Hp vector field γ(0, .) =
γ(T, .) = 0). Simple calculus of shows that the gra-
dient of :

∫ T

0

∫

D

‖
∂X(t, x)

∂t
‖2 + α‖LX(t, x)‖2dxdt

with respect to γ is the linear mapping :

γ →

∫ T

0

∫

D

〈γ,
∂2X

∂t2
− αLtLX〉dxdt

The constraints onX impose that :

γ(ti, .) = 0, i = 1 . . .m

One can find an elementary solution e of the PDE

∂2X

∂t2
− αLtLX

and use its translates eti,xi
to represent the evalu-

ation operator at (ti, xi). Combining this with the
gradient previously obtained shows that the optimal

solution is of the form :

X =
m

∑

i=1

eti,xi
+ X0

withX0 an element of the kernel of the operator :

∂2X

∂t2
− αLtLX

5 Results

The topological entropy computation based on

thin plate splines (equal importance of constant div

and curl) and dynamic interpolation has been ap-

plied to the french trafic of the 11 August 2001 on

some sectors. To speed up computations, an approx-

imation of the true solution has been made with the

help of a quasi-interpolation approach. The method

can be sketched as follows. Since spline kernel is an

elementary solution, applying the operator LtL on

it will yield to a delta distribution. By replacing in

7



the differential operator all derivatives by finite dif-

ferences approximations, the resulting operator ap-

plied on the kernel will yield a bell-shaped func-

tion that approximate the delta distribution. Those

functions are used to produce an interpolating vec-

tor field without having to solve a linear system for

coefficients. The following figures show examples

of computation of such a metric for two sectors (Z1,

JS). Two kind of simulation are presented : the first

one with standard routes and the second one with

direct routes. The absciss represents times samples

(each ten second for a full day). Sector JS is more

complicated than Z1. Based on those results it can

be concluded that direct route assignment will de-

crease the complexity of JS, but will increase for

Z1 (note however that complexity peaks are more

concentrated in time for direct routes). The map of

french sector is given at the end of the article.
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Figure 6: Z1 sector
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Figure 7: Z1 sector direct routes
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Figure 8: JS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1000  2000  3000  4000  5000  6000

"JS_D.dat" thru sqrt(sqrt(x))

Figure 9: JS sector direct routes

6 Conclusion

We have presented in this paper a new air traffic

complexity metric based on non-linear vector field

model of air traffic. Extending previous results on

topological entropy, this method allows identifica-

tion of traffic pattern organization in its full gener-

ality while previous works were limited to specific

aspects of the complexity. Furthermore, since we

are processing trajectory segments instead of sam-

ples at a given time, the induce metric is more real-

istic from an operational point of view. The quasi-

interpolation algorithm allows real-time processing

on operational traffic even for large areas (Europe

or US). Unlike linear models which produce mean

complexity indicators, the non-linear one may give

local information, thus providing a way of display-

ing maps of complexity. In a future work, such a

tool will be applied to comparison of US and Eu-

rope airspace.
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Figure 10: French airspace
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