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Abstract  

In this communication is considered the problem of long term forecasting of the freight traffic growth in a large transportation 

network. This problem is crucial when planning the necessary investments in terminals, transportation links and fleets. One of the 

main difficulty of this task is related with the estimation of future demand over the network which has direct influence on the 

operational conditions  and costs. The proposed approach makes use of two different optimization models:  One model is devoted to 

freight demand forecasting, the other one defines the global transport supply according with a profit maximization behavior for the 

whole freight transport sector . The freight demand forecasting process is based a new entropy maximization approach to determine 

the distribution of origin-destination matrices. A two level solution technique considering vehicle flows at the first level and the 

freight flows at the second level is introduced.  The proposed solution scheme is composed of an iterative process between the 

current solution for freight demand forecasting and the supply optimization problem: the entropy maximizing freight distribution 

problem provides the freight origin-destination matrix given a fare structure, while the supply optimization problem provides the fare 

structure given a freight origin-destination matrix. 
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1. Introduction 

       In this communication is considered the problem of long term forecasting of the freight traffic growth in a large multimodal 

transportation system. This problem is crucial when planning the necessary investments in terminals, networks and  fleet resources. 

One of the main difficulty of this task is related with the estimation of future demand over the network which has direct influence on 

the operational conditions  and costs.  

The proposed approach makes use of two different optimization models:  One model is devoted to freight demand forecasting, the 

other one defines the transport supply according with a profit maximization behavior for the whole sector operating in this area. 

The supply optimization model considers simultaneously two classes of flows: vhicle flows providing transportation capacity and 

passengers flows generating revenues to the operators. Hence, no classical flows in networks optimization technique is available to 

solve this problem while two level solution techniques considering vehicle flows at the first level and freight flows at the other can be 

considered. Then a global optimization problem is associated to demand and operations costs.  

Each of the two optimization problems, taken separately is convex, however, the whole problem, through the definition of revenue 

and of global cost constraints is non convex. 



 

 

 A proposed solution schemes is composed of an iterative process between the current solutions of the demand and the supply 

optimization problems: the entropy maximizing problem provides the freight origin-destination matrix given a fare structure, while 

the supply optimization problem provides the fare structure given a freight origin-destination matrix. To enforce convergence while 

maintaining convexity of the two problems, the effective-potential demand level constraints of the supply optimization problem are 

modified.  

       

2. Distribution of Demand  

To perform the prevision of demand, it is supposed that an a priori trip distribution is available. This information may be the result of 

a prediction of trip distribution for a previous time period or the result of local forecasting studies. It is also supposed [1] that 

predictions of generation and attraction potential levels  { }NiOi ...,,1, ∈  and { }NjD j ...,,1, ∈ , are available.  

 

2.1 Local cost elasticities 

We consider that the demand for a given origin destination i-j is such that there exists a positive constant 
ijλ  with : 
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where 
ijπ is a mean cost between i and j. Considering that the potential origin and destination levels { }NiOi ...,,1, ∈  and { }NjD j ...,,1, ∈  are such as : 
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we have the following constraints: 
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Observe that a more general relation for (1) could be: 
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where ijf  is a continuous positive monotonous decreasing function such as: 
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2.2 Estimation of demand distribution 
 

The demand distribution estimation problem is taken here as a constrained entropy maximization problem. Then to a choice of an 

instance I={[ ijT̂ ], { }NiOi ...,,1, ∈ , { }NjD j ...,,1, ∈ , ][ ijλ } is associated the following maximization problem, Problem I: 
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under  constraints  (4), (5) and  

 

jiNàjNàiTij ≠==≥ ,1,1,0                                 (9) 

 

The adopted optimization criteria,  a conditional entropy function, is representative of the global distortion between the a priori and 

the predicted demand distributions.  

The instance is said to be consistent if the following condition is fulfilled : 
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2.3 Analysis of the solution  
The above optimization problem being convex  it is useful to introduce the Lagrangian associated to this problem : 
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The first order optimality conditions are such as :  
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Then the solution is such as : 
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In the case that 
ijij πλ  is very small, this expression can be approximated by: 
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The dual variables are such as: 
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however, the numerical solution of an instance of Problem I will be obtained using linear –convex algorithm such as the Simplex-

Convex  or Frank-Wolfe algorithm [1]. Another interesting direction for numerical resolution is through the solution of the geometric 

primal associated to this problem [2]. 

3. Freight Supply Model 

The proposed model takes into account two types of flows and their corresponding constraints [3], [4]: vehicle flows along the 

network according to the available fleets and freight flows using the resulting transport capacity [6]. The fleet of vehicle and its 

operation generate fixed and variable costs, while freight flows are the main source of revenue for the freight transportation sector.  

3.1 Vehicle Flow Network Model 

Considering that freight fleet is composed of M different vehicles classes. To each freight terminal i, i∈A, and to each freight 

modality is associated the set of freight terminals directly reachable with this modality :  AC(i).  Then  M freight transportation 

networks can be introduced: 

Rm= [Gm,[
m

ijf ]]           { }Mm ,,1L∈                                                                   (19) 

where Gm is the graph [A, Γm] where the successor function Γm is such as : Γm(i) =Am(i)     i∈ A                                                                                        (20) 

[
m

ijf ] is the flow of freight vehicles over Gm. It satisfies to conservation and positive ness constraints:                                                                            
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Here flows integrity constraints are not taken into account since no scheduling or routing problem will be formulated according to 

these flows which should only provide a global view of the future development of the air transportation network. However for sake 

of realism, fleet capacity constraints are introduced: 

mm
m
ij

N

i iAj

m
ij FDdf

m

≤∑ ∑= ∈1 )(

                                                                                (23) 

where 
m
ijd  is the block time for a freight vehicle of class m to go from terminals i and j , Dm is the medium time availability of a 

vehicles of class m.  

It can be also of interest to introduce terminal capacities such as:  
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where 
iK  is the capacity at terminal i j. Here 

amω  and 
dmω are capacity parameters attached to the different types of operations 

(arrival or departure) and fleets.  

 

3.2 Freight Flows Modeling 

The M freight networks provide the physical support for the freight flows network defined as : 

Rf = [Gf,[ ijφ ]]                                                                                       (25) 

 

where   Gf = [A, Γf]  and Γf   is such as: 
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[
ijφ ]is the freight flows over this network. It obeys to the following capacity constraints :  
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Within graph Gf  , for each origin-destination pair, a set of concurrent paths composed of a succession of trips is retained according to 

directness criteria:  

Chij ={ Chn
ij  , n =1 to nmax}    i, j ∈ A                                                                      (28) 

Here it is considered that freight firms assign demand for a given O-D pair between these different possible paths according with 

their available capacity. This approach is acceptable when available capacity is close to demand levels.  

Let [α(i,j,n,k,l) ] be the incidence matrix between path Chn
ij    and arc (k,l) of Gpax :  α(i,j,n,k,l) = 1 if  (k,l)∈ Chn

ij α(i,j,n,k,l) = 0 else. 

Then the freight flow between terminals i and j is given by :  
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where 
ijnθ is the flow of freight between terminals i and j using the nth path between them. 

The mean fare for the  i-j origin-destination pair is then given by : 
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4. Supply Optimization Model 

Given a distribution of potential demand ][ *

ijT , associated to [
ijT ]  { }NiOi ...,,1, ∈ , { }NjD j ...,,1, ∈ , and ][ ijλ  , as well as to 

mean air transportation fares ][ ijπ , the optimization of the supply (capacities and fares) by the freight firms can be considered: 

Problem II is concerned with the optimization of the global economic performance over a future period of time of the firms operating 

the freight transportation network.  

Here the decision variables are the  vehicle flows ( { }Mmf m
ij ,,1, L∈ ) between the different terminals and the fares (

n

ijπ ) applied 

to each selected path between the terminals. To solve this problem it is also necessary to introduce the effective flows of freight (
ijnθ ) 

associated to each selected path between the terminals. 

The optimization criterion of Problem II is given by:       
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where τ is a return rate and the mvc are coefficients related with fixed and variable fleet and vehicle flows costs.  

Problem II must satisfy the following constraints: 
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     with the positiveness conditions: 
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5. Global Solution Scheme 

It appears that Problem I and Problem II are strongly interdependent: while Problem I provides to Problem II potential levels of 

demand ][ *

ijT  (constraint (35)), Problem II provides mean  fare values ][ ijπ  (relation (30)) to Problem I.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Interaction between problems 

 

Each of the two optimization problems, taken separately is a convex programming problem, however, the whole problem when 

integrating Problem I into Problem II through constraint (35) is non convex. Then it seems interesting to solve numerically these 

problems separately and design an interactive process towards equilibrium. In this case, some questions are of interest: 

- the easiness to solve numerically each of the optimization problems, 

- the guarantee of convergence of the iterative process, 

- the speed of convergence, 

- the quality of the limit solution.  

These two linked problems constitute a non standard bilevel programming problem [7] where Problem II is the leader’s problem  

while Problem I is the follower’s problem. This results from the adoption of a deregulated point of view in which firms operate the 

freight transport network according to their direct economic interest without considering any social surplus. 

Constraint (35) plays a central role in the articulation of the two problems and the convergence of their solutions towards a common 

global solution. Since this constraint transmits to the revenue optimization problem the reaction of demand with respect to changes in 

mean fares between the different origins and destinations, it is useful to make apparent this effect so that limited fare values will be 

provided by the solutions of Problem II. However, the relation between origin-destinations flows ][ *

ijT  and fare levels ][ ijπ  is quite 

complex and at least non linear. So, to maintain the convexity of Problem II, this constraint is replaced by its first order 

approximation where the reference values are the solutions of the two problems at the previous iteration:    
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The partial derivatives present in relation (39) can be computed by differentiating relations (15), (16),(17) and (18) at the solutions of 

Problem I and II at iteration k-1 and solving linear systems of equations. 

The following inequalities are guaranteed: 
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So it appears that starting from low fares, an increase of  fares on trips linking origin i and destination j at solution of Problem II at 

iteration k-1 will imply a decrease of potential demand on the same origin-destination pair at the same iteration of Problem I and then 
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a negative effect on the increase of airlines revenue. Fares will then be increased by this process until no more improvement of 

revenue is obtained. Starting from high level fares, the inverse process will be obtained. 

This iterative process can be displayed in a very simple example of optimization problem: 
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where θ0 and λ are positive constants. Its exact solution is given by: π* =(1+c λ)/λ  and )1(
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feasible set can be approximated around (πk-1 , θk-1) by: 
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It is clear that the limit when k →+ ∞  of (πk, θk) is ((1+c λ)/λ, θ0 e
-(1+c λ). Here, the convergence rate is such as: 
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Other bilevel schemes have been considered in [7] and [8] for different transportation problems while numerical convergence 

conditions have been discussed in [9]. 

 

 

6. Conclusion 

This communication has considered the problem of long term forecasting of the flows and traffic growth in a freight transportation 

network.  

The proposed approach has introduced two different optimization models:  One model devoted to demand forecasting and the other 

describing a profit maximization supply behavior by freight firms.  An entropy maximization approach is used to determine origin-

destination matrices. The formulation of this problem introduces in a new way elasticity of demand with respect to fares. The supply 

optimization model considers simultaneously two classes of flows: vehicle flows providing freight transportation capacity and goods 

flows generating revenues to the freight operators. Then a global optimization problem is associated to each scenario with respect to 

demand and operations costs.  

The proposed solution scheme is composed of an iterative process between the current solutions of the demand and the supply 

optimization problems: the entropy maximizing problem provides the passengers origin-destination matrix given a fare structure, 

while the supply optimization problem provides the fare structure given a passengers origin-destination matrix. Convergence 

conditions are discussed for this iterative process between two problems which can be seen as inverse of each other. 

 

7. References 

1. Assad, A.A.,” Multicommodity network flows-a survey”,  Networks, 8, pp. 37-91, 1978. 

2. Mora-Camino F., « Introduction à la Programmation Géométrique » , Editora COPPE, Rio de Janeiro, 1978. 

3. Berge C., “ The theory of graphs”, London, Dover, 2001. 

4. Ford L.R. and D.R. Fulkerson, “Flows in networks”, Princeton, Princeton University Press, 1962. 

5. Alou A. R. Kaffa and F. Mora-Camino, « A multilevel modelling approach for air transportation system »,Laboratoire  

d’Automatique et de Recherche Opérationnelle-LARA,ENAC ,July 2006. 

6. Dempe S., “Foundations of bilevel programming”. Kluwer Academic Publishers, Dordrecht, 2000. 

7. Alou A. , R. Kaffa and F. Mora-Camino, « Pricing in air transport systems : a multilevel approach », XIV Congreso 

Panamericano de Trafico y Transporte, Las Palmas de Gran Canaria, September 2006. 

8. Brotcorne L., M. Labbé, P. Marcotte and G. Savard, “A bilevel model for toll optimization on a multicommodity transportation 

network”,  Transportation Science, vol. 35, pp.1-14, (2000).  

9. Scheel H. and S. Scholtes, “  Mathematical programs with equilibrium constraints: stationarity, optimality and sensitivity”. 

Mathematics of Operations Research vol.25, pp.1-22, 2000. 

10. Handou A., “Contribution à l’Optimisation d’un Réseau de Transport Aérien:Proposition d’un Modèle basé sur la Logique 

Floue et la Maximisation Entropique », PhD dissertation, LARA/ENAC, Toulouse, December 2006. 

 

(41) 


