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Differential Flat Control for Rotorcraft
Trajectory Tracking

Nan Zhang, Geanina Andrei, Antoine Drouin, and Félix Mora-Camino

Abstract—The purpose of this communication is to investigate
the usefulness of the differential flatness control approach to
solve the trajectory tracking problem for a four rotor aircraft.
After introducing simplifying assumptions, the flight dynamics
equations for the four rotor aircraft are considered. A
trajectory tracking control structure based on a two layer non
linear approach is then proposed. A supervision level is
introduced to take into account the actuators limitations.

Index  Terms—differential  flatness,  guidance
supervision, rotorcraft flight mechanics, trajectory
tracking.

I. INTRODUCTION

In the last years a large interest has risen for the four rotor
concept since it appears to present simultaneously hovering,
orientation and trajectory tracking capabilities of interest in
many practical applications [1]. The flight mechanics of
rotorcraft are highly non linear and different control
approaches (integral LQR techniques, integral sliding mode
control [2], reinforcement learning [3]) have been considered
with little success to achieve not only autonomous hovering
and orientation, but also trajectory tracking In this paper,
after introducing some simplifying assumptions, the flight
dynamics equations for a four rotor aircraft with fixed pitch
blades are considered.

The purpose of this study is to investigate the usefulness of
the differential flatness control approach to solve the
trajectory tracking problem for this class of rotorcraft. This
approach has been already considered in the case of aircraft
trajectory tracking by different authors [8, 9]. It appears that
the flight dynamics of the considered rotorcraft present a two
level affine structure which is made apparent by the
definition of a new set of equivalent inputs. It can be shown
then that the rotorcraft flight dynamics are composed of a
differentially flat structure followed by a non linear invertible
structure. This allows to introduce a new non linear control
structure devoted to orientation and trajectory tracking.
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II. ROTORCRAFT FLIGHT DYNAMICS

The considered system is shown in figure 1 where rotors one
and three are clockwise while rotors two and four are counter
clockwise. Annex 1 describes the rotor dynamics.

The main simplifying assumptions adopted with respect to
flight dynamics in this study are a rigid cross structure, no
wind, negligible aerodynamic contributions resulting from
translational speed, no ground effect as well as negligible air
density effects and very small rotor response times. It is then
possible to write simplified rotorcraft flight equations [1].

Fig 1. Four engine rotorcraft

The moment equations can be written as:

p=@F,-F)+k, qr—kpp)/]x_x
g=(a(F, —F)+k,pr-k,q)/1, (D
r:(k(FZ _Fl +F4_F3)_krr)/lzz

where p, ¢, r are the components of the body angular
velocity, with k, = (1_ - 1) and k=1 -1_)> L Lyand

I, being the moments of inertia in body-axis and m the total
mass of the rotorcraft. Here the terms k p, k g, krare

related with the drag of the whole structure.
The Euler equations are given by:

¢ = p +tan(0)sin(¢) g + tan(d) cos(g) r
0 = cos(#) q —sin(¢) r 2)
v = ((sin(@)/ cos(8)) g + (cos(¢p)/cos(0)) r

where 6, ¢ and y are respectively the pitch, bank and
heading angles.
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The acceleration equations written directly in the local Earth
reference system are such as:

X = (1/ m)((cos(y) sin(@) cos(p) + sin(y) sin(@)) F —k x)
= 1/ m)((sin(y)sin() cos(g) ~cos(y) sin()) F —k,7) )
Z=—-g+(1/m)(cos(@)cos(@) F —k.z)

where x, y and z are the centre of gravity coordinates
and where :

F=F+F,+F,+F, (4)
The terms k %, ky Vv, k_z are also related with the drag of the

whole structure.

The rotor forces satisfy the constraints:

0<F; <Fmax ic{l,2,34} (5)

III. FLAT CONTROL LAW FOR ROTORCRAFT
TTRAJECTORY TRACKING

A. Differential Flatness of Smooth Systems
A general nonlinear system given by:

X=f(X,U).XeR"ucr" (©)
where F' is a smooth mapping, is said explicitly flat with
respect to the output vector Z, if Z is an m”order vector

which can be expressed analytically as a function of the
current state, the current input and its derivatives, while the
state and the input vectors can be expressed analytically as a

function of Z and a finite number of its derivatives. Then

there exists smooth mappings G,,, G, and G, such as:

z=G,xU..u”) @D
X=6,22,..,2") (7-2)
U=6,(z.z...2"") (7-3)

where 7. and n, are integer numbers. Vector z is called a flat

output for the nonlinear system given by equation (6).
Although today there is no systematical way to determine flat
outputs and eventually to prove its uniqueness, the flat
outputs usually possess some physical meaning.

The explicit flatness property is of particular interest for the
solution of control problems when physically meaningful flat
outputs can be related with their objectives. In many
situations, the control problem can be formulated as a flat
output trajectory following problem. In general, for these
cases, the flat output of equation (7-1) can be reduced,
through state transformation, to a function of a single
argument, the new system state itself:

z=G,(X) ®)
Then a possible control law providing to the flat outputs
linear decoupled dynamics towards reference values is given
by:

U=a, [zzfz 4,2 - 4, (LL)J ©)

i=l
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where the 4; matrices are diagonal matrices such as the m
polynomials :

s +Zai(j,j) p+a,(j,j) J=Llesm (10

i=1

B. Differential Flatness of Rotorcraft Dynamics

The equations of motion of the rotorcraft can be written
in non linear state form as:

x=f(x,u) (11-1)
where  x=(p,q,7,¢,0,y.%,7,2,x,y,2)  (11-2)
and u=(F—F,F-F,F+F,F,+F) (113)

Considering the output vector Z = (¢, 0, y, z)’, the inversion

of the Euler equations (2) provides expressions such as:

p=p0.4.4)
q=4(4,0,0,y) (12)
r=r($,0,0,y)
or more specifically:
p=d-sin@y (12-1)
g =cos¢ O+sin g cos Oy (12-2)
r=—sin ¢ 0+ cos ¢ cos 0 yr (12-3)
while u can be expressed as:
u=u($,0,4,0.y,6,0,y/,2,%)  (13)

by inversion of the set of equations (1-1), (1-2), (1-3) and
(3-3), or more specifically:

u =, q-k,pr+k,q)/a (14-1)
U, :(—Ixxp+k2qr—kpp)/a (14-2)
uy =((G+ g)m+k.2) /(cos @ cosg) — (I_i+ k,r) [ k)/2  (14-3)
u, =(((F+g)m+k.2)/(cosO cosg) + (i +k,r)/ k)2 (14-4)

Then, it can be concluded that the attitude and heading
dynamics as well as the vertical dynamics of the rotorcraft are
differentially flat when considering the input-output relation
between u and Z.

C. Design of Flat Flight Control Laws

We adopt for the flat outputs second order dynamics such

as: $=-2¢,0,-0,($-¢) (15-1)
0=-2¢, 0, 0-w,"(0-0.) (15-2)
V=-2¢,0,i-0/W-y,) (153

£=-2¢ 0 -0 (z-z,) (15-4)

(®)

The control expressions of the control inputs in relations
(14-1), (14-2), (14-3) and (14-4) are fed by p, g, r given by
(12-1), (12-2) and (12-3) and by p, ¢, 7 given by:
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p=¢—cosO Oy —sinby (16-1)
q:cos¢0+sm¢cos6y/.—sm¢(l+sm9)491// (16-2)
+cos¢cosd ¢y
r:—sm¢94jcos¢cos6’l//—clos¢¢9 (16-3)
—sing cos@ ¢y —cos@sinb 6y
where ¢5, 6, w are given by (15-1), (15-2) and (15-3).

Following the non linear inverse control approach (NLI), to
insure that x and y follows second order dynamics such as:

$42¢, o, i+o, (x—x,)=0 (17-1)
28, 0, i+, (r-y)=0  (172)

#.and @, are chosen such as:

(1/m)((costy)sin@, ) cos(@, ) +siny)sin(@, ) F' —k,x) 181
+2¢, o, 5c+a)x2(x—xc)=O (15D
(17 m)((sing)sin(@)cos(@,.) —cos@y)sin(@,)) F —k,y)
(18-2)
+2 gy a)y y+wy2(y_yc) =0

Then: ¢, = arcsin(% siny d, —cosy d ) (19-1)

and 6, = arcsin(% (cosy d, +siny d )/ cos(¢.)) (19-2)

where d.=(k,-2¢{  0)i-o (x—x,)  (20-1)
dy :(ky_zé,y wy)y_a)yz(y_yc) (20-2)
Xes Ve
" A A
! |
i NLI guidance '
1
i control <«
! |
! 6.4
oz 4|
! l !
i Differential Flat J‘_Ei
! Control '
o _____]1.1
Flat control
! loop
|
1
v.q 0 ¢z z
|
1
1
: Horizontal
i ' track
! 1
| . H control loop
! Horizontal Track h
! Dynamics :
\ 1
! i i &3, x,
! 1
|
l//: x: y: Z

Fig 2. Proposed flat-NLI control structure
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IV. SUPERVISION OF THE FLAT CONTROL LAW

The function of the control law supervision, is to turn
feasible the control laws derived from the differential flatness
approach.

Relation (19-1) is meaningful when :

—IS%(siny/dx—cosy/dy)Sl Q1)

In general F/m = g, then this condition is in general satisfied.
A sufficient condition for (21) to be satisfied is:
(k, =25, )5-0 (x-x) +((k, =26, @)i-0," (y-1.))" (22)
=(F/m)’
In that case defining angle b, such as:

b, =arcsin (d ,m/ F) (23)

then : either g.=y-b, or ¢.=y-b,t+x (24)
To guarantee that :

T2 <Py SO S P <7/ 2 (25)

the parameters ¢, ®,” and y. must be chosen such as:

Smin < (k, =2 ¢, @) Y=, (y =y ))m/F
and (26)

((ky =28, @) y =0, (7 =y m/F < s
where s, = min{sin(l// + Priax )> SN (W — P ) } (27-1)
and Smax = maX{Sin(l// + ¢max )’ sin (l// - ¢max ) } (27'2)

Introducing upper bounds for the derivative of y as well as to
the current error in y, sufficient conditions for the satisfaction
of (26) are:

Smin <—( Kk, =28, 0, | Py + 0, A )m/ F (28-1)
(ky =28, @) | Py + @, A/ F <5, (28-2)

Then considering b, such as:

b, =arccos (d,m/ F) (29)
then : either ¢.=y - bor g.=y + b, (30)
To guarantee again that :
T2 < =Pray S B L Broax <7/ 2 (31)
parameters ¢, a)y2 and x, must be chosen such as:
Cmin <k, =2 ¢, @) ¥ -0, (x—x.)m/F
and ' (32)
(k,=2¢, @) $= 0 (x=x)m/F <
where
Conin = MIN{COSY + e ):€OS (¥ = Pay) | (33-1)
and

Conax = MAX{COS(W + B ), COS (W — By ) | (33-2)

Introducing upper bounds for the derivatives of x as well as to
current errors in x, sufficient conditions for the satisfaction of
(32) are:

(34-1)

Ciin < _(‘ kx -2 é/x @y ‘ xmax + wszx )m/F

max

( k=28, @ | Fax + O Mg )/ F < ¢y (34-2)

Relation (19-2) can be written as:

sin @, cos ¢, = cos(y —b) 3%
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where b is such as :

sinb=d,m/F and cosb=d.m/F (36)
To guarantee that
T 2< O SO, SO <7/ 2 37

the parameters &, o, , x. ¢, @, and y. must be chosen such
as:
(cosy((k, 2 ¢, @) 5—a (x—x.))m/ F + (38-1)
(siny((k,=2¢, @) 7=, (y=y)m/ F <sin Oy €08 G
and
(cosy((k, =24, @) ¥~ (x=x))m/F + (38-2)
(siny((k, =2¢, ©,) =0, (v = y))m/ F 2 =sin Oy, 008 g

with the stability conditions:

¢:>0,0,>0,6,>0,0,>0 (38-3)
A sufficient condition for (38-1) and (38-2) is:
((‘ kx -2 :x @, ‘xmax + wszxmax)m/F + (39)

. 2 .
(‘ (ky -2 gy o, ‘ Ymax + @y, Aymax)m /F <sin emax cos ¢max

Finally parameters ¢, wy2 , Xe, G coy2 and y. must be chosen
such that relations (22), (26), (32), (38-1), (38-2) and (34-3) are
satisfied or introducing the sufficient conditions relations
(22), (34-1), (34-2), (58-1) and (39).

Introducing upper bounds to o], | ¢ | and | W |: émax,

Gmax a0d ¥ .. , to insure that constraints:

~F, <u <F, i=12  (40-1)

and
0<u; <2F,

hax i=34 (40-2)

are satisfied the positive parameters Cg, Cy, Gy, C;,009, 0, Oy,
and @, must be chosen such as(sufficient conditions) :

e 2

121,,6905 =k, | Oy +1,,05" O @ Fppy (41-1)
; 2

|21xxg¢w¢ _kp |¢max +[xxw¢ max <a Fmax (41'2)

. 2 '
‘kz - 2gza)zm‘z +mo. Az, + 1|k, - 2gl//w'/" Vimax (41-3)

max

2
1., @) AW ax < 2F 5 CO8 By COS

max max — ME

‘Zgza)z — kz‘z' + a)ZQAzmax + ‘ZIZZg,/,a)V, —k,

max

/ max | K
l//max (41_4)
+ Izza),/,zA Vi k< g

where Ay .. and Az, . are upper bounds for current
desired changes in heading and flight height.

To insure that relations:

‘¢‘ < ¢max > ‘0‘ < H.max > |l//| < l/}max (42'1)
|).C|S).Cmax, |y|£j}max7 |2|S2max (42'2)
|x_xc|SAxmax’ |y_yc|SAymax (42'3)
|Z_Zc| SAZmaX’ |!//_l//c| SAl//max (42'4)
are satisfied while tracking trajectory:

(xCC (t)’ yCC (t)’ ZCC ([)7 l//CC ([))7 [ 2 O

x1), y?), z.(t) and w(¢) can be chosen such as:
X (O) =x.. () —a (x.. (£) = x(2)) (43-1)

ISBN: 978-988-17012-7-5

and Ve =Y (O)=a (y.(0)=y() (43-2)
with O<a<1.

With this choice, the instantaneous dynamics in x (or y) are
such as:

X+2¢(a) o(a) )'c+a)(a)2(x—xcc) =0 (44-1)
with ¢(@)=¢, /{/(1-a) and o(a)=4(~-a)  (44-2)

so that convergence can be expected. The same approach can
be adopted with z and :

2o (O) =2, ()= f (2. (1) = 2(1)) (45-1)
and

v.)=w. .O)-BW.t)-y()
with O<a < f<1.

(45-2)

V. CASE STUDIES

A. Heading Control at Hover
The objective is to hover at an initial position of

coordinates x, yy, zg while acquiring a new orientation ;.
In this case we get the guidance control laws:

Uy :%(m g—U_r+kr) k) (46-1)

Uy = %(m g+ _ r+kr)k) (46-2)

with the following reference values for the attitude angles:

0,=0 and ¢.=0 (47)
Here the heading acceleration is given by:
W =-2 gw wy/l//_wy/z((//_(//c) (48)

Starting from an horizontal attitude ( 60)=0, ¢(0)=0), attitude
inputs u; and u, given by relation (14-1) and (14-2) remain
equal to zero. Then, figures 3 and 4 display some simulation
results:

T T O B B
F13F3\ | | | | | | | | |
L O A
o
[NT 17"~ "~ 17- 70"
N T 1 |
SU——T 1
2 T T T A
Sj//fffﬂfﬂf*\f*f*ﬂfﬂfﬂf*ff*
e e T B
)L S R N N B R R
[ (T Y B B
L T S S S+ Sy - time
Fig 3. Hover control inputs
e . T T T T T T T T
A
Y-y, N
F-r-—ft-—1-a-"-——"——I——r~-r-
A By B A N R B
R
e G T R e L B S
e N (D U O B B
N
3 Ny T S
[ \}\\\ [ o
A e (I
L I E\I?H - time

Fig 4. Heading response during hover
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B. Trajectory Tracking Case
Here the rotorcraft is tracking the helicoidal trajectory of
equations:
x.(t)=pcosvt
y. ()= psinvt
z,=zy+yt (49)
v.t)=vit+n/2

where p is a constant radius and y is a constant path angle.
In this case the guidance control laws tend towards:

u =k, sing. /a (50-1)

u, =(kysing. —k,)cosg.v/a (50-2)

uy =(((m+k,y/g)/(cosb. cosd.))—k.v/k)/2 (50-3)
and

uy =(((m+k,y/g)/(cosl, cosg.))+k.v/k)/2 (50-4)

Here, with k= k,, the permanent reference values for the
attitude angles are such as:

k
0, = arctg(—=" ) (51.1)
mg+k.y
and
2
¢c = —arc[g( my ) (512)
k2 +(mg +k.p)

In figures 5 to 7 simulation results are displayed where at
initial time the rotorcraft is hovering:

25
y(t) Y e s
[ e N T R S
ST T T T T T T O T IS T T
Pk mlm = =+ — 4 — == = PO —
S T [ D W
[ | | | | | |
F-1T-1- 7 CTT T [y
05t — Rm A — —lm = — - A - - — b — A —

By N L_L_1 /L
RS | | | | v
77\77Tx‘iﬂfffoTf/fo/‘ffo
2- -t - A4—-—-|I-—F—+t—F- —I——F—+t— -
25 | I T | L L x(t)

35 2 s a4 05 0 05 1 15 B

Fig 5. Evolution of rotorcraft horizontal track

Z(t) o i i i i i i i i I
R P
| | | | | | | L
0177+7+—4——\——\——F—f;ﬁ——\———
| | | | | 1A | |
008 — f — - = —|- — -~ Tt~ A~ o
| | | | 1 | | |
L] e e A Bl Al il s Hie e R
P S A B
T T [ I T T i |
| | e | ! | | |
oo | \//\ | | | | | |

| 1 | 1 | 1 1 1
0s 115z 25 3 35 4 45

time

Fig 6. Evolution of rotorcraft altitude
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VI. CONCLUSION

In this communication the theoretical applicability of the
differential flatness control technique to rotorcraft trajectory
tracking has been investigated. It appears that this approach
leads to the design of a two level control structure based on
analytical laws. Considering the structure of the rotorcraft
flight dynamics, other promising non linear control
techniques are non linear inverse control [4] and back
stepping control [10],[11].

A supervision layer has been designed to tackle with the
limitations of the actuators of the rotorcraft and to avoid the
uncontrolled effect of actuator saturation: sufficient
conditions are have been established with respect to the
convergence dynamics while a scaling scheme is proposed to
define a current reference trajectory.

However, the robustness of these control laws with respect to
the different aerodynamic effects which have been taken as
negligible should be investigated. Since only very intricate
theories are available to approach this problem, real flight
tests appear, at this stage, to be unavoidable.

APPENDIX

The rotor engine dynamics are characterized by the relation
between the input voltage V, and the angular rate @ A
possible model of rotor dynamics is given by:

ao(t) = —%w(t) - K,0()’ +(K, 1)V, (1) (AL

with @(0) = w, , where 7, Ky and Ky, are given positive

parameters and where the voltage input is such as:

0<V, <V, (A2)
with a negligible time response for the voltage generator.
The step response (7, =constant) of the rotor is solution of the

scalar Riccati equation:

a(r) = —% o(t) - K o) + (K, /1) v, (A3)

with »(0) = @, -

A particular solution @; of the associated differential
equation is such as:

= 1+4Ky K -1 A4
2] 2TKQ( +4Ky KotV —1) (A4

In the general case, the solution of (A.3) can be written as
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1 L. (AS)
e

+K,r'(1-e™'7)

o(t)=o, +

I
@(0) - o,
with

t'=7/ J1+4K, K, V, (A.6)

and lim o(?) = @, (A7)

Omega (radls) Va=2

25

omega (rad/f) Va=20

Fig. A1- Two examples of rotor step response
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