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Differential Flat Control for Rotorcraft 

Trajectory Tracking  

Nan Zhang, Geanina Andrei, Antoine Drouin, and Félix Mora-Camino  

 
Abstract—The purpose of this communication is to investigate 

the usefulness of the differential flatness control approach to 

solve the trajectory tracking problem for a four rotor aircraft. 

After introducing simplifying assumptions, the flight dynamics 

equations for the four rotor aircraft are considered. A 

trajectory tracking control structure based on a two layer non 

linear approach is then proposed. A supervision level is 

introduced to take into account the actuators limitations.  

 

Index Terms—differential flatness, guidance 

supervision, rotorcraft flight mechanics, trajectory 

tracking. 

 

I. INTRODUCTION 

 In the last years a large interest has risen for the four rotor 

concept since it appears to present simultaneously hovering, 

orientation and trajectory tracking capabilities of interest in 

many practical applications [1]. The flight mechanics of 

rotorcraft are highly non linear and different control 

approaches (integral LQR techniques, integral sliding mode 

control [2], reinforcement learning [3]) have been considered 

with little success to achieve not only autonomous hovering 

and orientation, but also trajectory tracking In this paper, 

after introducing some simplifying assumptions, the flight 

dynamics equations for a four rotor aircraft with fixed pitch 

blades are considered.  

The purpose of this study is to investigate the usefulness of 

the differential flatness control approach to solve the 

trajectory tracking problem for this class of rotorcraft. This 

approach has been already considered in the case of aircraft 

trajectory tracking by different authors [8, 9]. It appears that 

the flight dynamics of the considered rotorcraft present a two 

level affine structure which is made apparent by the 

definition of a new set of equivalent inputs. It can be shown 

then that the rotorcraft flight dynamics are composed of a 

differentially flat structure followed by a non linear invertible 

structure. This allows to introduce a new non linear control 

structure devoted to orientation and trajectory tracking.  
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II. ROTORCRAFT FLIGHT DYNAMICS  

The considered system is shown in figure 1 where  rotors one 

and three are clockwise while rotors two and four are counter 

clockwise. Annex 1 describes the rotor dynamics. 

The main simplifying assumptions adopted with respect to 

flight dynamics in this study are a rigid cross structure, no 

wind, negligible aerodynamic contributions resulting from 

translational speed, no ground effect as well as negligible air 

density effects and very small rotor response times. It is then 

possible to write simplified rotorcraft flight equations [1]. 
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Fig 1. Four engine rotorcraft 

 

  The moment equations can be written as: 
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where p, q, r are the components of the body angular 

velocity, with k )(2 yyzz II −=   and   k , I)(4 zzxx II −=

rqp ,,

xx, Iyy and 

Izz being the moments of inertia in body-axis and  m the total 

mass of the rotorcraft. Here the terms k are 

related with the drag of the whole structure. 
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The Euler equations are given by: 
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where θ, φ, and ψ  are respectively the pitch, bank and 

heading angles. 
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The acceleration equations written directly in the local Earth 

reference system are such as: 
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where x, y and  z are the  centre of gravity coordinates 

and where : 

 
4321 FFFFF +++=                      (4) 

The terms  are also related with the drag of the 

whole structure. 

zkykxk zyx
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The rotor forces satisfy the constraints: 

 { 4,3,2,10 max ∈≤≤ iFF
i

i }              (5) 

 

III. FLAT CONTROL LAW FOR ROTORCRAFT 

TTRAJECTORY TRACKING 

A. Differential Flatness of Smooth Systems  

A general nonlinear system given by:  

 

    ( )UXfX ,=& , nX R∈ , mU R∈                    (6) 

where F is a smooth mapping, is said explicitly flat with 

respect to the output vector Z , if Z  is an order vector 

which can be expressed analytically as a function of the 

current state, the current input and its derivatives, while the 

state and the input vectors can be expressed analytically as a 

function of 

thm

Z  and a finite number of its derivatives. Then 

there exists smooth mappings , , and  such as:    XG UG ZG

                   ( ))(
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where nz and nx are integer numbers. Vector Z  is called a flat 

output for the nonlinear system given by  equation (6). 

Although today there is no systematical way to determine flat 

outputs and eventually to prove its uniqueness, the flat 

outputs usually possess some physical meaning.  

The explicit flatness property is of particular interest for the 

solution of control problems when physically meaningful flat 

outputs can be related with their objectives. In many 

situations, the control problem can be formulated as a flat 

output trajectory following problem. In general, for these 

cases, the flat output of equation (7-1) can be reduced, 

through state transformation, to a function of a single 

argument, the new system state itself: 

                                        ( )XGZ Z=                                (8)                (8) 

Then a possible control law providing to the flat outputs 

linear decoupled dynamics towards reference values is given 

by:    
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where the Ai matrices are diagonal matrices such as the m 

polynomials : 
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B. Differential Flatness of Rotorcraft Dynamics  

The equations of motion of the rotorcraft can be written 

in non linear state form as: 

),( uxfx =&                              (11-1) 

where      )',,,,,,,,,,,( zyxzyxrqpx &&&ψθφ=         (11-2) 

and          )',,,( 42314231 FFFFFFFFu ++−−=     (11-3) 

Considering the output vector  Z = (φ, θ, ψ, z)’, the inversion 

of the Euler equations (2) provides expressions such as: 

                                        (12) 
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or more specifically: 

 

                                                  (12-1) ψθφ && sin−=p

                                (12-2) ψθφθφ && cossincos +=q

ψθφθφ && coscossin +−=r          (12-3) 

 

while u can be expressed as: 

 

      ),,,,,,,,,( zzuu &&&&&&&&&&&& ψθφψθφθφ=          (13) 

 

by inversion of the set of equations (1-1), (1-2), (1-3) and 

(3-3), or more specifically: 

 

aqkprkqI qyy /)( 41 +u = −&                  (14-1) 

apkqrkpIu pxx /)( 22 −+−= &              (14-2) 

2/)/)()cos/(cos))(((3 krkrIzkmgzu rzzz +−++= &&&& φθ     (14-3) 

2/)/)()cos/(cos))(((4 krkrIzkmgzu rzzz ++++= &&&& φθ     (14-4) 

 

Then, it can be concluded that the attitude and heading 

dynamics as well as the vertical dynamics of the rotorcraft are 

differentially flat when considering the input-output relation 

between u and Z. 

C. Design of Flat Flight Control Laws  

We adopt for the flat outputs second order dynamics such 

as:                     =               (15-1) φ&& )(2
2

cφφωφωζ φφφ −−− &

θ&& =             (15-2) )(2
2

cθθωθωζ θθθ −−− &

ψ&& =            (15-3) )(2
2

cψψωψωζ ψψψ −−− &

                 z&& =                 (15-4) )(2
2

czzz zzz −−− ωωζ &

 

The control expressions of the control inputs in relations 

(14-1), (14-2), (14-3) and (14-4) are fed by rqp ,, given by 

(12-1), (12-2) and (12-3) and by given by: rqp &&& ,,
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where  are given by (15-1), (15-2) and (15-3). ψθφ &&&&&& ,,

Following the non linear inverse control approach (NLI), to 

insure that x and y follows second order dynamics such as: 
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Then :      )cossinarcsin( yxc dd
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Fig 2. Proposed flat-NLI control structure 

IV. SUPERVISION OF THE FLAT CONTROL LAW 

The function of the control law supervision, is to turn 

feasible the control laws derived from the differential flatness 

approach.  

Relation (19-1) is meaningful when :                          

                    1)cos(sin1 ≤−≤− yx dd
F

m ψψ              (21) 

 In general F/m ≈ g, then this condition is in general satisfied. 

A sufficient condition for (21) to be satisfied is: 

2

2222

)/(

))()2(())()2((

mF

yyykxxxk cyyyycxxxx

=
−−−+−−− ωωςωως &&   (22) 

 In that case defining angle by such as: 
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then :          either φc =ψ-by   or  φc =ψ-by+π                   (24) 

To guarantee that : 

2/2/ maxmax πφφφπ <≤≤−<− c            (25) 

the parameters ζy, ωy
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where { })(sin),sin(min maxmaxmin φψφψ −+=s      (27-1) 

and { })(sin),sin(max maxmaxmax φψφψ −+=s      (27-2) 

Introducing upper bounds for the derivative of y as well as to 

the current error in y, sufficient conditions for the satisfaction 

of (26) are: 

 Fmyyks yyyy /)2( max
2

maxmin Δ+−−≤ ωωζ &       (28-1)     
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max /)2( sFmyyk yyyy ≤Δ+− ωωζ &  (28-2) 

 Then considering bx such as: 

)/(arccos Fmdb xx =                       (29) 
NLI guidance 

control then :           either  φc =ψ - bx or φc =ψ + bx                   (30) 

 

To guarantee again that : 

2/2/ maxmax πφφφπ <≤≤−<− c            (31) 
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where  { })(cos),cos(min maxmaxmin φψφψ −+=c    (33-1) 

and   { })(cos),cos(max maxmaxmax φψφψ −+=c    (33-2) 

 

Introducing upper bounds for the derivatives of x as well as to 

current errors in x, sufficient conditions for the satisfaction of 

(32) are:  

Fmxxkc xxxx /)2( max
2

maxmin Δ+−−≤ ωωζ &       (34-1) 

     maxmax
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  Relation (19-2) can be written as: 

)cos(cossin bcc −= ψφθ                   (35) 
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where b is such as : 

Fmdb y /sin =    and             (36) Fmdb x /cos =
To guarantee that  
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with the stability conditions:  
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A sufficient condition for (38-1) and (38-2) is: 
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Finally parameters ζx, ωy
2 , xc , ζy, ωy

2 and yc must be chosen 

such that relations (22), (26), (32), (38-1), (38-2) and (34-3) are 

satisfied or introducing the sufficient conditions  relations 

(22), (34-1), (34-2), (58-1) and (39). 

Introducing  upper bounds to ⎪ ⎪, ⎪ ⎪ and ⎪θ& φ& ψ& ⎪: , 

and 

maxθ&
maxφ& maxψ& , to insure that constraints: 
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and         

                          (40-2) 4,320 max =≤≤ iFui

are satisfied  the positive parameters  ζθ, ζφ, ζψ, ζz,ωθ, ωφ, ωψ, 

and ωz  must be chosen such as(sufficient conditions) : 
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where maxψΔ and are upper bounds for current 

desired changes in heading and flight height. 

maxzΔ
To insure that relations: 

maxmaxmax ,, ψψθθφφ &&&&&& ≤≤≤           (42-1) 

maxmaxmax ,, zzyyxx &&&&&& ≤≤≤            (42-2) 

maxmax , yyyxxx cc Δ≤−Δ≤−            (42-3) 

maxmax , ψψψ Δ≤−Δ≤− cc zzz           (42-4) 

are satisfied while tracking trajectory: 

0)),(),(),(),(( ≥tttztytx cccccccc ψ  

xc(t), yc(t), zc(t) and ψc(t) can be chosen such as: 

))()(()()( txtxtxtx ccccc −−= α              (43-1) 

and               ))()(()()( tytytyty ccccc −−= α             (43-2) 

with 10 << α . 

With this choice, the instantaneous dynamics in x (or y) are 

such as: 

0)()()()(2 2 =−++ ccxxxx αωαωας &&&         (44-1) 

with )1(/)( αςας −= x   and )1()( ααω −=       (44-2) 

so that convergence can be expected. The same approach can 

be adopted with z and ψ: 

))()(()()( tztztztz ccccc −−= β              (45-1) 

and 

))()(()()( tttt ccccc ψψβψψ −−=             (45-2) 

with 10 <≤< βα . 

V. CASE STUDIES 

A. Heading Control at Hover  

The objective is to hover at an initial position of 

coordinates x0, y0, z0 while acquiring a new orientation ψ1.  

In this case we get the guidance control laws: 

)/)((
2

1
3 krkrIgmu rzz +−= &               (46-1)    

)/)((
2

1
4 krkrIgmu rzz ++= &               (46-2) 

with the following reference values for the attitude angles: 

0=cθ    and                      (47) 0=cφ
Here the heading acceleration is given by: 

 

)(2
2

cψψωψωζψ ψψψ −−−=&&           (48) 

       

Starting from an horizontal attitude ( θ(0)=0, φ(0)=0), attitude 

inputs u1 and u2 given by relation (14-1) and (14-2) remain 

equal to zero. Then, figures 3 and 4 display some simulation 

results: 
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Fig 3. Hover control inputs 
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Fig 4. Heading response during hover 
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B. Trajectory Tracking Case  

Here the rotorcraft is tracking the helicoïdal trajectory of 

equations: 

ttxc νρ cos)( =                        

ttyc νρ sin)( =                 

tzzc γ+= 0                              (49) 

2/)( πνψ += ttc              

 

where ρ  is a constant radius and γ  is a constant path angle. 

In this case the guidance control laws tend towards: 
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avkku cpc /cos)sin( 22 φφ −=               (50-2) 

2/)/))cos/(cos)/(((3 kvkgkmu rccz −+= φθγ             (50-3) 

and 

2/)/))cos/(cos)/(((4 kvkgkmu rccz ++= φθγ             (50-4) 

 

Here, with kx= ky, the permanent reference values for the 

attitude angles are such as: 
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            and 
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 In figures 5 to 7 simulation results are displayed where at 

initial time the rotorcraft is hovering: 
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Fig 5. Evolution of rotorcraft horizontal track 
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Fig 7.  Rotorcraft trajectory tracking inputs 
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VI. CONCLUSION 

In this communication the theoretical applicability of the 

differential flatness control technique to rotorcraft trajectory 

tracking has been investigated. It appears that this approach 

leads to the design of a two level control structure based on 

analytical laws. Considering the structure of the rotorcraft 

flight dynamics, other promising non linear control 

techniques are non linear inverse  control [4] and back 

stepping control [10],[11].  

A supervision layer has been designed to tackle with the 

limitations of the actuators of the rotorcraft and to avoid the 

uncontrolled effect of actuator saturation: sufficient 

conditions are have been established with respect to the 

convergence dynamics while a scaling scheme is proposed to 

define a current reference trajectory.  

However, the robustness of these control laws with respect to 

the different aerodynamic effects which have been taken as 

negligible should be investigated. Since only very intricate 

theories are available to approach this problem, real flight 

tests appear, at this stage, to be unavoidable.  y(t) 

APPENDIX 

The rotor engine dynamics are characterized by the relation 

between the input voltage Va and the angular rate ω. A 

possible model of rotor dynamics is given by: x(t)

)()/()()(
1

)( 2 tVKtKtt aVQ a
τωωτω +−−=&      (A.1) 

 with  
0)0( ωω =   , where τ , KQ and KVa are given positive 

parameters and where the voltage input is such as: z(t) 
max0 VVa ≤≤                           (A.2) 

with a negligible time response for the voltage generator. 

The step response (Va =constant) of the rotor is solution of the 

scalar Riccati equation: 

 

aVQ VKtKtt
a

)/()()(
1

)( 2 τωωτω +−−=&     (A.3) time 

 with   .  
0)0( ωω =

A particular solution ω1 of the associated differential 

equation is such as: 

                 

          )141(
2

1
1 −+= aQV

Q

VKK
K a

ττω        (A.4)                   

 

In the general case, the solution of (A.3) can be written as 
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Fig. A1- Two examples of rotor step response 
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