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Abstract— The growing demand for air travel is increasing the 

need for mitigation of air traffic congestion and complexity 

problems, which are already at high levels. At the same time new 

information and automation technologies are enabling the 

distribution of tasks and decisions from the service providers to 

the users of the air traffic system, with potential capacity and cost 

benefits. This distribution of tasks and decisions raises the 

concern that independent user actions will decrease the 

predictability and increase the complexity of the traffic system, 

hence inhibiting and possibly reversing any potential benefits. In 

answer to this concern, the authors propose the introduction of 

decision-making metrics for preserving user trajectory flexibility. 

The hypothesis is that such metrics will make user actions 

naturally mitigate traffic complexity. In this paper, the impact of 

using these metrics on traffic complexity is investigated. The 

scenarios analyzed include aircraft in en route airspace with each 

aircraft meeting a required time of arrival in a one-hour time 

horizon while mitigating the risk of loss of separation with the 

other aircraft, thus preserving its trajectory flexibility. The 

experiments showed promising results in that the individual 

trajectory flexibility preservation induced self-separation and 

self-organization effects in the overall traffic situation. The effects 

were quantified using traffic complexity metrics based on 

Lyapunov exponents and traffic proximity. 

Keywords-Trajectory planning; trajectroy flexibility; traffic 

complexity; adaptability; robustness; separation assurance; self 

separation; self organizing; distributed air traffic management  

I.  INTRODUCTION 

The Next Generation Air Transportation System (NextGen) 
is expected to receive up to three times the current traffic 
demand by the year 2025 [1]. In order to handle this increase in 
air traffic, NextGen will introduce key transformations in Air 
Traffic Management (ATM). Three examples of the 
transformations are: increasing information sharing through 
net-enabled information access; making access to National 
Airspace System (NAS) resources dependent on aircraft 

equipage; and aircraft trajectory-based operations enabled by 
aircraft ability to precisely follow customized four dimensional 
(4D) trajectories [1]. These capabilities enable a more optimal 
allocation of functions among the air traffic system agents, 
such as shifting the ATM system towards a distributed 
architecture [2]. For example, NextGen is investigating 
delegating more responsibility for traffic separation to the pilot 
[2, 3] and delegating more responsibility to airline operation 
centers for traffic flow management [3, 4]. Enabling the gains 
of distributed decision making depends on the ability of 
distributed actions to maintain safety and efficiency at 
acceptable levels. 

Research on distributed ATM has focused, in part, on the 
distribution of separation responsibility between pilots and 
controllers. Pilots are assisted in predicting and resolving loss 
of separation by cockpit automation, known generally as 
Airborne Separation Assistance Systems (ASAS) [5, 6]. Early 
ASAS experiments showed positive results of self separation 
operations [7, 8]. Research has also concentrated on assisting 
ground-based controllers with automation, such as the Center 
TRACON Automation System [9]. Distributed traffic flow 
management has been limited to the incorporation of user 
preferences in traffic manager decisions with recent efforts to 
increase user responsibility [4]. 

Neglecting to regulate traffic beyond the separation 
assurance time horizon may cause complex traffic situations to 
arise. Many approaches have been documented to define and 
measure traffic complexity, most often as a function of 
controller workload. These metrics are primarily based on 
airspace geometry such as aircraft density and mix, sector 
geometry, traffic flow structure, and mix of aircraft types and 
performance characteristics [10]. Other efforts emphasized 
cognitive elements of complexity, in particular the controller 
use of standard flows, grouping of traffic, and merge points 
[11]. Some metrics have been proposed that are independent of 
the airspace structure and controller perspective. For example, 
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Delahaye et al. [12] introduced complexity metrics based on 
traffic organization or disorder (topological entropy). Complex 
traffic situations may be difficult to control, whether by 
ground-based or by aircraft-based agents, leading to 
compromised safety. Therefore, reducing or preventing such 
situations is a prerequisite to enabling manageable separation 
assurance and safety. 

Figure 1. Trajectory Flexibility Preservation 
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In order to mitigate traffic complexity, ground and airborne 
systems may benefit from preserving trajectory flexibility. 
Trajectory flexibility preservation enables an aircraft to plan its 
trajectory such that it preserves a requisite level of 
maneuvering flexibility in order to accommodate later 
disturbances caused, for example, by other traffic and weather 
activity. The hypothesis is that if each aircraft preserves its own 
trajectory flexibility, using an air-based or ground-based 
system, acceptable traffic complexity will naturally be 
achieved. As discussed in [13, 14], although flexibility 
preservation does not explicitly coordinate between aircraft, it 
assists each by reducing the risk of conflict due to the potential 
behavior of the surrounding traffic, thus resulting in implicit 
coordination. This function offers a trajectory-oriented 
approach to managing traffic complexity, by explicitly 
planning aircraft trajectories, such that their contribution to 
complexity is minimized. This is contrasted with airspace-
oriented approaches that aim to ensure that airspace 
characteristics (such as sector size and route patterns) and 
traffic characteristics (such as aircraft density) are designed to 
dynamically limit traffic complexity.  

Flexibility preservation complements separation assurance 
both within the conflict resolution horizon and beyond it to an 
extended flexibility planning horizon. Within the conflict 
resolution horizon, flexibility aids in selecting conflict 
resolution solutions that afford the aircraft more flexibility, for 
example, to adapt to potential intruder behavior. Beyond the 
conflict resolution horizon, which is the focus of this paper, 
flexibility preservation plans the aircraft trajectory to minimize 
its exposure to disturbances such as weather cells and dense 
traffic. Fig. 1 depicts an example. In its upper portion each 
aircraft, while planning its trajectory between weather cells, 
questions whether it should modify its trajectory to increase 
flexibility. If the aircraft proceed along their depicted headings, 
a complex traffic situation arises causing excessive congestion 
and a high potential conflict rate. On the other hand, the lower 
portion displays a structured traffic pattern that would result if 
each aircraft maneuvered to increase its own flexibility.  

To test this hypothesis, trajectory flexibility metrics have 
been defined in previous work to represent robustness and 
adaptability to the risk of violating separation, airspace hazards, 
and traffic flow management constraints [14-16]. In this paper, 
the impact of using these metrics on traffic complexity is 
analyzed. Two scenarios are analyzed in two-dimensional en 
route airspace, where each aircraft must meet a required time of 
arrival (RTA) in a one-hour time horizon using speed and 
heading degrees of freedom. Simultaneously, each aircraft 
preserves its trajectory flexibility, using the defined metrics, to 
mitigate the risk of loss of separation with the other aircraft. 
The effects were quantified using traffic complexity metrics 
based on Lyapunov exponents [12], flow pattern consistency, 

and proximity. The experiments showed promising results in 
terms of mitigating complexity as measured by these metrics.  

II. METRICS 

Metrics that represent trajectory flexibility have been 
developed and reported in previous papers [15-16] and are 
summarized briefly in this section. To test the hypothesis, 
traffic complexity metrics based on intrinsic trajectory 
complexity [12], traffic pattern consistency and proximity were 
used. These metrics are also briefly described in this section. 

A. Trajectory Flexibility Metrics 

The notion of “trajectory flexibility” was defined in [14] as 
the ability of the trajectory (and hence the aircraft following the 
trajectory) to abide by all constraints imposed on it while 
mitigating its exposure to risks that cause violation of these 
constraints. The constraints intend to achieve ATM and aircraft 
objectives and include heading limits, RTAs, and separation 
minima. They define the trajectory solution space. Risk of 
constraint violation is represented by disturbances that cause 
the aircraft trajectory to violate or potentially violate 
constraints. Disturbances were classified in [14-16] into state 
disturbances that result in aircraft state deviation along its 
trajectory or constraint disturbances such as new constraints or 
modifications of currently imposed or known potential 
constraints. 

Two trajectory characteristics relevant to measuring this 
notion of flexibility have been identified: robustness and 
adaptability [14]. Metrics have been proposed for robustness 
and adaptability based on estimating the number of feasible 
trajectories available to the aircraft to accommodate 



disturbances [15-16]. In order to support these definitions and 
estimation methods, the following assumptions are made:  

(1) The aircraft is assumed to follow segments of discrete 
time length, where instantaneous heading and speed changes 
can only occur at discrete instances in time that are ε apart.  

(2) Heading h and speed V take discrete values between 
hmin and hmax and between Vmin and Vmax and are constant along 
each segment. (Altitude is not considered in this paper.) 

In addition to simplifying the estimation method, these 
assumptions are reasonable from an operational point of view 
considering the intended application of the trajectory flexibility 
metrics. Namely, the metrics are intended for relative 
comparison of trajectories over a long time horizon suitable for 
strategic planning (typical of traffic flow management planning 
horizon) as opposed to tactical maneuvering (where the 
dynamics of the speed and heading change are relevant). 

(1) Robustness is defined as the ability of the aircraft to 
keep its planned trajectory unchanged in response to the 
occurrence of disturbances. For example, a trajectory that 
remains feasible in terms of meeting an RTA and maintaining 
separation despite the disturbances (i.e., no matter which 
trajectory or conflict instances materialize) is robust to these 
disturbances.  

A robustness metric RBT(traj) is associated with a 
trajectory (traj) starting from a state (t, x, y) and ending at 
another state such as (RTA, xdest, ydest). RBT(traj) is measured 
with the probability of feasibility Pf(traj) of the trajectory, 
which can be estimated with partial information about state and 
constraint disturbances that represent the risk of constraint 
violation or infeasibility.  Estimating Pf(traj) requires 
probabilistic models of the state and constraint disturbances. As 
an example, consider a state disturbance that makes every 
trajectory instance from a state (t, x, y) to the destination e.g., 
(RTA, xdest, ydest) possible with equal probability. In this case, 
the trajectory (traj) is modeled by N(t, x, y) instances (traji) 
each with equal probability  
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Each constraint situation c divides the total set of 
trajectories N(t, x, y) into two mutually exclusive subsets: fc(t, 
x, y) the set of feasible trajectories with respect to c and ic(t, x, 
y) the set of infeasible trajectories with respect to c. Hence, N(t, 
x, y) = fc(t, x, y) + ic(t, x, y). Then, the following formula can 
be derived for robustness RBT(t, x, y); see [15, 16] for more 
detailed derivation:  
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where Pf,c is the probability of feasibility of the trajectory traj in 
a constraint situation c, and is equal to the ratio of the number 
of feasible trajectories fc to the total number of trajectories N. 
The constraints are modeled with C constraint situations c each 

with a probability Pc with .  
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(2) Adaptability is defined as the ability of the aircraft to 
change its planned trajectory in response to the occurrence of a 
disturbance that renders the current planned trajectory 
infeasible. An adaptability metric ADP(t, x, y) is associated 
with a state (t, x, y) along a trajectory and is measured by the 
number of feasible trajectories f(t, x, y) (with respect to all 
constraints) that are available for the aircraft to use at (t, x, y) to 
regain feasibility. Then, given the probability distribution (Pc) 
of each constraint situation c of C, ADP may be estimated by 
the average over C: 
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Adaptability decreases as the aircraft moves along a 
trajectory because the number of feasible trajectories decreases. 
The special case of robustness given by (1) (robustness to 
totally random state disturbances) increases over time because 
as the number of feasible trajectories (numerator) decreases the 
total number of trajectories (denominator) decreases more 
rapidly by both infeasible and feasible trajectories. 

B. Traffic Complexity Metric 

The impact of planning trajectories using the adaptability 
and robustness metrics on traffic complexity was assessed 
using three main indicators: an intrinsic trajectory-based 
complexity metric, consistency of a resulting flow pattern, and 
proximity between aircraft.  

The intrinsic traffic complexity metric is based on the non-
linear dynamic system modeling of the aircraft trajectories. 
This metric identifies any kind of trajectories organization in 
the airspace by the mean of Lyapunov exponents map 
computation. Based on the observations of the aircraft 
(positions, speed vectors and times), a non linear space-time 
dynamic system has to be adjusted with the minimum error.   
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where N is the number of aircraft and K the number of samples 
per aircraft trajectory. 

There are many classical ways of obtaining a class of 
parametrized vector fields that fulfill the fitting requirement. 
Among them, vector splines allow control on the smoothness 
of vector fields, which is important in this case since civil 
aircraft maneuvers are based on low acceleration guidance 
laws. The vector field is designed to minimize a function form 
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with α, ȕ ,Ȗ positive real numbers controlling the smoothness of 
the approximation by focusing on constant divergence or 
constant curl. 

Computing traffic complexity for a given traffic situation 
requires interpolating a vector field given only samples 
(positions and speeds of aircraft at given times). Vector spline 
interpolation seeks the minimum error between the observation 



and the model. This adjustment is done with a Least Square 
Minimization (LMS). The metric chosen for complexity 
computation relies on a measure of sensitivity to initial 
conditions of the underlying dynamic system called Lyapunov 
exponents. The Lyapunov exponents are closely related to the 
singular values of the gradient matrix on the vector field at a 
given point.  
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When Lyapunov exponents are high, the trajectory of a 
point under the action of the dynamic system is very sensitive 
to the initial conditions (or parameters on which the vector field 
may depend), so that the situation in the future is unpredictable. 
On the other hand, small values of the Lyapunov exponents 
mean that the future is highly predictable (very organized 
traffic). So, the Lyapunov exponent map determines the area 
where the underlying dynamic system is organized. It identifies 
the places where the relative distances between aircraft do not 
change with time (low real value) and the ones where such 
distance changes a lot (high real value). More information 
about this metric may be found in [12]. 

Flow pattern consistency was also measured by the 
percentage of aircraft that followed a consistent pattern. The 
pattern was readily apparent visually so no clustering technique 
was employed in the scenarios analyzed in this paper. The 
pattern, as described in Section IV, was scenario dependent. 
Traffic proximity was measured by the number of aircraft-
seconds that are less than a threshold distance apart. 

III. TRAJECTORY GENERATION ALGORITHM 

A dynamic programming algorithm was used to generate an 
aircraft trajectory using the robustness and adaptability metrics. 
Because the intention of this analysis is to test a hypothesis 
rather than a real-time application, the dynamic programming 
approach was selected due to its simple formulation and despite 
its numerical and storage limitations. First the trajectory 
solution space is built as a tree of discrete states connected 
according to reachability by the allowable discrete speed and 
heading values over the discrete time increments. Second, the 
robustness and adaptability metrics are estimated at each state. 
Third and finally a back-propagation algorithm computes a cost 
function and builds a trajectory that optimizes the cost function. 

A. Flexibility Metric Estimation 

The calculation of the adaptability and robustness metrics 
requires estimation of the number of feasible trajectories from a 
state (t, x, y) to the destination (location, time, or both). A 
method was developed in [15] and [16] for varying speed along 
a fixed path and for varying heading, respectively. Here, this 
method is generalized to scenarios involving both speed and 
heading as degrees of freedom in situations involving RTA and 
separation constraints, under the two simplifying assumptions 
of discrete time, heading and speed, described in Section A. 

Under these assumptions, the number of trajectories may be 
estimated using a convolution and filtering technique. Fig. 2 
demonstrates this method for calculating fc(t, x, y) from any 
point (t, x, y) to a destination specified by a point (RTA, xdest, 
ydest) and a tolerance circle around it in the x-y plane, in a 
constraint situation c that includes an instance of a potential 
conflict. The three-dimensional space is discretized into time 
steps ε-apart, where in each time step, the x-y plane is 
discretized into square cells. The function fc(t, x, y) is estimated 
for each cell. Assume the function fc(tj, x, y) at time tj is known. 
The function fc(tj-1, x, y) at the previous time step tj-1 can be 
obtained by convoluting fc(tj, x, y) and the function gk(x, y), 
which represents the number of trajectories that reach from a 
point k=(tj-1, x(k), y(k)) at time step tj-1 to the next time step tj. 
The function g is independent of time. There is one trajectory 
that reaches from point k at step tj-1 to each of a set of discrete 
locations at step tj – each corresponds to one pair of discrete 
heading and speed values. Therefore, the reachability function 
gk(x, y) which is shown as a conical shell in Fig. 2 is given by:  
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The convolution operation amounts to calculating fc(tj-1, 
x(k), y(k)) at point k, by multiplying the values of fc(tj, x, y) by 
the number of trajectories that reach from point k to (tj, x, y) 
and adding them, and then repeating the operation for each 
point k in the x-y plane at time step tj-1. However, if the point k 
is infeasible (for example due to loss of separation) then fc(tj-1, 
x(k), y(k)) = 0. This requires a filtering step before each 
convolution operation to zero out the values at infeasible states. 
Substituting a dummy variable τ to denote sliding the point k in 
the x-y plane, the function fc(tj-1, x, y) is given by the following 
equation, representing convolution and filtering for 
infeasibility:  
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Figure 2. Discrete estimation of number of feasible trajectories 
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This operation is applied starting from the destination step t 
= RTA and proceeding backwards to the current state. The 
destination time step is initialized by setting fc(RTA, x, y) = 1 
at the feasible states and zero elsewhere as shown in Fig. 2. 

To compute the total number of trajectories, N(t, x, y) used 
in the denominator of the robustness metric RBT, certain 
constraints are excluded from the filtering process (namely the 
constraints with respect to which robustness is computed). In 
this paper robustness only to loss of separation with traffic and 
hazards is considered. Therefore, the numerator filtering was 
applied to all cells that lead to separation loss as well as cells 
that lead to violating speed and heading limits or violating the 
RTA constraint. On the other hand filtering ignored loss of 
separation but was applied to the RTA and heading and speed 
limit constraints for calculating the denominator. 

Separation zones were modeled as circles with given radii 
surrounding each intruder aircraft trajectory. Because a 
trajectory consists of discrete segments, each with constant 
speed and heading, the circle moves with constant speed and 
heading for the duration of each segment. In each segment, the 
circle is enclosed with eight tangent planes, each two opposing 
tangents resulting from a combination of heading and speed 
limits of the ownship aircraft relative to the intruder (There are 
four such combinations). A cell loses (or is imminent to lose) 
separation if it falls on the inside of all eight planes, within the 
time duration of the segment. The intersection of these planes 
with the solution space blocks polygon areas in the x-y grids, as 
shown in Fig. 2 for one segment. Hazards are similarly 
modeled as circles with zero speed. Therefore, the hazard circle 
is enclosed with four tangent planes rather than eight.  

Under probabilistic models of disturbances, the estimation 
process is repeated for each constraint situation c. Then, the 
estimates fc(t, x, y) are averaged over all situations C to obtain 
the adaptability or robustness metrics (1) and (2). The 
convolution operation produces an exponential growth of the 
number of feasible trajectories fc(t, x, y) backwards with time, 
depicting the decrease of adaptability with time. The infeasible 
regions eliminate trajectories as the function fc(t, x, y) is zeroed 
at these states. This produces troughs or valleys in the function 
fc(t, x, y) depicting the impact of constraints. These are shown 
in Fig. 3 and 4 for an analysis case.  

B. Cost Function and Trajectory Building 

Given the structure of the solution space, dynamic 
programming offers a straightforward method to build an 
optimal trajectory. Using recursive back-propagation and 
starting from the final time step, the minimum cost of 
proceeding from each cell to the destination is computed and 
stored. This minimum cost Q(t, x(k), y(k)) for each cell k is 
computed by minimizing, over its reachable cells given by 
{(t+1, x, y) :gk(t+1, x, y) = 1} in the next time step t+1, the sum 
of the minimum cost Q(t+1, x, y) already computed for each of 
the reachable cells (t+1, x, y) plus the cost of proceeding from 
k to that cell, given for short by q(k  (t+1, x, y)). A generic 
formula is: 

y)}x,1,(tq(ky)x,1,Q(t{Miny(k))x(k),Q(t,
1y)x,1,(tg :yx, k
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Four functions for the local cost, q, were used in the 
experiments reported in this paper. A function representing 
minimal path length was used as a baseline. Functions 
representing maximizing adaptability, maximizing robustness, 
and maximizing both combined with minimizing path length: 
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where a and b are weights that trade robustness and distance, 
respectively, with adaptability. They are raised to the power of 
time T (measured from the final time step) to account for the 
exponential growth of ADP. Note that while the accumulated 
distance over time is minimized, ADP and RBT are maximized 
at each time step (because their accumulation at any point is 
identical over all trajectories to the destination). 

After storing the optimal costs for each cell, a forward loop 
builds a trajectory by tracing the optimal cells starting from the 
initial state. Any ties between cells were broken randomly. 

IV. COMPLEXITY IMPACT ANALYSIS 

 The estimation technique and trajectory optimization 
algorithm were implemented in a MATLAB tool. The resulting 
trajectories were analyzed using the traffic complexity metrics 
described in Section III B. First the two scenarios reported in 
this paper are described. Second, observations are made on the 
impact of trajectory planning, using the four cost functions (9) 
through (12), on traffic complexity.  

A. Analysis Scenarios 

The first of two scenarios consists of a line of weather cells 
leaving two holes for which two flows of traffic compete. The 
two traffic flows travel in opposite directions: one starts at x = 
0, y = −120 nautical miles and heads towards x = 0, y = 80 
nautical miles. The other flow starts at x = 0, y = 120 and ends 
at x = 0, y = −80 nautical miles. Five weather hazard cells are 
modeled as circles with a radius of 20 nautical miles, and 
located at x = 0 and y = {0, ±70, ±120 nautical miles} as shown 
in Fig. 5. The geometry of the hazards and of the traffic start 
and end positions is selected to provide symmetry, such that the 
path length alone is not a differentiator for selecting among the 
two holes. This ensures highlighting the impact of the 
robustness and adaptability metrics compared to shortest path. 
Each traffic flow is generated with random entry times 
separated by intervals between five and seven minutes. All 
aircraft are limited to headings of ±60 degrees relative to the 
centerline connecting the start and end positions, with 10-
degree increments. They are also limited to a speed between 
240 and 360 knots with 10-knot increments. Each aircraft is 
assigned an RTA at the destination that forces the aircraft to 
path stretch to meet the RTA. This was ensured by setting the 
RTA up to 10 minutes above the travel time at minimum speed 
along a straight path. The RTA is met exactly with no tolerance 
at the destination point allowed. 

The second scenario consists of a weather cell that causes 
four traffic flows crossing at right angles to go around the 



weather cell in a round about. The weather cell is modeled as a 
circle with radius of 30 nautical miles located at (x = 0, y = 0). 
The four traffic flows originate at (x = 0, y = −120), (x = 0, y = 
120), (x = −120, y = 0) and (x = 120, y = 0). They end 
respectively at (x = 0, y = 80), (x = 0, y = −80), (x = 80, y = 0) 
and (x = −80, y = 0). All units are in nautical miles. Eight other 
hazard circles are added at the corners as shown in Fig. 6 
(discussed in Section B) to increase the traffic interaction 
around the hazard located in the center. The speed and heading 
limits and increments are the same as in the first scenario. The 
entry times for each flow ranged between 6 and 8 minutes.   

In both scenarios, each aircraft plans a trajectory to meet 
the RTA (using speed reduction and path stretching), 
optimizing the four cost functions (9) through (12). Time 
increments of 2 minutes and square x-y cells of 2 nautical miles 
are used in the estimation of the number of trajectories. The 
first aircraft does not encounter any traffic as it plans its 
trajectory. Then, each following aircraft plans its trajectory 
assuming knowledge of the trajectories of all preceding 
aircraft. These trajectories are surrounded by separation zones 
that, in addition to the weather hazards, are avoided by the 
aircraft. Hazards and separation zones reduce the number of 
feasible trajectories. Therefore, earlier aircraft are given 
priority while each later aircraft encounters exceedingly more 
traffic. No dynamic trajectory modification is considered in the 
experiments run for this analysis. Each aircraft generates one 
trajectory upon its entry and maintains this trajectory 
throughout. Also the experiment runs considered only 
deterministic aircraft behavior. One trajectory is considered for 
each aircraft with probability of one. However, the separation 
requirement around each aircraft was set to 10 nautical miles 
(instead of the required 5 nautical miles) in order to capture the 
higher uncertainty in the rather long time horizon of these 
experiments. Fig. 3 shows an example of the adaptability 
metric (ADP) at one time step of the solution space, for an 
aircraft that encounters the hazards of the first scenario. Color 
shades are used to depict the log of the number of feasible 
trajectories. Fig. 4 shows an example of the robustness metric 
(RBT) at one time step of the solution space using color shades. 
Note that adaptability is highest near the center of the solution 
space around the central hazard, while robustness is highest 
near the extremities of the solution space away from the central 
hazard. Also note that robustness here is with respect to the 
hazards and loss of separation only and not to the RTA 
constraint or the speed and heading limits. Finally it should be 
noted that the solution space is smaller in Fig. 4 because it is an 
earlier time step and that these figures are in a relative frame 
with respect to an aircraft (hence the hazard y-location is 120 
nautical miles rather than zero).  

Each scenario contained 80 aircraft distributed evenly 
among the flows. The resulting trajectories consist of heading 
and speed decisions at each two-minute increment. They are 
then interpolated with 30 second time steps assuming constant 
speed and heading in each two-minute time increment. Finally 
they are analyzed for traffic complexity.  

Figure 3. Example of adaptability metric map 

Figure 4. Example of robustness metric map 

B. Results and Observations 

Fig. 5 (a-e) demonstrates the resulting flow patterns in the 
first scenario and Fig. 6 (a-e) those in the second scenario, 

using an eight-minute time history. As a baseline, the shortest 
path cost function (9) was run twice, once without avoiding the 
other traffic (case a) and once with avoiding it (case b). Traffic 
avoidance was turned off to depict current practice where 
conflict avoidance is only applied in a short time horizon of 10 
to 20 minutes. Shortest-path with traffic avoidance sets another 
baseline for demonstrating the marginal effect of using the 
adaptability and robustness metrics in cases c-e. When using 
the adaptability and robustness metrics (cases c-e) traffic is 
naturally avoided because the number of trajectories at cells 
that lose separation is zero. However, avoiding loss of 
separation is not guaranteed because of the coarse 
discretization of the solution space. The larger the time and 
space increments, the larger the chance of losing separation.  

Traffic complexity was measured using the metric given by 
(3)-(5). The resulting complexity maps (Lyapunov exponents) 
are shown as background to the traffic scenarios in Fig. 5 and 
6. The maps in Fig. 5 were derived using a twelve-minute 
window and the ones in Fig. 6 using a three-minute window 
(the twelve-minute average did not highlight enough details in 
this case). The Lyapunov exponent maps demonstrate the 
predictability of the flow in the snap shots used in these figures. 
Note that the color scale is unique for each of the cases, but the 
numbers on the scale can be compared between cases. The high 
numbers indicate less predictability and hence less organized 
traffic areas as discussed in Section III.B. 

Fig. 5 and 6 demonstrate that, in both scenarios, using 
robustness and adaptability as objectives for individual 
trajectory planning resulted in more structured aggregate traffic 



(e) Maximum adaptability and robustness, and shortest path 

Pattern: mostly northbound through right hole, southbound 

through left hole 

Figure 5. Flow patterns in weather line scenario 

(d) Maximum robustness only 

      Pattern: spread out as possible 

(a) Shortest path without traffic avoidance 

      No specific pattern. 

(b) Shortest path with traffic avoidance 

Pattern: northbound mostly through left hole, 

southbound mostly through right hole 

(c) Maximum adaptability only 

Pattern: outer lanes before hole, along centerline 

after the hole 

flow. Looking at the headings of the aircraft, shown by a black 
circle at the end of the eight minute history trail, and at the 
complexity maps, one can see the following. In case a, which 
used shortest path without traffic avoidance, aircraft varied in 
selecting their path relative to the hazard in both scenarios 
resulting in closer proximity and more random flow patterns. 
This is captured by a wide and unorganized spread of high-
Lyapunov-exponent areas in case a of both figures.  

All the other cases resulted in a more structured traffic 
pattern but in a different manner: In case b of Fig. 5, which 
used shortest path but avoided traffic, most aircraft traveled 
through the holes in a uniform direction, with occasional 
misalignment. In case c of Fig. 5, which used adaptability, 
aircraft formed outer lanes before the hazard and traveled along 
the centerline afterwards. This pattern resulted because 
adaptability tended to concentrate the aircraft trajectory close to 
the centerline connecting the initial and final locations. This is 
because the number of feasible trajectories is highest near the 
centerline (as shown in Fig. 3) which caused the aircraft to hug 



Figure 6. Flow patterns in round about scenario 

(e) Maximum adaptability and robustness, and shortest path 

      Pattern: 84% of aircraft counterclockwise 

(d) Maximum robustness only 

      Pattern: 70% of aircraft counterclockwise 
(a) Shortest path without traffic avoidance 

      No pattern: 60% of aircraft counterclockwise 

(b) Shortest path with traffic avoidance 

      Pattern: 68% of aircraft counterclockwise 

(c) Maximum adaptability only 

      Pattern: 97% of aircraft counterclockwise 

to central hazard. The holes in this scenario were large enough 
to allow the aircraft to travel through them in both directions. 
This caused locally high Lyuaponov exponents as shown in the 
right hole of Fig. 5 c. On the other hand, robustness, which was 
used in case d, tended to send the aircraft away from each other 
and from the hazards increasing the spacing between them. 
This caused aircraft in case d to spread out more than in cases b 
and c, and to exhibit a less structured manner. This was also 
captured by areas of low predictability around strayed aircraft 
in Fig. 5 d. Aircraft in both cases c and d separated from each 
other more than in cases a and b. In case e, the aircraft formed a 
unidirectional flow through each of the holes. One can see in 
Fig. 5 e the valleys (low exponent values) along this 
unidirectional flow through the holes. Aircraft that did not 
follow this pattern are surrounded with high exponent areas. 

In the round about scenario of Fig. 6, most aircraft turned 
around the central hazard in a uniform direction relative to the 
shortest path case a. This is indicated in the figure by the 
percentage of aircraft that selected the counterclockwise 
direction. This percentage is higher in cases c-e (70-97 percent) 



than cases a and b (60-68 percent). The Lyapunov exponent 
again captures this effect. Case a in Fig. 6 has high exponent 
areas concentrated around the central hazard where aircraft 
paths cross each other randomly without avoidance. In cases b 
through e, the high exponent values are concentrated near the 
sources and destinations while the movement areas around the 
central hazard are relatively more organized and predictable.  

In Fig. 5 and 6 cases c and d exhibited the lowest Lyapunov 
exp

h the traffic self organizes 
dep

es on the other hand 
ten

all cases 
that avoided traffic (b-e) exhibited similar proximity.  

rdination among 
airc

n of 
the metrics and algorithms presented in real-time systems. 

onent values compared to the other cases, reflecting more 
organized and predictable patterns for one time step. Fig. 7 
shows the average Lyapunov exponents for a series of maps 
over time for the scenario of Fig. 6. This average value 
represents the minimum information (in the Shannon sense) 
that has to be brought to the system in order to fully organize 
the traffic (with the same speed in the same direction). Fig. 7 
shows that case a has the highest average value most of the 
time. This is consistent with the lack of organization relative to 
the other cases. On the other hand, case c has the lowest 
average most of the time also consistent with the most 
structured flow pattern indicated in Fig. 6. The corresponding 
plot for the scenario in Fig. 5 did not show such a consistent 
difference in the average Lyapunov exponent between the 
cases. This may be attributed to the fact that the patterns in this 
scenario were less structured over the full map area and 
dominated by local misalignments.  

The manner and degree to whic
ends on a number of factors. For example, the following 

additional observations are made: (1) cases e of Fig. 5 and 6 
combine shortest path, adaptability and robustness in the cost 
function (12), with a = 40 and b = 5000. These cases exhibited 
aspects from each of the b, c, and d cases: Because of 
robustness, aircraft spread out more. Because of adaptability, 
they formed a lane closer to the centerline especially after the 
hazard. Because of minimizing distance trajectories are 
smoother. The weights used in this example were not 
optimized and the tradeoff between these factors is a subject of 
further research. (2) The density of the traffic, a function of 
both the arrival rate and the size of the hazards, affects the 
pattern. For example, the aircraft managed to go through the 
holes in Fig. 5 in both directions, which caused high 
complexity areas captured well by the Lyapunov exponents in 
Fig. 5 case c. (3) The first aircraft in the scenario does not 

encounter any traffic and hence makes random decisions if 
there are ties between trajectories. The emerging pattern of the 
traffic depends on these early decisions. For the same reason, 
when the traffic density declines the pattern may switch to a 
new one. (4) All aircraft in these scenarios used the same 
objective function. This induces implicit coordination and rules 
and influences the emerging pattern. (5) The shortest path case, 
with traffic avoidance (b) is closer to the adaptability case (c) 
than the robustness case (d). This is because the shortest path is 
close to the centerline where adaptability is high. The shortest 
path trajectory, however, differs from the most adaptable 
trajectory because it uses the minimum speed (to minimize path 
stretching). Therefore these trajectories were smother and 
exhibited less turns. Adaptable trajectori

ded to zigzag around the centerline. 

The resulting aircraft trajectories were also analyzed for 
proximity. Fig. 8 (a and b) display, respectively for the two 
scenarios of Fig. 5 and 6, the number of aircraft-seconds when 
aircraft were less than 20 nautical miles apart, over the duration 
of each scenario. These figures show that, as expected, for both 
scenarios the case (a) where aircraft used shortest path without 
traffic avoidance exhibited the highest rate of close proximity. 
In the first scenario (the two-hole scenario of Fig. 5) the 
shortest path with traffic avoidance (case b) exhibited 
significantly higher proximity than the other cases (c-e) that 
used adaptability and/or robustness. This suggests that, at least 
in this scenario, the use of adaptability and/or robustness 
metrics increases the separation between aircraft over simple 
traffic avoidance. However, this was not apparent in the second 
scenario (the round about scenario of Fig. 6) where 

V. CONCLUSIONS AND FUTURE RESEARCH 

The analysis reported in this paper demonstrated that using 
adaptability and robustness metrics in planning flexible aircraft 
trajectories results in traffic complexity mitigation. Two 
scenarios showed signs of self separation and self organization 
when using these metrics. The impact was quantified using 
both a Lyapunov-exponent-based traffic complexity metric and 
a proximity rate measurement. These flexibility metrics can be 
combined with other metrics in the trajectory planning of 
pilots, airlines, and traffic managers. By incorporating these 
metrics, the contribution of each aircraft to traffic complexity 
would be reduced, even without explicit coo

raft or for the aircraft by a ground system. 

The results reported in this paper are promising, and open 
the door for a wide range of future research. Such research 
extension includes the investigation of: the sensitivity to 
varying a number of factors such as traffic density and severity 
of constraints; the effect of dynamic and stochastic decision 
making where each aircraft updates its trajectory plan over time 
in response to uncertainty; sensitivity to varying the cost 
function and the tradeoff between adaptability, robustness and 
other metrics of interest to users and traffic managers; the 
effect of non-uniform, competing cost functions among 
different aircraft; the impact of explicit rules and coordination 
on furthering self organization; and the practical applicatio

Figure 7. Average Lyapunov exponent for scenario of Fig 6 
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