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Abstract

Accurate wind magnitude and direction estimation

is essential for aircraft trajectory prediction. For in-

stance, based on these data, one may compute en-

try and exit times from a sector or detect potential

con ict between aircraft. Since the ight path has

to be computed and updated on real time for such

applications, wind information has to be available

in real time too.The wind data which are currently

available through meteorological service broadcast

suffer from small measurement rate with respect to

location and time. In this paper, a new wind estimation

method based on radar track measures is proposed.

When on board true air speed measures are available,

a linear model is developed for which a Kalman

lter is used to produce high quality wind estimate.

When only aircraft position measures are available,

an observability analysis shows that wind may be

estimated only if trajectories have one or two turns

depending of the number of aircraft located in a given

area. Based on this observability conditions, closed

forms of the wind has been developed for the one

and two aircraft cases. By this mean, each aircraft

can be seen as a wind sensor when it is turning.

After performing evaluations in realistic frameworks,

our approach is able to estimate the wind vectors

accurately. Based on those local wind estimates, a

global space-time wind eld estimation using vector

splines is interpolated in order to produce wind maps

in the area of interest.The underline model for wind

eld computation is Shallow-Water, which assumes

geostrophic wind. The accuracy of this wind map is

dependent of the number wind estimates in a given

zone. Further improvements to the estimation can be

made by correlating with meteorological measure-

ments.

Introduction

When an aircraft ies from a city A to a city B, it

has to be managed by air traf c controllers in order to

avoid collisions with others aircraft. Everyday, about

8000 aircraft y in the French airspace, inducing a

huge amount of control workload. Such a workload,

is then spread by the mean of the airspace sectoring

(the airspace is divided into geometrical sectors, each

of them being assigned to a controller team). When

a con ict between two (or more) aircraft is detected,

the controller changes their routes (heading, speed,

altitude) in order to keep a minimum distance be-

tween them during the crossing. All ying aircraft are

then monitored during their navigation and so from

departure till destination. The controller has a 2D

visualization of his traf c by the mean of the radar

screen. At the beginning of radar air traf c control,

civil aviation authority used primary radar. In such a

system, the radar send a high energy electromagnetic

pulse (several mega watts (peak power) during one

micro second) in the airspace waiting the echo back.

This pulse propagates at the light speed (c = 300 km

per second), touch the aircraft and comes back to

the radar with a very low power (some nano watts).

Based on the time difference between pulses, it is easy

to compute the distance between the radar and the

aircraft (∆distance = ∆time.c
2

where c is the light speed).

This system gives a straight measure of the distance

between the aircraft and the radar which is a mix

between the 2D geographical distance and the altitude

of the aircraft. When controllers used only primary

radar, they had to asked the pilot to give his altitude

and his ID in order to identify more precisely the spot

they saw on their screens. The secondary radar really

improved this system by the mean of active target con-

cept. In this system, the aircraft is not passive anymore

(from the radar point of view) but is equipped by an

emitter which answers to the radar when the radar

beam reaches the aircraft. Every time the aircraft is

addressed by the radar, the aircraft emitter send back

two codes called ModeA and ModeC. Those numbers

are coded into octal and give respectively the ID and

  TAS AND WIND ESTIMATION FROM RADAR DATA

2.B.5-1



the altitude of the aircraft. When the radar receives

back those two pieces of information, it is easy to

compute the 2D geographical distance and the altitude

of the aircraft. Another radar system, called Mode S,

proposes to establish a data link between the radar and

the aircraft during the time the aircraft is in the radar

beam. This short connection enables to down link

some ight data to the ground such like roll angle, true

air speed, heading, altitude rate, etc....and enable to

improve the radar tracking [13]. This communication

between aircraft and the ground can be extended by

the mean of satellites which are even accessible over

the oceans where there is no radar.

All those radars deliver raw measures with addi-

tional noises coming from electromagnetic perturba-

tions, electronic systems, etc.... Those measures are

then ltered by the mean of a tracker lter in order

to produce smooth trajectories.

When a controller observes its traf c on the radar

screen, he tries to identify convergent aircraft which

may be in con ict in a near future, in order to apply

maneuvers that will separate them. The problem is to

estimate where the aircraft will be located in this near

future (5-10 minutes); this process is call trajectory

prediction. This prediction may be also very useful in

order to estimate the workload level in control sector

to prevent over capacity event. As a mater of fact, it

is very useful to estimate when an aircraft will enter

a sector in order to compute the associated sector

workload and to apply regulation if necessary. When

a sector is expected to be overloaded, the aircraft

involved in such a process will be speed up or slow

down by the controller in order to adapt the demand to

the actual capacity as much as possible. The trajectory

prediction depends mainly on the residual noise after

ltering (see [9]): the weight of the aircraft, the tem-

perature and the wind. The residual noise is integrated

with time with a growing covariance matrix indicating

that the estimated position is less and less accurate.

The weight of the aircraft is relevant in the ight

dynamic model but is still a raw data. The engines of

aircraft are sensitive to the air temperature and such

a data is very useful to model the trust of the aircraft

but it is also very dif cult to measure on real time.

Finally, the wind in uences strongly the cinematic of

the aircraft and limits also the trajectory prediction.

Based on the available accuracy, the actual limit of

the trajectory prediction is about 20 minutes. It means

that after 20 minutes the uncertainty is so big that the

estimated position is no more useful for any ATM

purposes.

Several efforts have been tried to improved the

trajectory prediction by estimating or suppressing the

wind [15], [7], [16], [8], [4]. The presents paper,

proposes a new method for estimating the wind around

aircraft by the mean of observations of the radar tracks

and some down linked data. One goal of this work is

to show how it is possible to extract wind information

from the radar observations.

The paper is organized as follow : the rst part

presents the relation between air speed vector, ground

speed vector and the wind. The second part gives

the observability condition of the wind based on the

available measures. The third part present the Kalman

lter and its non linear extensions. The fourth part

presents the different models which have been used

for the wind extraction. The fth part presents some

results and compares the performance of our models.

Finally, the sixth part describes how a wind eld map

can be built using some spread measures of the wind.

General Relations between Speed Vectors

The following notations will be used in the paper.

Vectors and matrices are shown with underlined sym-

bols.

Speeds

V =

[

vx

vy

]

V =
√

v2
x + v2

y θg = arctan

(

vx

vy

)

Where θg is the The route angle (with reference

to north). The same notation will be used for the

air speed (T ,tx,ty,θa) and the wind (W ,wx,wy,θw).

We have :V = T +W . These relations are shown on

gure 1.

Air Turning Rate

ωa =
dθa(t)

dt
Ground Turning Rate

ωg =
dθg(t)

dt
=

d[arctanu(t)]

dt
=

(

d[arctanu]

du

)

.

(

du

dt

)

with u =
(

vx

vy

)

ωg =
γx.vy−vx.γy

V 2 (1)
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θa

θw

θg

North North

T

V

W

with γx = dvx

dt
and γy =

dvy

dt
. One can show that the air

turning rate (ωa) and the ground turning rate (ωg) are

related by the following expression :

ωg =
(

T 2+T∗W∗cos(θa(t)−θg(t))
T 2+W2+2.T.W cos(θa(t)−θg(t))

)

ωa (2)

Hypothesis We consider en-route traf c (traf c

away from airports), with aircraft ying in cruise

phase. Aircraft are supposed to y at constant air

speed (T = Cte) and turn with constant air turning

rate (ωa = Cte). The average wind is supposed to be

constant in the neighborhood of the aircraft.

Observability Conditions

Mode S Radar

Like it has been mentioned in the introduction,

such radar are able to access on board parameters and

especially airspeed vector. Having such measures the

system is fully determined at any time as it is shown

in the following equations.

{

vx = Tsin(θa)+wx vy = Tcos(θa)+wy (3)

In this system there are two equations and two un-

knowns (wx,wy); the other parameters are given by

the radar (vx,vy,T,θa). A Kalman lter will be used

to extract the wind by removing the noise.

Standard Radar

If measures come from classical radars, only posi-

tion measures are available (x,y) and two situations

have to be taken into account.

First situation: One aircraft

In the case where radar measures come from one

aircraft, wind may be observed only after two asym-

metric turns (meaning three straight lines separated by

two turns). As a mater of fact, the rst segment brings

the following system of equations ;

{

v1x = Tsin(θa1)+wx v1y = Tcos(θa1)+wy (4)

In this system (4), there are 4 unknowns

(T,θa1,wx,wy) and two equations, so two equations

are missing.

After the rst turn two new equations are added to

this system with one extra unknown (θa2) :
{

v1x = Tsin(θa1)+wx v1y = Tcos(θa1)+wy

v2x = Tsin(θa2)+wx v2y = Tcos(θa2)+wy
(5)

In this new system (5), there are 5 unknowns

(T,θa1,θa2,wx,wy) and only 4 equations. It is only af-

ter the second turn that the system is fully determined

(6 unknowns (T,θa1,θa2,θa3,wx,wy) and 6 equations) :
⎧

⎨

⎩

v1x = T sin(θa1)+wx v1y = T cos(θa1)+wy

v2x = T sin(θa2)+wx v2y = T cos(θa2)+wy

v3x = T sin(θa3)+wx v3y = T cos(θa3)+wy

(6)

This system has a closed form solution for which the

wind is given by :

wx =
(v3y−v2y)V

2
1 +(v1y−v3y)V

2
2 +(v2y−v1y)V

2
3

2{v1y(v2x−v3x)+v2y(v3x−v1x)+v3y(v1x−v2x)} (7)

wy =
(v2x−v3x)V

2
1 +(v3x−v1x)V

2
2 +(v1x−v2x)V

2
3

2{v1y(v2x−v3x)+v2y(v3x−v1x)+v3y(v1x−v2x)} (8)

With

V1 =
√

v2
1x + v2

1y V2 =
√

v2
2x + v2

2y V3 =
√

v2
3x + v2

3y

For both expressions (wx,wy) the denominators must

not be equal to zero meaning that turns have to be

asymmetric (V 1 �= V 2 �= V 3).Having the expressions

for wx and wy it is very easy to extract the other

unknowns :
⎧

⎨

⎩

t1x = T sin(θa1) = v1x −wx t1y = T cos(θa1) = v1y −wy

t2x = T sin(θa2) = v2x −wx t2y = T cos(θa2) = v2y −wy

t3x = T sin(θa3) = v3x −wx t3y = T cos(θa3) = v3y −wy

then

T =
√

t2
1x + t2

1y =
√

t2
2x + t2

2y =
√

t2
3x + t2

3y

θa1 = arctan
(

t1x

t1y

)

θa2 = arctan
(

t2x

t2y

)

θa3 = arctan
(

t3x

t3y

)
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It is also possible to extract a close form for the True

Air Speed (T ) of the aircraft using only the ground

speeds :

T = ‖∆�v12‖.‖∆�v13‖.‖∆�v23‖
2.|v1y.(v2x−v3x)+v2y.v3x−v2x.v3y+v1x.(v3y−v2y)| (9)

Where ∆�vi j = �vi − �v j The same kind of close

forms can be extracted for the three heading angles

(θa1,θa2,θa3) : θai = arctan
(

tix
tiy

)

where tix
tiy

=

2.vix.A+B

2.viy.A−C

where

A = ∆�v23x.v1y +∆�v31x.v2y +∆�v12x.v3y

B = ∆�v23y.V
2

1 +∆�v31y.V
2

2 +∆�v12y.V
2

3

C = ∆�v23x.V
2

1 +∆�v31x.V
2

2 +∆�v12x.V
2

3

Second situation : Two aircraft

When radar measures are available for two aircraft

(a and b), only one turn for both trajectories is needed

to have enough information for wind estimation. The

two rst segments bring the following system of

equations with 6 unknowns (Ta,Tb,θaa1
,θab1

,wx,wy)

and 4 equations :
{

va1x = Ta sin(θaa1
)+wx va1y = Ta cos(θaa1

)+wy

vb1x = Tb sin(θab1
)+wx vb1y = Tb cos(θab1

)+wy

(10)

After the second turn, the new sys-

tems is fully determined with 8

unknowns(Ta,Tb,θaa1
,θab1

,θaa2
,θab2

,wx,wy) and 8

equations :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

va1x = Ta sin(θaa1
)+wx va1y = Ta cos(θaa1

)+wy

vb1x = Tb sin(θab1
)+wx vb1y = Tb cos(θab1

)+wy

va2x = Ta sin(θaa2
)+wx va2y = Ta cos(θaa2

)+wy

vb2x = Tb sin(θab2
)+wx vb2y = Tb cos(θab2

)+wy

(11)

The associated closed form of the wind is given by :

wx =
(vb1y−vb2y)(Va2

1−Va2
2)+(va2y−va1y)(Vb2

1−Vb2
2)

2{(va1x−va2x)(vb1y−vb2y)−(va1y−va2y)(vb1x−vb2x)} (12)

wy =
(vb2x−vb1x)(Va2

1−Va2
2)+(va1x−va2x)(Vb2

1−Vb2
2)

2{(va1x−va2x)(vb1y−vb2y)−(va1y−va2y)(vb1x−vb2x)} (13)

with

Va1 =
√

va2
1x + va2

1y Va2 =
√

va2
2x + va2

2y

V b1 =
√

vb2
1x + vb2

1y V b2 =
√

vb2
2x + vb2

2y

and (V a1 �= V a2;V b1 �= Vb2).

Like for the one aircraft case, it is very easy to

extract the other unknowns :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ta1x = va1x −wx ta1y = va1y −wy

tb1x = vb1x −wx tb1y = vb1y −wy

ta2x = va2x −wx ta2y = va2y −wy

tb2x = vb2x −wx tb2y = vb2y −wy

then
⎧

⎨

⎩

Ta =
√

ta2
1x + ta2

1y =
√

ta2
2x + ta2

2y

Tb =
√

tb2
1x + tb2

1y =
√

tb2
2x + tb2

2y

A close form of Ta and Tb can be extracted :

Ta =
√

ta2
1x + ta2

1y =
√

ta2
2x + ta2

2y

ta2
1x =

[

∆vb12y

(

Va2
1 −2.∆va12x.va1x −Va2

2

)

+∆va12y

(

2.∆vb12x.va1x −Vb2
1 +Vb2

2

)]2

4
(

∆va12y .∆vb12x −∆va12x.∆vb12y

)2

ta2
1y =

[

∆vb12x

(

Va2
1 −2.∆va12y.va1y −Va2

2

)

+∆va12x

(

2.∆vb12y.va1y −Vb2
1 +Vb2

2

)]2

4
(

∆va12y.∆vb12x −∆va12x.∆vb12y

)2

Tb =
√

tb2
1x + tb2

1y =
√

tb2
2x + tb2

2y

tb2
1x =

[

∆vb12y

(

Va2
1 −2.∆va12x.vb1x −Va2

2

)

+∆va12y

(

2.∆vb12x.vb1x −Vb2
1 +Vb2

2

)]2

4
(

∆va12y .∆vb12x −∆va12x.∆vb12y

)2

tb2
1y =

[

∆vb12x

(

Va2
1 −2.∆va12y.vb1y −Va2

2

)

+∆va12x

(

2.∆vb12y.vb1y −Vb2
1 +Vb2

2

)]2

4
(

∆va12y.∆vb12x −∆va12x.∆vb12y

)2

⎧

⎨

⎩

θaa1
= arctan

(

ta1x

ta1y

)

θaa2
= arctan

(

ta2x

ta2y

)

θab1
= arctan

(

tb1x

tb1y

)

θab2
= arctan

(

tb2x

tb2y

)

Based on those observability conditions, several wind

estimation models have been developed for which

some of them use a Kalman lter. This lter is now

described in the following section.

Kalman Filtering

Linear Form

The Kalman lter is named after Rudolph

E.Kalman, who in 1960 published his famous paper

describing a recursive solution to the discrete-data

linear ltering problem [12], [10], [18]. The Kalman

lter is essentially a set of mathematical equations that

implements a predictor-corrector type estimator that is

2.B.5-4



optimal in the sense that it minimizes the estimated

error covariance (when some presumed conditions

are met). It has been successfully applied in many

real problems [14], [5], [3], [2], [1]. The following

description of the Kalman lter is mainly due to

G.Welch and G.Bishop [18].

The Kalman lter addresses the general problem of

trying to estimate the state X(k) ∈ R n of a discrete

controlled process that is governed by the linear

stochastic difference equation call evolution equation :

X(k +1) = F(k).X(k)+G(k).Û(k)+ v(k) (14)

with a measurement Z(k) ∈ R m :

Z(k) = H(k).X(k)+w(k) (15)

The n.n matrix F(k) in the evolution equation (14)

relates the state at the present step k to the state at the

next step k+1, in the absence of either a driving func-

tion or process noise. The n.p matrix G(k) relates the

optional control input Û(k) ∈ R p to the state X . The

n.m matrix H(k) in the measurement equation (15)

relates the state to the measurement Z(k). The random

variables v(k) and w(k) represent the process and

measurement noise (respectively). They are assumed

to be independent (of each other), centered, white, and

with normal probability distributions. Furthermore the

optional control is disturbed by a random variable n(k)
(Û(k) = U(k)+n(k)) which will be supposed to have

a normal probability distribution also.
⎧

⎨

⎩

p(v(k)) ∽ N (0,Q(k))
p(w(k)) ∽ N (0,R(k))
p(n(k)) ∽ N (0,N(k))

(16)

So we have :

E [v(k)] = 0 E
[

v(k)v( j)T
]

= Q(k).δk j

E [w(k)] = 0 E
[

w(k)w( j)T
]

= R(k).δk j

E [n(k)] = 0 E
[

n(k)n( j)T
]

= N(k).δk j

(17)

where T is the transpose operator and δk j is the

Kronecker symbol which is 1 if k = j and 0 if k �= j.

We de ne X̂(k +1/k) ∈ R n to be the a priori state

estimate at step k +1 given knowledge of the process

prior to step k + 1, and X̂(k + 1/k + 1) ∈ R n to be

the a posteriori state estimate at step k + 1 given

measurement Z(k + 1). We can then de ne a priori

and a posteriori estimate error as :
{

e(k +1/k) = X(k +1)− X̂(k +1/k)
e(k +1/k +1) = X(k +1)− X̂(k +1/k +1)

(18)

The a priori estimate error covariance is then :

P(k +1/k) = E
[

e(k +1/k)e(k +1/k)T
]

(19)

and the a posteriori estimate error covariance is :

P(k +1/k +1) =
E

[

e(k +1/k +1)e(k +1/k +1)T
] (20)

In deriving the equation for the Kalman lter, we be-

gin with the goal of nding an equation that computes

an a posteriori state estimate X̂(k+1/k+1) as a linear

combination of an a priori estimate X̂(k +1/k) and a

weighted difference between an actual measurement

Z(k+1) and a measurement prediction H.X̂(k+1/k) :

X̂(k +1/k +1) = X̂(k +1/k)+
K(k +1).

(

Z(k +1)−H.X̂(k +1/k)
) (21)

The difference
(

Z(k +1)−H.X̂(k +1/k)
)

in equa-

tion 21 is called the measurement innovation, or

the residual. The residual re ects the discrepancy

between the predicted measurement H.X̂(k+1/k) and

the actual measurement Z(k + 1). A residual of zero

means that the two are in complete agreement.

The n.m matrix K(k +1) in equation 21 is chosen

to be the gain or blending factor that minimizes the a

posteriori error covariance 20. This minimization can

be accomplished by rst substituting equation 21 into

the above de nition for e(k + 1/k + 1), substituting

that into equation 20, performing the indicated expec-

tations, taking the derivative of the trace of the result

with respect to K(k + 1), setting that result equal to

zero, and then solving for K(k +1). One form of the

resulting K(k+1) that minimizes equation 20 is given

by :

K(k +1) = P(k +1/k).H(k +1)T .
[

H(k +1)P(k +1/k)H(k +1)T +R(k +1)
]−1

(22)

Looking at equation 22 we see that as the mea-

surement error covariance R(k + 1) approaches zero,

the gain K(k + 1) weights the residual more heavily.

Speci cally :

lim
R(k+1)→0

K(k +1) = H−1 (23)

On the other hand, as the a priori estimate error co-

variance P(k+1/k) approaches zero, the gain K(k+1)
weights the residual less heavily. Speci cally :

lim
P(k+1/k)→0

K(k +1) = 0 (24)
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As the measurement error covariance R(k + 1), the

actual measurement Z(k + 1) is “trusted” more and

more, while the predicted measurement H.X̂(k+1/k)
is trusted less and less. On the other hand, as the a

priori estimate error covariance P(k+1/k) approaches

zero the actual measurement Z(k + 1) is trusted less

and less, while the predicted measurement H.X̂(k +
1/k) is trusted more and more.

The Kalman lter estimates a process by using a

form of feedback control : the lter estimates the

process state at some time and then obtains feedback

in the form of (noisy) measurements. As such, the

equation for the Kalman lter fall into two groups :

time update equations and measurement update equa-

tions. The time update equations are responsible for

projecting forward (in time) the current state and error

covariance estimates to obtain the a priori estimates

for the next time step. The measurement update

equations are responsible for the feedback -i.e. for

incorporating a new measurement into the a priori

estimate to obtain an improved estimate.

The time update equations are the following :
⎧

⎨

⎩

X̂(k +1/k) = F(k).X(k)+G(k).U(k)
P(k +1/k) = F(k).P(k/k).F(k)T+

G(k).N(k).G(k)T +Q(k)
(25)

The rst equation is the state prediction and the

second one gives the associated covariance. The mea-

surement update equations are the following :
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K(k +1) = P(k +1/k).H(k +1)T .
[

H(k +1)P(k +1/k)H(k +1)T +R(k +1)
]−1

X̂(k +1/k +1) = X̂(k +1/k)+K(k +1).
[

Z(k +1)−H(k +1).X̂(k +1/k)
]

P(k +1/k +1) = [I −K(k +1).H(k +1)].
P(k +1/k)

(26)

The rst task during the measurement update is to

compute the Kalman gain, K(k + 1). The next step

is to actually measure the process to obtain Z(k +1),
and then to generate an a posteriori state estimated

by incorporating the measurement. The nal step is

to obtain an a posteriori error covariance estimate.

After each time and measurement update pair, the

process is repeated with the previous a posteriori

estimates used to project or predict the new a priori

estimate. In order to initiate the process, the rst

initial state and the associated covariance has to be

set up. Usually, the rst state is build with an initial

measure and the associated covariance is set up with

the measure covariance or with a big values, because

the lter has no con dence in its initial state (it comes

from a measure). This Kalman lter has been used in

our wind estimation problem for which the associated

models are now presented.

Extended Form

The standard Kalman lter addresses the general

problem of trying to estimate the state X(k) ∈ R n of

a discrete-time controlled process that is governed by

a linear stochastic difference equation. But what hap-

pens if the process to be estimated and (or) the mea-

surement relationship to the process is non-linear ? A

Kalman lter that linearized about the current mean

and covariance is referred to as an extended Kalman

lter or EKF. We can linearize the estimation around

the current estimate using the partial derivative of

the process and measurement functions to compute

estimates even in the face of non-linear relationships.

Let us assume that our process again has a state vector

X(k) ∈ R n, but that process is now governed by the

non-linear stochastic difference equation :

X(k +1) = F [k,X(k),U(k)]+ v(k) (27)

with a measurement Z(k) ∈ R m that is :

Z(k +1) =H [k,X(k)]+w(k) (28)

where the random variable v(k) and w(k) again rep-

resent the process and measurement noise. The new

time update equations are now the followings :

⎧

⎨

⎩

X̂(k +1/k) = F [k,X(k),U(k)]
P(k +1/k) = F

X
(k).P(k/k).F

X
(k)T+

F
U
(k).N(k).F

X
(k)T +Q(k)

(29)

where F
X
(k) is the Jacobian matrix of partial deriva-

tives of F with respect to the vector X and is given

by the following :

F
X
(k)=̂

[

▽X

(

F [k,X ,U ]T
)]T

X=X̂(k/k),U=Û(k)
(30)

where

▽S=̂

[

∂

∂S1

,
∂

∂S2

, ...,
∂

∂Sns

]

(31)

is the differential operator.
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The linearized measurement update is now given

by :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K(k +1) = P(k +1/k).H X(k +1)T .
[

H X(k +1).P(k +1/k)H X(k +1)T +R(k +1)
]−1

X̂(k +1/k +1) = X̂(k +1/k)+K(k +1).
[

Z(k +1)−H
(

k, X̂(k +1/k)
)]

P(k +1/k +1) =
[

I−K(k +1).H X(k +1)
]

.
P(k +1/k)

(32)

Unlike its linear counterpart, the extended Kalman

lter is not an optimal estimator. In addition, if the

initial estimate of the state is wrong, or if the process

is modeled incorrectly, the lter may quickly diverge,

owing to its linearization. Another problem with the

extended Kalman lter is that the estimated covariance

matrix tends to underestimate the true covariance

matrix and therefore risks becoming inconsistent in

the statistical sense without the addition of ”stabilizing

noise”. When the state transition and observation

models are highly non-linear, the extended Kalman

lter can give particularly poor performance [11].This

is because only the mean is propagated through the

non-linearity.

The Unscented Kalman Filter(UKF) is another non

linear extension of the linear Kalman lter for which

both mean vector and covariance matrix are propa-

gated through the non-linearity. A detailed description

of the UKF is given in appendix[A].

Having described our problem and some estimation

techniques, the next section introduces the models

which haves been used for our experiments.

Models

Model with Air Speed and Air Turning Rate (Model

1)

The state vector is given by :

X(k) = [x(k)y(k) tx(k) ty(k)wx(k)wy(k)]
T

(33)

where x(k),y(k) is the position, tx(k),ty(k) the True

Air Speed (TAS) and wx(k),wy(k) the wind. The

measure vector consists in the radar position and the

true air speed :

Z(k) = [xm(k)ym(k) txm
(k) tym

(k)]T (34)

Having access to the air turning rate (ωa), it can be

included in the prediction matrix. The structure of the

system is the following :

X(k +1) = F(k).X(k)+ v(k) (35)

where

F(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 C1(ωa) C2(ωa) ∆t 0

0 1 −C2(ωa) C1(ωa) 0 ∆t

0 0 C3(ωa) C4(ωa) 0 0

0 0 −C4(ωa) C3(ωa) 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

Z(k) =

⎡

⎢

⎢

⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤

⎥

⎥

⎦

.X(k)+w(k) (37)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C1(ωa(k)) = sin(ωa(k)∆t)
ωa(k)

C2(ωa(k)) = 1−cos(ωa(k)∆t)
ωa(k)

C3(ωa(k)) = cos(ωa(k)∆t)
C4(ωa(k)) = sin(ωa(k)∆t)

(38)

The model being exact, the model noise covariance

matrix R = 0. The measure noise covariance matrix R

is given by :

R =

⎡

⎢

⎢

⎣

σ2
p 0 0 0

0 σ2
p 0 0

0 0 σ2
T 0

0 0 0 σ2
T

⎤

⎥

⎥

⎦

with σp = 100 meters and σT = 0.2 kts.

Model with Air Speed only (model 2)

The state vector is given by :

X(k) = [x(k)y(k) tx(k) ty(k)wx(k)wy(k)]
T

(39)

The measure vector consists in the radar position and

the true air speed :

Z(k) = [xm(k)ym(k) txm
(k) tym

(k)]T (40)

The prediction matrix is now given by :

F(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ∆t 0 ∆t 0

0 1 0 ∆t 0 ∆t

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)
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The measure matrix H and the associated covariance

matrix R are the same as in the rst model. This

model is linear but is false for the air speed vector

evolution. In order to take into account this model

error, the following covariance matrix (Q) is included

in the lter : Q is given by :

Q =

⎡

⎢

⎢

⎣

0 0 0 0

0 0 0 0

0 0 1.0 0

0 0 0 1.0

⎤

⎥

⎥

⎦

Model with Turning Rate Only (Model 3)

This model is the same as the rst one with the

following measure vector ;

Z(k) = [xm(k)ym(k)]T (42)

and the associated measure equation

Z(k) =

[

1 0 0 0 0 0

0 1 0 0 0 0

]

.X(k)+w(k) (43)

Models Without Command

Model using Kalman Filter (model 4)

Having no access to the turning rate, this parameter

may be extracted by a Kalman lter (ωa included in

the state vector). If the turning rate is included in the

state vector, the evolution of the system is not linear

and an EKF or an UKF has to be used to manage

such state vector.

Model using turns (model 5)

As it has been shown in the previous section

(observability conditions), wind may be extracted by

observing ground radar track during turns.

The key element of this approach is the turning rate

detector based on equation (1). When ωg is greater

than a given threshold, the aircraft is consider to be in

turn. Based on this turn detector, straight line segment

are easily identi ed for which ground speed vector

averages are computed. Speed vector estimates in

straight lines are given by the framework of Figure 2.

In this gure, the turns are rst detected and a counter

is then used to select the right averaging process

in order to compute ground speed estimates. When

two aircraft are used for wind estimation, the same

framework is duplicated and counters select only two

averaging blocks in order to produce the following

estimates :V a1,V a2,V b1,V b2.

0

1

2

Average

Average

Average

Trajectory

Samples Turn 

Detector

V1

V2

V3

Counter

Reference

Trajectory

Disturbed

Trajectory

Filter

in test

Noise

Filtered

Trajectory

Error

Results

Simulation Framework

In order to test and compare our models, a radar

tracker simulator has been used to produce the refer-

ence trajectory which has been disturbed with a Gaus-

sian noise. The disturbed trajectory is then ltered

by a Kalman lters which generates the estimated

trajectory which is then compared to the reference

trajectory. This framework is summarized on Figure 3.

For all experiments, a wind of 40 kts has been

used with θw = 240o ⇒ W = [−34.64kts,−20kts]T=
[−17.82m/s,−10.28m/s]T .

Models with Mode-S radar data (model 1,2 and 3)

The rst trajectory used for our experiments is built

with 3 straight lines (20 minutes for each) connected

with turns as it can be seen on gure 4.This trajectory

has been disturbed by a Gaussian noises for which the

means are zero and the standard deviations are the

2.B.5-8
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The turning rate of the rst turn is 1 deg and -1 deg

for the second turn. The aircraft is considered to y

on cruise phase (vertical speed equal zero).
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Figure 5. Wind Strength ConvergencePhase for the
                               Models 1 and 2

following :σpos ition = 100m and σTAS = 0.2kts. Those

values are given by the performance of the actual radar

trackers.

Results for models 1 and 2

Models 1 and 2 have been tried on this trajectory

for which the residual errors on the wind estimates

are given on gure 5 , 6, 7 and 8. The gures 5

and 6 show the residual error for the wind strength

estimate. Figure 5 shows the convergence phase of the

lter ( rst 6 minutes) and gure 6 shows the residual

error after the convergence phase. The same kind of

results are given on gures 7 and 8 for the residual

wind angle estimates. The models 1 and 2 have the

same evolution during the convergence phase which
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Figure 7. Wind Angle Convergence Phase for the

lasts about 2 minutes. After this convergence phase,

the wind strength estimate error stays below 0.2kts

for both models 6. The model 1 has a more accurate

behavior at the end of the simulation with an error

which stay below 0.1kts. The convergence phase for

the wind angle estimate last longer than for the wind

strength (about 6 minutes (see gure 7)). After this

convergence phase the wind angle residual error stays

below 1 degree (in absolute value) for both model.

As for the wind strength estimation, the second model

(with turning rate) produce a better estimate. The rst

model is disturbed by the turns.

Both models model are able to produce accurate

wind estimate all along the trajectory (after the con-

vergence phase) even during the turns.

Results for models 3

Model 1 and 2

Model 1 and 2
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is not able to converge and model 3 (which is models

2 without air speed measure) has to wait the second

turn to be able to produce an estimate of the wind (see

gure 9 , 10 ,11 and 12). During the convergence

phase ( gure 9), model 3 reduces the wind strength

error till 40kts which is the limit for such estimation

because the Kalman lter is not able to distinguish

in the position measures the part coming from the

air speed and the part coming from the wind. After

the convergence phase (see gure 10) the lter has to

wait the second turn in order to be able to produce

a reliable estimate of the wind strength (as it has

been previously shown (observability conditions), it is

only after the second turn that the wind observability

conditions are met). As for the wind strength error,

the wind angle error reach zero after the second turn.
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During the convergence phase the wind angle error

reach 160 deg (see gures 11 and 12).

Models with Classical Radar DataModel 4 and 5)

Results for models 4

When on board measures (TAS, heading, turning

rate) are not available, the turning rate has to be

included in the state vector inducing a non linear

prediction equation of the lter. In order to address

such non linear evolution, an EKF and an UKF has

been developed and tested on the rst trajectory. Both

lters are not able to estimate the wind vector even

after the second turn. This behavior is due to the

residual error of the Taylor expansion used in the EKF

or in the UKF. Based on the observation (positions)

the lter is not able to nd the part due to the wind

and the one due to the error coming from the Taylor

expansion.

Results for model 5

Based on the turning rate estimate given by equa-

tion 1, it is very easy to build a turn detector when

|ωg| > threshold. The ground vector speed has been

disturbed by a Gaussian noise with zero mean and

0.2kts standard deviation (performance of the actual

trackers). This method has been used on the rst

trajectory. The ground turning rate estimate is given

by gure 13. The two turns are well identi ed with a

value of about +/- 1.3 degree/sec in turns (it must be

noticed that the ground turning rate is different from

the air turning rate). The results of this approach are
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Figure 14. Second trajectory set. Each straight lines l

ast 20 minutes. The turning rate in the rst trajectory is

1 deg and -1 deg for the second one. The true air spee

of the rst aircraft is 300kts and 400 for the second one

given in the following table :
Wind Strength Error

Est and Angle

wx = −17.6798m/s 39.65kts 0.35kts

wy = −10.1831m/s 240.053deg 0.053deg

Those results has been computed by using equa-

tions (7), (8) and the following ground speed estimates

coming from the averaging process :

v1x = 54.4818 m/s v1y = 61.9523 m/s

v2x = 84.3536 m/s v2y = −10.2142 m/s

v3x = −17.6780 m/s v3y = 91.8504 m/s

When two aircraft trajectories are available, only

one turn for each is necessary. For such a model, the

trajectories given on gure 14 has been used. The

turning rate estimates are given on gures 15 and 16.

The results of this approach are given in the following

table :

Wind Strength Error

Est Angle

wx = −17.6485m/s 39.64kts 0.36kts

wy = −10.2227m/s 239.918deg 0.082deg

Those results has been computed by the using equa-

tions 12 13 and the ground speed estimates coming

from the averaging process :

va1x = 90.5494 m/s va1y = 98.0082 m/s

va2x = 90.5552 m/s va2y = −118.4478 m/s

vb1x = −221.7254 m/s vb1y = −10.2111 m/s

vb2x = −17.6796 m/s vb2y = −214.2995 m/s

2.B.5-11

First Trajectory



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  500  1000  1500  2000  2500

T
u
rn

in
g
 R

a
te

 (
d
e
g
re

s
/s

e
c
)

Time (sec)

First aircraft turning rate estimate

Ground turning Rate

Figure 15. Turning Rate Estimate of the First Aircraft

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  500  1000  1500  2000  2500

T
u
rn

in
g
 R

a
te

 (
d
e
g
re

s
/s

e
c
)

Time (sec)

Second aircraft turning rate estimate

Ground turning Rate

Figure 16. Turning Rate Estimate of the Second Aircraft

Having now some wind estimates on some points in

the airspace (where the aircraft are located), the next

step consists in the global wind eld interpolation

based on the meteorological model called ”Shallow-

Water”. This model is described in [6] and the asso-

ciated discret expansion in given in [17].

Vector Spline Interpolation

Shallow Water Wind Model

Let V be the vector eld giving the wind velocity at

each point. We will assume in the following that area

of interest is located high enough above the ground

level so that viscous effects are negligible. Assume

furthermore that wind eld is two dimensional (that

is does not depends on altitude). Then the evolution

of V is described by the system of equations :

⎧

⎪

⎨

⎪

⎩

∂u
∂t

+U ∂u
∂x

+ ∂φ
∂x
− f v = 0

∂v
∂t

+U ∂v
∂x

+ ∂φ
∂y

+ f u = 0

∂φ
∂t

+U
∂φ
∂x

+Φ(y)
[

∂u
∂x

+ ∂v
∂y

]

+ ∂Φ
∂y

v = 0

(44)

with :

V =

[

U +u

v

]

U the mean west-east component of the wind, f is

the Coriolis parameter which can be expressed as :

f = 2Ωsinφ0 −2ΩR−1 cosφ0

with Ω = 2π
86400

the rotation rate of the earth, φ0 the

latitude (assumed to be constant in the domain of

interest) and R = 6.370×106m the earth radius. Φ is

the geopotential of the isobaric surface and is written

as :

Φ = θ(y)+φ

with :

θ(y) = θ0 −
[

2Ω(sinφ0)y−ΩR−1(cosφ0)y
2
]

U

and :

φ0 = 3×104ms−2 U = 25ms−1

The set of equations 44 is known as shallow water

model. With little rewriting, it can be shown that this

model has the following synthetic form :

(
∂

∂t
+L)X = 0

with :

X =

⎡

⎣

u

v

φ

⎤

⎦

and L the differential operator :

L = A
∂

∂X
+B

∂

∂y
+C

where

A =

⎡

⎣

U 0 0

0 U 0

Φ 0 U

⎤

⎦ B =

⎡

⎣

0 0 0

0 0 1

0 Φ 0

⎤

⎦

C =

⎡

⎣

0 − f 0

f 0 0

0 Φ′ 0

⎤

⎦

Interpolating Vector Splines
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The symbol σ(y,ξ) of this differential operator L

easily computes as :

σ(y,ξ) =

⎡

⎣

−iξ1U − f 0

f −iξ1U −iξ2

−iξ1Φ(y) −iξ2Φ(y)+Φ′(y) −iξ1U

⎤

⎦

Since a solution 0 of the Shallow-Water model must

ful ll :

(
∂

∂t
+L)V = 0

we will seek for a vector eld V such that :

V = argmin

Z T

0

Z

D

∥

∥

∥

∥

(
∂

∂t
+L)X(x,t)

∥

∥

∥

∥

2

dxdt

under the constraints that :

X(xi,ti) = vi, i = 1 . . .n

if vi is the wind measurement at time ti and location

xi, D is the domain of interest and I is the time interval

chosen for computation. Assuming that boundary con-

ditions vanish, we obtain that the functional criterion

has expression :

Z

I

Z

D
〈(− ∂2

∂t2
+LtL)X(x,t),X(x,t)〉dxdt

with Lt the adjoint operator of operator L. Operator

LtL has symbol :

σ(y,ξ) =

⎡

⎣

ξ2
1(Φ2 +U2)+ f 2 ξ1ξ2Φ+ iξ1(ΦΦ′ −2 fU) −iξ1 +ξ2UΦ)

ξ1ξ2Φ− iξ1(ΦΦ′−2 fU f 2 +ξ2
1U2 +ξ2

2Φ2 +Φ′2 ξ1ξ2(U +Φ)− iξ2Φ′

iξ1 +ξ2UΦ ξ1ξ2(U +Φ)+ iξ2Φ′ ξ2
1

⎤

⎦

LtL admits an eigenvector expansion (φn)n∈N with

associated eigenvalues (λn)n∈N. We will week for a

kernel K(x,y,t,u) such that :

R

I

R

D〈K(x,y,t,u),(− ∂2

∂t2 +LtL)X(y,u)〉dydu

= X(x,t)

Formally, we may write :

K(x,y,t,u) = ∑
n

cn(t,u)φn(x)⊗φn(y)

and nd the right expression for cn(t,u). In the case

I = R and wind elds of nite energy over time, some

computations show that the sought after kernel has

expression :

K(x,y,t,u) = ∑
n

e− n|t−u|

2 n

φn(x)⊗φn(y)

with : n =
√

λn. The constraints that X(xi,ti) = vi, i =
1 . . .n may thus be rewritten as :

Z

I

Z

D
〈K(xi,y,ti,u),(− ∂2

∂t2
+LtL)X(y,u)〉dydu = vi

which is much more tractable than the point version.

Introducing Lagrange multipliers (εi)i=1...n, the prob-

lem may be solved and the solution written as :

X(x,t) = ∑
i=1...n

εiK(xi,x,ti,t)

so that optimal vector eld is a linear combination of

kernels evaluated at measurement points (xi,ti)i=1...n.

This is a classical result within the frame of in-

terpolating spline theory, with the restriction that

the kernel is not translation invariant. From now,

only numeric evaluations of the kernel can be made,

based on nding nite elements approximations of

the eigenfunctions, then truncating the in nite sum

in the kernel expansion at an order where residual

is low enough. This yields a piecewise polynomial

approximate kernel, which can be computed once and

used afterward (note that if the kernel is computable,

nding the wind eld expansion is done by solving a

linear system).

Conclusion

This paper has given a new approach for extracting

the wind information from the radar tracks. Two

approaches has been presented. When True Airspeed

measures are available, linear models may be used

with regular Kalman lter. In this rst approach,

wind estimate are available all along the aircraft

trajectory. When only position measures are available,

an observability analysis has shown that wind may be

estimated only after turns (one turn for two aircraft or

two turns for one aircraft). For such approach, a closed

form of the wind has been developed. Then, those

models have been validated with realistic simulations.

Having wind measures spread in the airspace, an

interpolating method using vector splines has been

developed. Based on the differential operator of the

Sallow-Water model and the local wind observations,

this method build a vector eld using kernel func-

tions. The associated eigenfunctions (φn) have to be

computed numerically on each point of the grid where

the vector eld has to be computed. It must be noticed

that the Shallow-Water is only valid above 2000m; this

2.B.5-13

means this method may be used mainly for

En-Route traffic.
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Appendix A : Unscented Kalman 

Filter  

The unscented Kalman lter (UKF) [11] uses a 

deterministic sampling technique known as the un-

scented transform to pick a minimal set of sample 

points (called sigma points) around the mean. These 

sigma points are then propagated through the non-

linear functions and the covariance of the estimate 

is then recovered. The result is a lter which more 

accurately captures the true mean and covariance. 

In addition, this technique removes the requirement 

to analytically calculate Jacobians, which for 

complex functions can be a dif cult task in itself.  

Prediction  

As with the EKF, the UKF prediction can be 

used independently from the UKF update.  

The estimated state and covariance are 

augmented with the mean and covariance of the 

process noise.  

 

A set of 2L + 1 sigma points is derived from 

the augmented state and covariance where L is the 

dimension of the augmented state.  

 

where   

  

is the ith column of the matrix square root of  

 

using the de nition: square root A of matrix B 

satis es  

 

The matrix square root should be calculated 

using numerically ef cient and stable methods such 

as the Cholesky decomposition. The sigma points 

are propagated through the transition function .  

 

The weighted sigma points are recombined to 

produce the predicted state and covariance.  

 

where the weights for the state and covariance 

are given by:  

 

Typical values for ,  and  are 10 3, 2 and 0 

respectively.  

Update  

The predicted state and covariance are 

augmented as before, except now with the mean 

and covariance of the measurement noise.  

 

As before, a set of 2L + 1 sigma points is 

derived from the augmented state and covariance 

where L is the dimension of the augmented state.  
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Alternatively if the UKF prediction has been 

used the sigma points themselves can be augmented 

along the following lines  

 

The sigma points are projected through the 

observation function   

 

The weighted sigma points are recombined to 

produce the predicted measurement and predicted 

measurement covariance.  

  

The state-measurement cross-covariance 

matrix,  

 

is used to compute the UKF Kalman gain.  

 

As with the Kalman lter, the updated state is 

the predicted state plus the innovation weighted by 

the Kalman gain,  

  

And the updated covariance is the predicted 

covariance, minus the predicted measurement 

covariance, weighted by the Kalman gain.  
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