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Introduction

When an aircraft ies from a city A to a city B, it has to be managed by air traf c controllers in order to avoid collisions with others aircraft. Everyday, about 8000 aircraft y in the French airspace, inducing a huge amount of control workload. Such a workload, is then spread by the mean of the airspace sectoring (the airspace is divided into geometrical sectors, each of them being assigned to a controller team). When ac o n ict between two (or more) aircraft is detected, the controller changes their routes (heading, speed, altitude) in order to keep a minimum distance between them during the crossing. All ying aircraft are then monitored during their navigation and so from departure till destination. The controller has a 2D visualization of his traf c by the mean of the radar screen. At the beginning of radar air traf c control, civil aviation authority used primary radar. In such a system, the radar send a high energy electromagnetic pulse (several mega watts (peak power) during one micro second) in the airspace waiting the echo back. This pulse propagates at the light speed (c = 300 km per second), touch the aircraft and comes back to the radar with a very low power (some nano watts). Based on the time difference between pulses, it is easy to compute the distance between the radar and the aircraft (∆ distance = ∆ time .c 2 where c is the light speed). This system gives a straight measure of the distance between the aircraft and the radar which is a mix between the 2D geographical distance and the altitude of the aircraft. When controllers used only primary radar, they had to asked the pilot to give his altitude and his ID in order to identify more precisely the spot they saw on their screens. The secondary radar really improved this system by the mean of active target concept. In this system, the aircraft is not passive anymore (from the radar point of view) but is equipped by an emitter which answers to the radar when the radar beam reaches the aircraft. Every time the aircraft is addressed by the radar, the aircraft emitter send back two codes called ModeA and ModeC. Those numbers are coded into octal and give respectively the ID and TAS AND WIND ESTIMATION FROM RADAR DATA 2.B.5-1 the altitude of the aircraft. When the radar receives back those two pieces of information, it is easy to compute the 2D geographical distance and the altitude of the aircraft. Another radar system, called Mode S, proposes to establish a data link between the radar and the aircraft during the time the aircraft is in the radar beam. This short connection enables to down link some ight data to the ground such like roll angle, true air speed, heading, altitude rate, etc....and enable to improve the radar tracking [START_REF] Lefas | Improved tracking with mode-s data-linked velocity measurements[END_REF]. This communication between aircraft and the ground can be extended by the mean of satellites which are even accessible over the oceans where there is no radar.

All those radars deliver raw measures with additional noises coming from electromagnetic perturbations, electronic systems, etc.... Those measures are then ltered by the mean of a tracker lter in order to produce smooth trajectories.

When a controller observes its traf c on the radar screen, he tries to identify convergent aircraft which may be in con ict in a near future, in order to apply maneuvers that will separate them. The problem is to estimate where the aircraft will be located in this near future (5-10 minutes); this process is call trajectory prediction. This prediction may be also very useful in order to estimate the workload level in control sector to prevent over capacity event. As a mater of fact, it is very useful to estimate when an aircraft will enter a sector in order to compute the associated sector workload and to apply regulation if necessary. When a sector is expected to be overloaded, the aircraft involved in such a process will be speed up or slow down by the controller in order to adapt the demand to the actual capacity as much as possible. The trajectory prediction depends mainly on the residual noise after ltering (see [START_REF]Con ict detection and resolution in the presence of prediction error[END_REF]): the weight of the aircraft, the temperature and the wind. The residual noise is integrated with time with a growing covariance matrix indicating that the estimated position is less and less accurate. The weight of the aircraft is relevant in the ight dynamic model but is still a raw data. The engines of aircraft are sensitive to the air temperature and such a data is very useful to model the trust of the aircraft b u ti ti sa l s ov e r yd i f cult to measure on real time. Finally, the wind in uences strongly the cinematic of the aircraft and limits also the trajectory prediction. Based on the available accuracy, the actual limit of the trajectory prediction is about 20 minutes. It means that after 20 minutes the uncertainty is so big that the estimated position is no more useful for any ATM purposes.

Several efforts have been tried to improved the trajectory prediction by estimating or suppressing the wind [START_REF] Mondoloni | Improving trajectory forecasting through adaptive ltering technique[END_REF], [START_REF]Wind prediction accuracy for air traf c management decision support tools[END_REF], [START_REF] Rekkas | Three dimensional tracking using on-board measurements[END_REF], [START_REF] Delahaye | Wind eld update using radar track data[END_REF], [START_REF] Bradford | Using aircraft radar tracks to estimate winds aloft[END_REF]. The presents paper, proposes a new method for estimating the wind around aircraft by the mean of observations of the radar tracks and some down linked data. One goal of this work is to show how it is possible to extract wind information from the radar observations.

The paper is organized as follow : the rst part presents the relation between air speed vector, ground speed vector and the wind. The second part gives the observability condition of the wind based on the available measures. The third part present the Kalman lter and its non linear extensions. The fourth part presents the different models which have been used for the wind extraction. The fth part presents some results and compares the performance of our models. Finally, the sixth part describes how a wind eld map can be built using some spread measures of the wind.

General Relations between Speed Vectors

The following notations will be used in the paper. Vectors and matrices are shown with underlined symbols. Speeds

V = v x v y V = v 2 x + v 2 y θ g = arctan v x v y
Where θ g is the The route angle (with reference to north). The same notation will be used for the air speed (T ,t x ,t y , θ a ) and the wind (W , w x , w y , θ w ). We have :V = T + W . These relations are shown on gure 1. dt . One can show that the air turning rate (ω a ) and the ground turning rate (ω g )a r e related by the following expression :

Air Turning Rate

ω a = dθ a (t) dt Ground Turning Rate ω g = dθ g (t) dt = d[arctan u(t)] dt = d[arctan u] du . du dt with u = v x v y ω g = γ x .v y -v x .γ y V 2 (1)
ω g = T 2 +T * W * cos(θ a (t)-θ g (t)) T 2 +W 2 +2.T.W cos(θ a (t)-θ g (t)) ω a (2)
Hypothesis We consider en-route traf c( t r a f c away from airports), with aircraft ying in cruise phase. Aircraft are supposed to y at constant air speed (T = C te ) and turn with constant air turning rate (ω a = C te ). The average wind is supposed to be constant in the neighborhood of the aircraft.

Observability Conditions

Mode S Radar

Like it has been mentioned in the introduction, such radar are able to access on board parameters and especially airspeed vector. Having such measures the system is fully determined at any time as it is shown in the following equations. (3)

In this system there are two equations and two unknowns (w x , w y ); the other parameters are given by the radar (v x , v y , T, θ a ). A Kalman lter will be used to extract the wind by removing the noise.

Standard Radar

If measures come from classical radars, only position measures are available (x, y) and two situations have to be taken into account.

First situation: One aircraft

In the case where radar measures come from one aircraft, wind may be observed only after two asymmetric turns (meaning three straight lines separated by two turns). As a mater of fact, the rst segment brings the following system of equations ; v 1x = Tsin(θ a1 )+w x v 1y = Tcos(θ a1 )+w y [START_REF] Bradford | Using aircraft radar tracks to estimate winds aloft[END_REF] In this system (4), there are 4 unknowns (T, θ a1 , w x , w y ) and two equations, so two equations are missing.

After the rst turn two new equations are added to this system with one extra unknown (θ a2 ):

v 1x = Tsin(θ a1 )+w x v 1y = Tcos(θ a1 )+w y v 2x = Tsin(θ a2 )+w x v 2y = Tcos(θ a2 )+w y ( 5 
)
In this new system (5), there are 5 unknowns (T, θ a1 , θ a2 , w x , w y ) and only 4 equations. It is only after the second turn that the system is fully determined (6 unknowns (T, θ a1 , θ a2 , θ a3 , w x , w y ) and 6 equations) :

⎧ ⎨ ⎩ v 1x = Tsin(θ a1 )+w x v 1y = Tcos(θ a1 )+w y v 2x = Tsin(θ a2 )+w x v 2y = Tcos(θ a2 )+w y v 3x = Tsin(θ a3
)+w x v 3y = Tcos(θ a3 )+w y (6) This system has a closed form solution for which the wind is given by :

w x = (v 3y -v 2y )V 2 1 +(v 1y -v 3y )V 2 2 +(v 2y -v 1y )V 2 3 2{v 1y (v 2x -v 3x )+v 2y (v 3x -v 1x )+v 3y (v 1x -v 2x )} (7) 
w y = (v 2x -v 3x )V 2 1 +(v 3x -v 1x )V 2 2 +(v 1x -v 2x )V 2 3 2{v 1y (v 2x -v 3x )+v 2y (v 3x -v 1x )+v 3y (v 1x -v 2x )} (8) 
With

V 1 = v 2 1x + v 2 1y V 2 = v 2 2x + v 2 2y V 3 = v 2 3x + v 2 3y
For both expressions (w x , w y ) the denominators must not be equal to zero meaning that turns have to be asymmetric 2.B.5-3

(V 1 = V 2 = V 3 ).

Figure 1. Speed Vector Relations

It is also possible to extract a close form for the True Air Speed (T ) of the aircraft using only the ground speeds :

T = ∆ v 12 . ∆ v 13 . ∆ v 23 2.|v 1y .(v 2x -v 3x )+v 2y .v 3x -v 2x .v 3y +v 1x .(v 3y -v 2y )| (9)
Where ∆ v ij = v iv j T h es a m ek i n do fc l o s e forms can be extracted for the three heading angles (θ a1 , θ a2 , θ a3 ):θ ai = arctan t ix t iy where

t ix t iy = 2.v ix .A + B 2.v iy .A -C
where

A = ∆ v 23x .v 1y + ∆ v 31x .v 2y + ∆ v 12x .v 3y B = ∆ v 23y .V 2 1 + ∆ v 31y .V 2 2 + ∆ v 12y .V 2 3 C = ∆ v 23x .V 2 1 + ∆ v 31x .V 2 2 + ∆ v 12x .V 2 3
Second situation : Two aircraft When radar measures are available for two aircraft (a and b), only one turn for both trajectories is needed to have enough information for wind estimation. The two rst segments bring the following system of equations with 6 unknowns (T a , T b , θ a a1 , θ a b1 , w x , w y ) and 4 equations : va 1x = T a sin(θ a a1 )+w x va 1y = T a cos(θ a a1 )+w y vb 1x = T b sin(θ a b1 )+w x vb 1y = T b cos(θ a b1 )+w y (10) After the second turn, the new systems is fully determined with 8 unknowns(T a , T b , θ a a1 , θ a b1 , θ a a2 , θ a b2 , w x , w y )a n d8 equations :

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ va 1x = T a sin(θ a a1 )+w x va 1y = T a cos(θ a a1 )+w y vb 1x = T b sin(θ a b1 )+w x vb 1y = T b cos(θ a b1 )+w y va 2x = T a sin(θ a a2 )+w x va 2y = T a cos(θ a a2 )+w y vb 2x = T b sin(θ a b2 )+w x vb 2y = T b cos(θ a b2 )+w y (11)
The associated closed form of the wind is given by :

w x = (vb 1y -vb 2y )(Va 2 1 -Va 2 2 )+(va 2y -va 1y )(Vb 2 1 -Vb 2 2 ) 2{(va 1x -va 2x )(vb 1y -vb 2y )-(va 1y -va 2y )(vb 1x -vb 2x )} (12) w y = (vb 2x -vb 1x )(Va 2 1 -Va 2 2 )+(va 1x -va 2x )(Vb 2 1 -Vb 2 2 ) 2{(va 1x -va 2x )(vb 1y -vb 2y )-(va 1y -va 2y )(vb 1x -vb 2x )} (13) 
with

Va 1 = va 2 1x + va 2 1y Va 2 = va 2 2x + va 2 2y Vb 1 = vb 2 1x + vb 2 1y Vb 2 = vb 2 2x + vb 2 2y and (V a 1 = V a 2 ;V b 1 = V b 2 ).
Like for the one aircraft case, it is very easy to extract the other unknowns :

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ta 1x = va 1x -w x ta 1y = va 1y -w y tb 1x = vb 1x -w x tb 1y = vb 1y -w y ta 2x = va 2x -w x ta 2y = va 2y -w y tb 2x = vb 2x -w x tb 2y = vb 2y -w y then ⎧ ⎨ ⎩ T a = ta 2 1x + ta 2 1y = ta 2 2x + ta 2 2y T b = tb 2 1x + tb 2 1y = tb 2 2x + tb 2 2y
Ac l o s ef o r mo fT a and T b can be extracted : Based on those observability conditions, several wind estimation models have been developed for which some of them use a Kalman lter. This lter is now described in the following section.

T a = ta 2 1x + ta 2 1y = ta 2 2x + ta 2 2y ta 2 1x = ∆vb 12y Va 2 1 -2.∆va 12x .va 1x -Va 2 2 +

Kalman Filtering

Linear Form

The Kalman lter is named after Rudolph E.Kalman, who in 1960 published his famous paper describing a recursive solution to the discrete-data linear ltering problem [START_REF] Kalman | A new approach to linear ltering and prediction problems[END_REF], [START_REF] Grewal | Kalman Filtering Theory and Practice[END_REF], [START_REF] Welch | An introduction to the kalman lter[END_REF]. The Kalman lter is essentially a set of mathematical equations that implements a predictor-corrector type estimator that is 2.B.5-4 optimal in the sense that it minimizes the estimated error covariance (when some presumed conditions are met). It has been successfully applied in many real problems [START_REF] Maybeck | Stochastic Models, Estimation, and Control[END_REF], [START_REF] Chui | Kalman Filtering with Real-Time Applications[END_REF], [START_REF] Battin | Astraunotical Guidance[END_REF], [START_REF] Asher | Filtering for precision pointing and tracking with application for aircraft to satellite tracking[END_REF], [START_REF] Anderson | Optimal Filtering[END_REF]. The following description of the Kalman lter is mainly due to G.Welch and G.Bishop [START_REF] Welch | An introduction to the kalman lter[END_REF].

The Kalman lter addresses the general problem of trying to estimate the state X (k) ∈ R n of a discrete controlled process that is governed by the linear stochastic difference equation call evolution equation :

X (k + 1)=F(k).X(k)+G(k). Û(k)+v(k) ( 14 
)
with a measurement Z(k) ∈ R m :

Z(k)=H(k).X(k)+w(k) ( 15 
)
The n.n matrix F(k) in the evolution equation [START_REF] Maybeck | Stochastic Models, Estimation, and Control[END_REF] relates the state at the present step k to the state at the next step k +1, in the absence of either a driving function or process noise. The n.p matrix G(k) relates the optional control input Û(k) ∈ R p to the state X .T h e n.m matrix H(k) in the measurement equation [START_REF] Mondoloni | Improving trajectory forecasting through adaptive ltering technique[END_REF] relates the state to the measurement Z(k). The random variables v(k) and w(k) represent the process and measurement noise (respectively). They are assumed to be independent (of each other), centered, white, and with normal probability distributions. Furthermore the optional control is disturbed by a random variable n(k) ( Û(k)=U(k)+n(k)) which will be supposed to have a normal probability distribution also.

⎧ ⎨ ⎩ p(v(k)) ∽ N (0, Q(k)) p(w(k)) ∽ N (0, R(k)) p(n(k)) ∽ N (0, N(k)) (16) 
So we have :

E [v(k)] = 0 E v(k)v( j) T = Q(k).δ kj E [w(k)] = 0 E w(k)w( j) T = R(k).δ kj E [n(k)] = 0 E n(k)n( j) T = N(k).δ kj ( 17 
)
where T is the transpose operator and δ kj is the Kronecker symbol which is 1 if k = j a n d0i fk = j.

We de ne X(k + 1/k) ∈ R n to be the a priori state estimate at step k + 1 given knowledge of the process prior to step k + 1, and X(k + 1/k + 1) ∈ R n to be the a posteriori state estimate at step k + 1g i v e n measurement Z(k + 1). We can then de ne a priori and a posteriori estimate error as :

e(k + 1/k)=X (k + 1) -X(k + 1/k) e(k + 1/k + 1)=X (k + 1) -X(k + 1/k + 1) (18) 
The a priori estimate error covariance is then :

P(k + 1/k)=E e(k + 1/k)e(k + 1/k) T (19)
and the a posteriori estimate error covariance is :

P(k + 1/k + 1)= E e(k + 1/k + 1)e(k + 1/k + 1) T (20)
In deriving the equation for the Kalman lter, we begin with the goal of nding an equation that computes an a posteriori state estimate X(k +1/k +1) as a linear combination of an a priori estimate X(k + 1/k) and a weighted difference between an actual measurement Z(k +1) and a measurement prediction H. X (k +1/k) :

X(k + 1/k + 1)= X (k + 1/k)+ K(k + 1). Z(k + 1) -H. X (k + 1/k) (21)
The difference Z(k + 1) -H. X (k + 1/k) in equation 21 is called the measurement innovation, or the residual. The residual re ects the discrepancy between the predicted measurement H. X (k +1/k) and the actual measurement Z(k + 1). A residual of zero means that the two are in complete agreement.

The n.m matrix K(k + 1) in equation 21 is chosen to be the gain or blending factor that minimizes the a posteriori error covariance 20. This minimization can be accomplished by rst substituting equation 21 into the above de nition for e(k + 1/k + 1), substituting that into equation 20, performing the indicated expectations, taking the derivative of the trace of the result with respect to K(k + 1), setting that result equal to zero, and then solving for K(k + 1). One form of the resulting K(k +1) that minimizes equation 20 is given by :

K(k + 1)=P(k + 1/k).H(k + 1) T . H(k + 1)P(k + 1/k)H(k + 1) T + R(k + 1) -1 (22)
Looking at equation 22 we see that as the measurement error covariance R(k + 1) approaches zero, the gain K(k + 1) weights the residual more heavily. Speci cally : lim

R(k+1)→0 K(k + 1)=H -1 (23) 
On the other hand, as the a priori estimate error covariance P(k +1/k) approaches zero, the gain K(k +1) weights the residual less heavily. Speci cally : lim

P(k+1/k)→0 K(k + 1)=0 (24) 
2.B.5-5

As the measurement error covariance R(k + 1),t h e actual measurement Z(k + 1) is "trusted" more and more, while the predicted measurement H. X (k + 1/k) is trusted less and less. On the other hand, as the a priori estimate error covariance P(k +1/k) approaches zero the actual measurement Z(k + 1) is trusted less and less, while the predicted measurement H. X(k + 1/k) is trusted more and more. The Kalman lter estimates a process by using a form of feedback control : the lter estimates the process state at some time and then obtains feedback in the form of (noisy) measurements. As such, the equation for the Kalman lter fall into two groups : time update equations and measurement update equations. The time update equations are responsible for projecting forward (in time) the current state and error covariance estimates to obtain the a priori estimates for the next time step. The measurement update equations are responsible for the feedback -i.e. for incorporating a new measurement into the a priori estimate to obtain an improved estimate.

The time update equations are the following :

⎧ ⎨ ⎩ X(k + 1/k)=F(k).X(k)+G(k).U(k) P(k + 1/k)=F(k).P(k/k).F(k) T + G(k).N(k).G(k) T + Q(k) (25) 
The rst equation is the state prediction and the second one gives the associated covariance. The measurement update equations are the following :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ K(k + 1)=P(k + 1/k).H(k + 1) T . H(k + 1)P(k + 1/k)H(k + 1) T + R(k + 1) -1 X (k + 1/k + 1)= X(k + 1/k)+K(k + 1). Z(k + 1) -H(k + 1). X(k + 1/k) P(k + 1/k + 1)=[I -K(k + 1).H(k + 1)]. P(k + 1/k) (26)
The rst task during the measurement update is to compute the Kalman gain, K(k + 1). The next step is to actually measure the process to obtain Z(k + 1), and then to generate an a posteriori state estimated by incorporating the measurement. The nal step is to obtain an a posteriori error covariance estimate.

After each time and measurement update pair, the process is repeated with the previous a posteriori estimates used to project or predict the new a priori estimate. In order to initiate the process, the rst initial state and the associated covariance has to be set up. Usually, the rst state is build with an initial measure and the associated covariance is set up with the measure covariance or with a big values, because the lter has no con dence in its initial state (it comes from a measure). This Kalman lter has been used in our wind estimation problem for which the associated models are now presented.

Extended Form

The standard Kalman lter addresses the general problem of trying to estimate the state X (k) ∈ R n of a discrete-time controlled process that is governed by a linear stochastic difference equation. But what happens if the process to be estimated and (or) the measurement relationship to the process is non-linear ? A Kalman lter that linearized about the current mean and covariance is referred to as an extended Kalman lter or EKF. We can linearize the estimation around the current estimate using the partial derivative of the process and measurement functions to compute estimates even in the face of non-linear relationships. Let us assume that our process again has a state vector X(k) ∈ R n , but that process is now governed by the non-linear stochastic difference equation :

X(k + 1)=F [k, X(k),U(k)] + v(k) (27)
with a measurement Z(k) ∈ R m that is :

Z(k + 1)=H [k, X(k)] + w(k) ( 28 
)
where the random variable v(k) and w(k) again represent the process and measurement noise. The new time update equations are now the followings :

⎧ ⎨ ⎩ X(k + 1/k)=F [k, X(k),U(k)] P(k + 1/k)=F X (k).P(k/k).F X (k) T + F U (k).N(k).F X (k) T + Q(k) (29)
where F X (k) is the Jacobian matrix of partial deriva- tives of F with respect to the vector X and is given by the following :

F X (k) = ▽ X F [k, X,U] T T X= X(k/k),U= Û(k) (30) 
where

▽ S = ∂ ∂ S 1 , ∂ ∂ S 2 ,..., ∂ ∂ S n s (31)
is the differential operator.
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The linearized measurement update is now given by :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ K(k + 1)=P(k + 1/k).H X (k + 1) T . H X (k + 1).P(k + 1/k)H X (k + 1) T + R(k + 1) -1 X(k + 1/k + 1)= X (k + 1/k)+K(k + 1). Z(k + 1) -H k, X(k + 1/k) P(k + 1/k + 1)= I -K(k + 1).H X (k + 1) . P(k + 1/k)
(32) Unlike its linear counterpart, the extended Kalman lter is not an optimal estimator. In addition, if the initial estimate of the state is wrong, or if the process is modeled incorrectly, the lter may quickly diverge, owing to its linearization. Another problem with the extended Kalman lter is that the estimated covariance matrix tends to underestimate the true covariance matrix and therefore risks becoming inconsistent in the statistical sense without the addition of "stabilizing noise". When the state transition and observation models are highly non-linear, the extended Kalman lter can give particularly poor performance [START_REF] Julier | A new extension of the kalman lter to nonlinear systems[END_REF].This is because only the mean is propagated through the non-linearity.

The Unscented Kalman Filter(UKF) is another non linear extension of the linear Kalman lter for which both mean vector and covariance matrix are propagated through the non-linearity. A detailed description of the UKF is given in appendix[A].

Having described our problem and some estimation techniques, the next section introduces the models which haves been used for our experiments.

Models

Model with Air Speed and Air Turning Rate (Model 1)

The state vector is given by :

X(k)=[x(k) y(k)t x (k)t y (k) w x (k) w y (k)] T (33)
where x(k), y(k) is the position, t x (k),t y (k) the True Air Speed (TAS) and w x (k), w y (k) the wind. The measure vector consists in the radar position and the true air speed :

Z(k)=[x m (k) y m (k)t x m (k)t y m (k)] T (34)
Having access to the air turning rate (ω a ), it can be included in the prediction matrix. The structure of the system is the following :

X(k + 1)=F(k).X(k)+v(k) (35) 
where

F(k)= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 10 C 1 (ω a ) C 2 (ω a ) ∆ t 0 01-C 2 (ω a ) C 1 (ω a ) 0 ∆ t 00 C 3 (ω a ) C 4 (ω a ) 00 00-C 4 (ω a ) C 3 (ω a ) 00 00 0 0 1 0 00 0 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (36) Z(k)= ⎡ ⎢ ⎢ ⎣ 100000 010000 001000 000100 ⎤ ⎥ ⎥ ⎦ .X (k)+w(k) (37)
where

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ C 1 (ω a (k)) = sin(ω a (k)∆ t ) ω a (k) C 2 (ω a (k)) = 1-cos(ω a (k)∆ t ) ω a (k) C 3 (ω a (k)) = cos(ω a (k)∆ t ) C 4 (ω a (k)) = sin(ω a (k)∆ t ) (38) 
The model being exact, the model noise covariance matrix R = 0. The measure noise covariance matrix R is given by :

R = ⎡ ⎢ ⎢ ⎣ σ 2 p 000 0 σ 2 p 00 00σ 2 T 0 000σ 2 T ⎤ ⎥ ⎥ ⎦
with σ p = 100 meters and σ T = 0.2k t s .

Model with Air Speed only (model 2)

The state vector is given by :

X(k)=[x(k) y(k)t x (k)t y (k) w x (k) w y (k)] T (39)
The measure vector consists in the radar position and the true air speed :

Z(k)=[x m (k) y m (k)t x m (k)t y m (k)] T (40)
T h ep r e d i c t i o nm a t r i xi sn o wg i v e nb y:

F(k)= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 10∆ t 0 ∆ t 0 01 0 ∆ t 0 ∆ t 0 01000 0 00100 0 00010 0 00001 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (41)
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The measure matrix H and the associated covariance matrix R are the same as in the rst model. This model is linear but is false for the air speed vector evolution. In order to take into account this model error, the following covariance matrix (Q) is included in the lter : Q is given by :

Q = ⎡ ⎢ ⎢ ⎣ 00 0 0 00 0 0 001 .00 0 001 .0 ⎤ ⎥ ⎥ ⎦

Model with Turning Rate Only (Model 3)

This model is the same as the rst one with the following measure vector ;

Z(k)=[x m (k) y m (k)] T (42)
and the associated measure equation

Z(k)= 100000 010000 .X(k)+w(k) (43)

Models Without Command

Model using Kalman Filter (model 4)

Having no access to the turning rate, this parameter may be extracted by a Kalman lter (ω a included in the state vector). If the turning rate is included in the state vector, the evolution of the system is not linear and an EKF or an UKF has to be used to manage such state vector.

Model using turns (model 5)

As it has been shown in the previous section (observability conditions), wind may be extracted by observing ground radar track during turns.

The key element of this approach is the turning rate detector based on equation [START_REF] Anderson | Optimal Filtering[END_REF]. When ω g is greater than a given threshold, the aircraft is consider to be in turn. Based on this turn detector, straight line segment are easily identi ed for which ground speed vector averages are computed. Speed vector estimates in straight lines are given by the framework of Figure 2. In this gure, the turns are rst detected and a counter is then used to select the right averaging process in order to compute ground speed estimates. When two aircraft are used for wind estimation, the same framework is duplicated and counters select only two averaging blocks in order to produce the following estimates :V a1 ,V a2 ,V b1 ,V b2 . 

Results

Simulation Framework

In order to test and compare our models, a radar tracker simulator has been used to produce the reference trajectory which has been disturbed with a Gaussian noise. The disturbed trajectory is then ltered by a Kalman lters which generates the estimated trajectory which is then compared to the reference trajectory. This framework is summarized on Figure 3. For all experiments, a wind of 40 kts has been used with

θ w = 240 o ⇒ W =[-34.64kts, -20kts] T = [-17.82m/s, -10.28m/s] T .

Models with Mode-S radar data (model 1,2 and 3)

The rst trajectory used for our experiments is built with 3 straight lines (20 minutes for each) connected with turns as it can be seen on gure 4.This trajectory has been disturbed by a Gaussian noises for which the means are zero and the standard deviations are the 2.B.5-8 Results for models 1 and 2 Models 1 and 2 have been tried on this trajectory for which the residual errors on the wind estimates are given on gure 5 , 6, 7 and 8. The gures 5 and 6 show the residual error for the wind strength estimate. Figure 5 shows the convergence phase of the lter ( rst 6 minutes) and gure 6 shows the residual error after the convergence phase. The same kind of results are given on gures 7 and 8 for the residual wind angle estimates. The models 1 and 2 have the same evolution during the convergence phase which After this convergence phase, the wind strength estimate error stays below 0.2kts for both models 6. The model 1 has a more accurate behavior at the end of the simulation with an error which stay below 0.1kts. The convergence phase for the wind angle estimate last longer than for the wind strength (about 6 minutes (see gure 7)). After this convergence phase the wind angle residual error stays below 1 degree (in absolute value) for both model. As for the wind strength estimation, the second model (with turning rate) produce a better estimate. The rst model is disturbed by the turns. Both models model are able to produce accurate wind estimate all along the trajectory (after the convergence phase) even during the turns.

Results for models 3 is not able to converge and model 3 (which is models 2 without air speed measure) has to wait the second turn to be able to produce an estimate of the wind (see gure 9 , 10 ,11 and 12). During the convergence phase ( gure 9), model 3 reduces the wind strength error till 40kts which is the limit for such estimation because the Kalman lter is not able to distinguish in the position measures the part coming from the air speed and the part coming from the wind. After the convergence phase (see gure 10) the lter has to wait the second turn in order to be able to produce a reliable estimate of the wind strength (as it has been previously shown (observability conditions), it is only after the second turn that the wind observability conditions are met). As for the wind strength error, the wind angle error reach zero after the second turn. 

Models with Classical Radar DataModel 4 and 5)

Results for models 4

When on board measures (TAS, heading, turning rate) are not available, the turning rate has to be included in the state vector inducing a non linear prediction equation of the lter. In order to address such non linear evolution, an EKF and an UKF has been and tested on the rst trajectory. Both lters are not able to estimate the wind vector even after the second turn. This behavior is due to the residual error of the Taylor expansion used in the EKF or in the UKF. Based on the observation (positions) the lter is not able to nd the part due to the wind and the one due to the error coming from the Taylor expansion.

Results for model 5

Based on the turning rate estimate given by equation 1, it is very easy to build a turn detector when |ω g | > threshold. The ground vector speed has been disturbed by a Gaussian noise with zero mean and 0.2kts standard deviation (performance of the actual trackers). This method has been used on the rst trajectory. The ground turning rate estimate is given by gure 13. The two turns are well identi ed with a value of about +/-1.3 degree/sec in turns (it must be noticed that the ground turning rate is different from the air turning rate). The results of this approach are Those results has been computed by using equations [START_REF]Wind prediction accuracy for air traf c management decision support tools[END_REF], [START_REF] Delahaye | Wind eld update using radar track data[END_REF] and the following ground speed estimates coming from the averaging process : Having now some wind estimates on some points in the airspace (where the aircraft are located), the next step consists in the global wind eld interpolation based on the meteorological model called "Shallow-Water". This model is described in [START_REF] Cohn | The behavior of the forcast error covariances for a kalman lter in two dimensions[END_REF] and the associated discret expansion in given in [START_REF] Richtmyer | Difference Methods for Initial-Value Problems[END_REF].

v 1x =

Vector Spline Interpolation

Shallow Water Wind Model

Let V be the vector eld giving the wind velocity at each point. We will assume in the following that area of interest is located high enough above the ground level so that viscous effects are negligible. Assume furthermore that wind eld is two dimensional (that is does not depends on altitude). Then the evolution of V is described by the system of equations : with :

⎧ ⎪ ⎨ ⎪ ⎩
V = U + u v
U the mean west-east component of the wind, f is the Coriolis parameter which can be expressed as :

f = 2Ω sin φ 0 -2ΩR -1 cosφ 0
with Ω = 2π 86400 the rotation rate of the earth, φ 0 the latitude (assumed to be constant in the domain of interest) and R = 6.370 × 10 6 m the earth radius. Φ is the geopotential of the isobaric surface and is written as : Φ = θ(y)+φ with :

θ(y)=θ 0 -2Ω(sinφ 0 )y -ΩR -1 (cosφ 0 )y 2 U
and :

φ 0 = 3 × 10 4 ms -2 U = 25ms -1
The set of equations 44 is known as shallow water model. With little rewriting, it can be shown that this model has the following synthetic form :

( ∂ ∂t + L)X = 0 with : X = ⎡ ⎣ u v φ ⎤ ⎦
and L the differential operator :

L = A ∂ ∂X + B ∂ ∂y +C where A = ⎡ ⎣ U 00 0 U 0 Φ 0 U ⎤ ⎦ B = ⎡ ⎣ 000 001 0 Φ 0 ⎤ ⎦ C = ⎡ ⎣ 0 -f 0 f 00 0 Φ ′ 0 ⎤ ⎦ Interpolating Vector Splines 2.B.5-12
The symbol σ(y, ξ) of this differential operator L easily computes as :

σ(y, ξ)= ⎡ ⎣ -iξ 1 U -f 0 f -iξ 1 U -iξ 2 -iξ 1 Φ(y) -iξ 2 Φ(y)+Φ ′ (y) -iξ 1 U ⎤ ⎦
Since a solution 0 of the Shallow-Water model must ful ll :

( ∂ ∂t + L)V = 0
we will seek for a vector eld V such that :

V = argmin Z T 0 Z D ( ∂ ∂t + L)X (x,t) 2 dxdt
under the constraints that :

X (x i ,t i )=v i , i = 1 ...n
if v i is the wind measurement at time t i and location x i , D is the domain of interest and I is the time interval chosen for computation. Assuming that boundary conditions vanish, we obtain that the functional criterion has expression : 

Z I Z D (- ∂ 2 ∂t 2 + L t L)X (x,
σ(y, ξ)= ⎡ ⎣ ξ 2 1 (Φ 2 + U 2 )+ f 2 ξ 1 ξ 2 Φ + iξ 1 (ΦΦ ′ -2 fU) -iξ 1 + ξ 2 U Φ) ξ 1 ξ 2 Φ -iξ 1 (ΦΦ ′ -2 fU f 2 + ξ 2 1 U 2 + ξ 2 2 Φ 2 + Φ ′2 ξ 1 ξ 2 (U + Φ) -iξ 2 Φ ′ iξ 1 + ξ 2 U Φξ 1 ξ 2 (U + Φ)+iξ 2 Φ ′ ξ 2 1 ⎤ ⎦
L t L admits an eigenvector expansion (φ n ) n∈N with associated eigenvalues (λ n ) n∈N . We will week for a kernel K(x, y,t, u) such that : with : n = √ λ n . The constraints that X (x i ,t i )=v i , i = 1 ...n may thus be rewritten as :

Z I Z D K(x i , y,t i , u), (- ∂ 2 ∂t 2 + L t L)X (y, u) dydu = v i
which is much more tractable than the point version. Introducing Lagrange multipliers (ε i ) i=1...n , the problem may be solved and the solution written as :

X (x,t)= ∑ i=1...n ε i K(x i , x,t i ,t) so that optimal vector eld is a linear combination of kernels evaluated at measurement points (x i ,t i ) i=1...n . This is a classical result within the frame of interpolating spline theory, with the restriction that the kernel is not translation invariant. From now, only numeric evaluations of the kernel can be made, based on nding nite elements approximations of the eigenfunctions, then truncating the in nite sum in the kernel expansion at an order where residual is low enough. This yields a piecewise polynomial approximate kernel, which can be computed once and used afterward (note that if the kernel is computable, nding the wind eld expansion is done by solving a linear system).

Conclusion

This paper has given a new approach for extracting the wind information from the radar tracks. Two approaches has been presented. When True Airspeed measures are available, linear models may be used with regular Kalman lter. In this rst approach, wind estimate are available all along the aircraft trajectory. When only position measures are available, an observability analysis has shown that wind may be estimated only after turns (one turn for two aircraft or two turns for one aircraft). For such approach, a closed form of the wind has been developed. Then, those models have been validated with realistic simulations. Having wind measures spread in the airspace, an interpolating method using vector splines has been developed. Based on the differential operator of the Sallow-Water model and the local wind observations, this method build a vector eld using kernel functions. The associated eigenfunctions (φ n )h a v et ob e computed numerically on each point of the grid where the vector eld has to be computed. It must be noticed that the Shallow-Water is only valid above 2000m; this 2.B.5-13 means this method may be used mainly for En-Route traffic.
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  x, y,t, u), (-∂ 2 ∂t 2 + L t L)X (y, u) dydu = X (x,t)Formally, we may write :K(x, y,t, u)= ∑ n c n (t, u)φ n (x) ⊗ φ n (y)and nd the right expression for c n (t, u). In the case I = R and wind elds of nite energy over time, some computations show that the sought after kernel has expression :K(x, y,t, u)= ∑ n e -n |t-u|2 n φ n (x) ⊗ φ n (y)

  54.4818 m/s v 1y = 61.9523 m/s v 2x = 84.3536 m/s v 2y = -10.2142 m/s v 3x = -17.6780 m/s v 3y = 91.8504 m/s When two aircraft trajectories are available, only one turn for each is necessary. For such a model, the trajectories given on gure 14 has been used. The turning rate estimates are given on gures 15 and 16. va 1x = 90.5494 m/s va 1y = 98.0082 m/s va 2x = 90.5552 m/s va 2y = -118.4478 m/s vb 1x = -221.7254 m/s vb 1y = -10.2111 m/s vb 2x = -17.6796 m/s vb 2y = -214.2995 m/s
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							The results of this approach are given in the following
							table :
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Appendix A : Unscented Kalman Filter

The unscented Kalman lter (UKF) [START_REF] Julier | A new extension of the kalman lter to nonlinear systems[END_REF] uses a deterministic sampling technique known as the unscented transform to pick a minimal set of sample points (called sigma points) around the mean. These sigma points are then propagated through the nonlinear functions and the covariance of the estimate is then recovered. The result is a lter which more accurately captures the true mean and covariance. In addition, this technique removes the requirement to analytically calculate Jacobians, which for complex functions can be a dif cult task in itself.

Prediction

As with the EKF, the UKF prediction can be used independently from the UKF update.

The estimated state and covariance are augmented with the mean and covariance of the process noise.

A set of 2L + 1 sigma points is derived from the augmented state and covariance where L is the dimension of the augmented state.

where is the ith column of the matrix square root of using the de nition: square root A of matrix B satis es

The matrix square root should be calculated using numerically ef cient and stable methods such as the Cholesky decomposition. The sigma points are propagated through the transition function .

The weighted sigma points are recombined to produce the predicted state and covariance.

where the weights for the state and covariance are given by: Typical values for , and are 10 3 , 2 and 0 respectively.

Update

The predicted state and covariance are augmented as before, except now with the mean and covariance of the measurement noise.

As before, a set of 2L + 1 sigma points is derived from the augmented state and covariance where L is the dimension of the augmented state.

Alternatively if the UKF prediction has been used the sigma points themselves can be augmented along the following lines The sigma points are projected through the observation function

The weighted sigma points are recombined to produce the predicted measurement and predicted measurement covariance.

The state-measurement cross-covariance matrix, is used to compute the UKF Kalman gain.

As with the Kalman lter, the updated state is the predicted state plus the innovation weighted by the Kalman gain, And the updated covariance is the predicted covariance, minus the predicted measurement covariance, weighted by the Kalman gain.