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4D TRAJECTORIES: A FUNCTIONAL DATA PERSPECTIVE 

Puechmorel, S. ENAC Dept. MI, Toulouse FRANCE 

Delahaye, D. DTI/R&D, Toulouse FRANCE 

 

Abstract 

3D or 4D trajectories are fundamental objects 
within the frame of ATM and can be defined as 

mappings from a bounded interval to the space 
3R . 

However, this functional aspect is almost never 
used in applications. A great improvement over 
existing procedures for statistical analysis of 
trajectories can be obtained by explicitly 
considering trajectory data as functional data. Since 
raw functional data is by essence infinite 
dimensional, no computation can be made unless a 
finite representation has been found: all the 
complexity of functional data analysis is hidden in 
this stage. The present paper will first analyze the 
functional aspect of trajectories in order to extract 
operationally relevant quantities then will give a 
way of representing optimally aircraft trajectories 
with a finite number of parameters, allowing further 
processing. Applications to trajectory prediction 
and classification will be briefly discussed at the 
end. 

Introduction 

Aircraft trajectory is one of the most 
fundamental objects within the frame of ATM. 
However, partly due to the fact that aircraft 
positions are most of the time represented as radar 
plots, the time dependence is generally overlooked 
so that many trajectory statistics conducted in ATM 
are spatial only. Even in the most favorable setting, 
with time explicitly taken into account, trajectory 
data is expressed as an ordered list of plots labeled 
with a time stamp, forgetting the underlying aircraft 
dynamics. On the opposite, functional data analysis 
will work with the whole trajectory as a mapping 
from a time interval to the state space (most of the 

time 
3R  or 

6R  when speed is considered as being 
part of the aircraft state). There is quite a long 
history of functional data in statistics [1,2], but to 
our knowledge no application to the ATM field has 
been done yet. Furthermore, this way of thinking 
induces a change of paradigm encompassing more 
than bare statistics: functional representation makes 

an assumption on the underlying phenomenon 
giving rise to the observed data so that a great 
wealth of information can be taken into account. As 
an example, aircraft trajectories are mainly made of 
straight lines and arcs of circles. Using a linearized 
model of flight dynamics, such trajectories can be 
encoded using only piecewise constant mappings 
(namely the commands applied to the system) so 
that the whole data can be expressed using only a 
small number of samples. On the opposite, the 
collection of radar plots describing the same 
trajectory can have tenths more samples, nearly all 
of them redundant. As a consequence, data analysis 
based on the first representation will use only the 
salient features of the trajectory while with the 
second a lot of useless information will be injected. 
In the present paper, we will analyze first the 
possible representation for functional data, then 
some application will be presented. 

Air Traffic Management Applications 

Regular aircraft trajectory representation 
(ordered list of plots labeled with time) does not 
contain typical ATM operational information due to 
the limited information given by a list of plots. The 
new representation described in this paper takes 
into account typical ATM operational features such 
as curvature and torsion. These relevant features are 
naturally encoded in this new representation and 
can be used for turns detection or any other 
maneuvers. Based on these new trajectories 
representation many ATM operational applications 
may be investigated. 

Aircraft Trajectories Data Compression 

As it has been previously mentioned, ATM 
systems manage aircraft trajectories and control 
them in order guaranty safety and airspace capacity. 
Currently those trajectories are represented by the 
mean of plot lists which are manipulated by ATM 
software. Every day, all aircraft trajectories are 
registered into large database for which huge 
capacity is needed. Based on this new trajectory 
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representation for which redundancy has been 
removed, the trajectories database may be strongly 
improved from the capacity point of view. As a 
matter of fact, only spline decomposition 
coefficients have to be registered in the database 
then reducing the needed capacity. This compressed 
trajectory format may also be used for improving 
the trajectories transmission between ATM entities. 

Aircraft Trajectories Distance Computation 

Although trajectories are well understood and 
studied, relatively little investigation on the precise 
comparison of trajectories is presented in the 
literature. A key issue in performance evaluation of 
ATM decision support tools (DST) is the distance 
metric that determines the similarity of trajectories. 
This new trajectory representation will enable the 
definition and fast computation of a rigorous 
mathematical distance between aircraft trajectories. 
Based on this new distance computation several 
ATM applications may be implemented. 

Aircraft Model Inference 

All aircraft models are based on 
ODEs(Ordinary Differental Equation), including 
tabular ones. Control input includes condition and 
model parameters. The model refinement (and 
computational complexity) ranges from tabular to 
many degrees of freedom. The aircraft  model 
inference consists in answering the following 
question: Given a parametrized model and a goal  

trajectory, can we infer the best parameter values? 

A model can be viewed as a mapping from the 
control space into the trajectory space. The way to 
answer the previous question is then given by the 
closest model to the goal trajectory. In order to find 
the closest model in this trajectory space, a reliable 
trajectory distance is needed. The model inference 
problem has to solve the accuracy-smoothness 
dilemma: Over-fitted models are generally poor 

predictors. The previous construction gives the 
shortest path (and thus the distance) between the 
goal trajectory and the trajectory set which can be 
synthesized by the model. All deformations from 
the goal trajectory to the trajectory set are taken into 
account but many of those transformations are not 
feasible from a physical point of view. The solution 
consists in defining a smooth path between 
trajectories by an infinitesimal displacement field 
and by adding a field smoothness requirement to the 

energy functional. On the other hand, if we decide 
to control the maximum distance between  the goal 
trajectory and a given parametrized model, it is 
possible to adjust the most economical model to the 
current phase of flight. As a matter of fact, 
computation effort is proportional to the degrees of 
freedom used and to the evolution equation used. 
Then, the relevant question is the following: Can 

we switch from different level of accuracy 

depending on flight phases and computational 

power available? The solution consists in switching 
from one model of given accuracy to another by 
following a shortest path in the trajectory space. 

Trajectory Prediction 

Air traffic management research and 
development has provided a substantial collection 
of decision support tools that provide automated 
conflict detection and resolution [3,4,5],trial 
planning [6], controller advisories for metering and 
sequencing [7,8],traffic load forecasting [9,10], 
weather impact assessment [11,12,13]. The ability 
to properly forecast  future aircraft trajectories is 
central in many of those decision support tools. As 
a result, trajectory prediction (TP) and the treatment 
of trajectory prediction uncertainty continue as 
active areas of research and development 
(e.g. [14-18]). Accuracy of TP is generally defined 
as point spatial accuracy (goal  attainment) or as 
trajectory following accuracy.  The last one can be 
rigorously defined by the mean of trajectory space. 
The first one is a limit case of the second by adding 
a weight function in the energy functional. Since we 
may prescribe smoothness accuracy of a simplified 
model relative to a finer one, may be computed. 
Finally such trajectory distance allows comparison 
between TP models. When we refer to trajectory 
prediction errors for a specific DST, we are 
typically comparing the predicted trajectory for a 
specific DST to the actual trajectory to be 
experienced by an aircraft. Discrepancies between 
these two types of trajectories typically affect the 
performance of the DST.  

Radar Tracker Evaluation 

The goal of a radar tracker is to eliminate the 
residual noise coming from the radars. It is a key 
element of the ATM system and its accuracy is one 
of the factors which determines the separation 
norm. In order to validate such trackers, an exact 
reference trajectory is generated and perturbed by a 
white gaussian noise. This perturbed trajectory is 
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then used as input of the tested tracker. The tracker 
generates an estimated trajectory which is compared 
to the reference trajectory. In order to do such 
comparison, a reliable trajectory distance is needed. 

Alternative Route Synthesis 

Airspace congestion is related to aircraft 
located in the same area during the same period of 
time. Then, when congestion has to be minimized, 
algorithms have to separate aircraft in time (slot 
allocation), in space (route allocation) or both (bi-
allocation). When route allocation is investigated, 
associated algorithms need alternative routes set in 
order to spread the traffic on them. A route is said 
to be alternative to another if it is different enough 
based on a trajectory distance. 

Major Flows Definition 

When radar tracks are observed over a long 
period of time in a dense area, it is very easy to 
identify major flows connecting major airports. The 
expression "major flows" is often used but never 
rigorously defined. Based on an exact trajectory 
distance and a learning classifier, it is possible to 
answer the following questions: Given a set of 

observed trajectories, can we split it into "similar" 

trajectory classes? If yes, classes with highest 
number of elements will rigorously define the major 
flows. Given those classes and a new trajectory, can 
we tell if it belongs to a major flow and which one? 
The principle of the major flows definition is to use 
shape space to represent trajectory shapes as points 
and to use a shape distance (the shape of a 
trajectory is the path followed by an aircraft, that is 
the projection in the 3D space of its 4D trajectory. 
The speed on the path has no impact). 

 Trajectories as Mappings 

In the following all aircraft trajectories will be 

described as mappings from a time interval [ ]a b  

to a state space  with  either E E 3R  or 
6R  

depending on the fact that speed is assumed to be 
part of aircraft state or not. Extension to trajectories 
on a sphere (typically long haul flights) will be 
sketched only.  

 Notations and Terminology 

The reference for this section is [19]. Let 

[ ]a b E  be a trajectory. The origin of the 

trajectory is ( )a  and the destination is ( )b . 

Those two points are called the endpoints of the 
trajectory. All trajectories are assumed to be at least 

continuously differentiable (class ) so that the 

length of a trajectory 

1C

E[ ]a b  is well defined 

as:  

( ) ( )
b

a
l t dt  

 

If ( ) 0t  for some  the point t  is 

said to be singular. A parametrized curve of class 

 (or more concisely a  curve) will be a C  

mapping from an open time interval 

( b)t a

ppC C p

( )a b  to the 

state space  with no singular points. Any  

curve can be parametrized by arclength. Let 

E

E

1C

( )a b  be such a curve. Defining the 

mapping ( ) (0b l( ))s a  by:  

( ) ( )
t

a
s t t dt  

we see that by the non singularity assumption on , 

( ) ( ) 0s t t  for any t a , so that  is 

an invertible mapping. Now,  is a mapping 

from the open interval 

(

s

( ))

)b

1

s

(0 l  to E  satisfying:  

1 1 1) 1s( ) (s s ) (  

 

In the following, we will simply write 

( ) (0 ( ))s s l  for a curve parametrized by 

arclength, dropping the variable t .  

Remark 1. One must be careful with the 
respective definitions of trajectories and curves: a 
curve is defined on an open interval and thus has no 
endpoints. Nevertheless, any trajectory 

: ,a b E  has an associated curve, namely 

: ,a b E . It is generally more convenient to 

deal with curves to avoid special treatment of the 
endpoints.  

Remark 2. The non singularity assumption on 
the underlying curve is very natural when dealing 

with aircraft trajectories in 
3R  since it is not 
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possible for an aircraft to stop except at the 
endpoints of the trajectory.  

Remark 3. While the case  is very 
natural and intuitive, care must be taken when 

 since all the preceding definitions apply in 
a completely different setting: for example, the non 
singularity assumption does not implies nowhere 
zero speed, but only that speed and acceleration 
cannot both vanish at the same time.  

3E R

6E R

The arclength parametrization allows to define 
very important geometrical quantities when 

.  
3E R

Definition 1. Let:  

3(0 )l R  

be a  curve parametrized by arclength. The unit 

tangent vector to 

1C

 at  is:  0,s l

( ) ( )s s  
 
It is clear from the definition of parametrization by 

arclength that  is a unit vector.  s

Definition 2. Let:  

3(0 )l R  

be a  curve parametrized by arclength. The 

curvature of 

2C

 at   is:  0,s l

( ) ( )K s s  

 
The curvature can be explicitly computed even 

if the curve  is not parametrized by arclength. The 

general formula is:  

3

( ) ( )
( )

( )

t t
K t

t
 

 
with  the vector cross product. Curvature is of 
primary importance for ATM related studies since 
as mentioned before aircraft trajectories are mainly 
made of straight lines and arcs of circle and so have 
piecewise constant curvature. If at point t the 
curvature is not zero, the curve is said to be 
biregular at t. For a curve  parametrized by 

arclength, the unit normal vector s  is defined at 

all biregular points by:  

( )
( )

( )

s
s

K s  
 

Remark 4. A straight line has everywhere zero 
curvature. However, it is clearly possible to define a 
unit normal vector.  

At a biregular point, and s s  are well 

defined. Taking their cross product gives a new 

vector s s s . If the curve  is 

assumed to be , it can be shown that 
3C s  and  

s are collinear:  

s T s s  

The real number  is called the torsion of 

the curve at s and represents an obstruction for the 
curve to be planar. As for the curvature, it is 
possible to compute the torsion even if the curve is 
not parametrized by arclength:  

T s

2

( ) (

( )

t t

t t

( ( ) ))
( )

( )

det t
T t  

 
Torsion is not so useful as curvature for en-

route data analysis since only a few number of 
trajectories have non zero torsion. However, it is 
very relevant in terminal areas.  

Remark 5. The  case is again very 
different, since the geometric meaning of curvature 
and torsion is not obvious in this setting. 
Furthermore, the extra degrees of freedom will 
impose using higher order derivatives in order to 
build up an equivalent description. A complete 
treatment goes beyond the scope of the present 
paper and has little interest for our purpose (in 
practical applications, the speed information, when 
available, is used to improve estimates of curvature 

and torsion and not to study a trajectory in

6E R

6R ).  

The fact that the last two quantities are nearly 
piecewise constant functions for aircraft trajectories 
makes the previous representation very efficient for 
ATM applications. Most of the time, the relevant 
assumption will be that the torsion is piecewise 

 

 1.C.6-4 



constant, with value 0 in all flight phases except 
those occurring in terminal areas. Curves with 
constant torsion and curvature are helices, so th
our characterization of aircraft trajectories by 
piecewise constant curvature and torsion curve
induce a representation by pieces of helices.  

All the previous derivations rely on the fa

at 

s will 

ct 
that  

y 

ature 

 

ion, 

en 

Spline Smoothing 

(in French) to spline 
smoo e 

0]. 

ith 

ribed 

lues 

the first three derivatives of the trajectory are
available. In applications however this is nearly 
never the case since even the speed has to be 
computed. Moreover, real data are corrupted b
noise, making evaluation of derivatives quite 
cumbersome. To obtain good estimates of curv
and torsion, we will first compute an expansion of 
the trajectory on an infinite dimensional basis that 
will be truncated to obtain a finite representation of
the trajectory. Since we know that the relevant 
information is hidden behind curvature and tors
that is quantities related to first, second and third 
derivative, the decomposition basis has to be chos
so that those values are easy to compute.  

A nice introduction 
thing applied to aircraft trajectories can b

found in a technical report from K. Mehadhebi [2
In their simplest form, splines are piecewise 
polynomial approximations to real function, w
the extra regularity assumption that the 
reconstructed mapping has to be of presc

class
rC . In the case of functions taking their va

in 
pR , splines will be constructed coordinate-wise. 

Let ,I a b  be a real interval and let:  

0 1 Na t t t b  

 

e a subdivision of I with  points (those b 1N
points are called the knots of the spline). A 
polynomial spline on the subdivision is a mapping 

: ,S a b R  such that for all 0 1i N ,  

R  is a polynomia1: ,i iS t t

, 0i

Ny

l . If iP

y i N  are

the spline at p

 prescribed value to be

oints , 0it i N , then, applying the 

definition of a splin following condition: 

0 1, i i ii N P t y  

s  taken by 

e yields the  

Note that the last point  is not taken into 

acco  unt since the polynomial 1N  is only defined

on a semi-open interval 1,N Nt t . Assuming now 

that all polynomials iP  are of the same degree d , 

the number of coefficients to be estimated is 

 P

1d N . The interpolation condition gives 

o that dN  coefficients remain to be 

estimated. Since we want some smoothness of the 
spline, we can impose conditions on the inner 
points:  

 

N 

relations s

11 1,
k k

i i i ii N P t P t  

 

with  ranging from 0 (continuity) to the requested k

regularity degree. A common choice is to have 
1dC  splines, in which case smoothness conditions 

ive will g 1d N  relations. Gathering 

interpolati oothness conditions y

total of 

on and sm ield a 

1d N d relations. To have a fully 

determin relations are still needed. 
Classically, those will be obtained by fixing the 

values of the first d-1 derivatives of 1NP

ed system, d 

 at Nt  (

0-th order derivative is the polynomi elf d so 
this conditions can be used to explicitly take the 

value N

the 

al its an

y  into account). Although it is possible to 

compute an interpolating spline based on the 
previous derivations, it is more enlightening to take 
a different approach for trajectories representation. 
First, one can note that a 0-th order spline is indeed 
a piecewise constant function and thus is entirely 
defined by the interpolation data (no smoothness is 
required). It is then clear that the interpolating 
spline can be written as a weighted combination of 
elementary piecewise constant functions: 

1

1

,0
1

i i

N

i t ti
S t y t  

In the general case,  we will seek for a 
deco inimally mposition on basis functions that are m
compactly supported splines. For regularity d and a 
spline function  made from N polynomials, 

smoothness requirement will induce 1d N  

relations. The compact support assum

that the derivatives of order 0 1d  vanish at 

endpoints, thus adding 2d  relations. Finally, the 

ption implies 
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spline is required to take a non zero value at some
point  so that another relation is added for a net tot

of 1 1d N . Since the number of free 

coeff 1 N , a minimal spline will be 

obtained b his number with the num

of relations, giving 1d . The basis functions 

can be recursively computed by the Cox-De boor 
algorithm: 

 

 
al 

ber 

icients is 

y equating t

d

N

1

1 1, 1

1 1

j j k

j k

j k j

t t
t t t

t t

1
,0 ,j j

j t t

j k

j k

t t

t t
, ,j k

j

t1t

 

 spline of 
 oothness d

The general expression of a
 will thus be:

j

sm

 
1

0

N d

jj
S t t  ,j d

with the weights  determ

ee

e

ined by ation 

 be necessary to add extra 

 
e 

 

t of coefficients  will 

 interpol

condition (note that it may
node in order to m t the condition). While it is 
possible with this model to efficiently model an 
aircraft trajectory and to compute any derivatives 
using the recursion formula, a major drawback is
that the spline function has to exactly interpolate th
prescribed values, which is not relevant when data
is corrupted by noise. A way of dealing with such 
data is to seek for a minimal square error. Namely, 
assuming that the smoothing spline has the form: 

,1

P

j j dj
S t t  

then the optimal s
1j Pj

minimize the square error: 

2

1

N

ii iy S t  

 

Note that the num
has no long

esc

ber of  elementary splines 
y related to the number of 

pr

or in a more compact matrix form: 

er to be directl

,1

N

k di

ribed values. An elementary computation 
yields the following equation for the coefficients: 

, ,1 1

P N

j k d i j d ij i
t t

 

i it y

G R  

with G the matrix: 

 
N

G t t, ,1jk j d i k d ii
 

R the vector: 

i i,1j j di

N
R t y  

1, ,and P . G is a gram matrix and will 

be definite positive if the vectors: 

, 1 ,, , , 1j j d j d Nt t j  P

 by pre-
computing the gram matrix and storing its Cholesky 
decomposition. The overall algorithm for 

llowing: 

ilding 

, it is 
 

poly t 

d 

es.   

are linearly independent. In this case, 
1G R . 

Computation can be made efficient

smoothing spline construction is the fo

Selection of sample times for spline bu
using Cox-De boor recursion. Since elementary 
splines are piecewise polynomial functions
possible to pre-compute the coefficients of those

nomials, thus avoiding recursion for subsequen
functions evaluations. 

Computation of the gram matrix G for the 
sample times on the trajectories. Sample times use
in spline definition will be obtained by 
downsampling those tim

Computation of R and linear system G R  

solving. 

Following [21], smoothing splines 
defined in the setting of repro

can be 
ducing kernel Hilbert 

spac
ing model: 

es (RKHS). Assuming that the measures obey 
the follow

i i iy  

with  an unknown mapping to be approximated, 

i  a continuous linear functional (most of the time, 

i  is the evaluation functional at time , that is it

i it ). Since i  is continuous, by the Riesz 

resentation theorem it exists a vector iv  such 

at for any f:  

rep

th

,i if f v  
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Assuming that all vectors lie in a RKHS with
reproducing kernel 

 
K , the following relation holds: 

 

iv t

So that finally, for any f: 

,. ,. , .i iK t K t v
 

, ,.i if f t K t  

This important property allows us to replace 
the e ear functional by an 
inner product: it will be the key ingredient in 
establishing the general smoothing spline formula. 
For r  

valuation of a bounded lin

eason that will become clear in the following,
the initial RKHS will be written as direct sum of 
two orthogonal subspaces: 

0 1H H H  

with 0H  a finite dimensional subspace, spanned by 

basis vectors 1, , p  and  a RKHS with 

o thing spline will be 

1H

oreproducing k

or 

ernel 1K . A sm

a vect S H realizing the minimum of the 

functional E: 

1
1

2 2n

i i Hi 1 H
E y P  

with  a posi ve real number, ti
1HP the orthogonal 

  and the projection on 1H i  be bounded linear 

functionals as before.  is used to tune the trade 

off between interpolation (first su in the 
expression of E) and smoothness (related to the 
square norm appearing in E . By writing 

0 1

m 

)

 with 0 0 1 1, HH  and using the 

representation property  for RKHS: 

1
0 1 1,i i i H

K  

Furthermore, since by assumption  admits 

a finite basis: 

0H

0 01
if 

p

i j i jj 1

p

j jj
 

kes sense to define: 

j

 

It thus ma

1 ., ,i i ij it K t  

E  can the be rewritten as: 

1

2
2

1 1
,i j ij i1 1

n p

i j
E y

H

Putting: 

11
, , 1

p

i i j ij ij
e y i n  

and taking partial derivatives with respect to the 

p, 1k k shows that for the optimal : 

1
0, 1

n

iki i
e k p  

Using again differential calculus in the Hilbe

have at the optimum: 

rt 

space we 

 

1H  

1 1 1
, , 0

n

i ii
H e  

so that: 

1 n

1 1 i ii
e  

 has an Gathering the two parts, the optimal 

expansion: 

 
1 1

p n

j j j jj j
 

 

This result is known as the representer theorem 
21]. Plugging the expansion of the optimal [  in 

E yields: 

 

the expression of 

2 2
E y G G  

With 1, , ny y y , 1, , p , 

, ,1 n  and the matrices: 

, , ,i j i jG  

If  the Gram matrix G is full rank, then a 
standard least squ ows that the 

coefficient vectors 

are computation sh

, satisfy the equations: 

0

y G Id

t

 

 

Specific routines have been developed for 
solving such linear systems. In our setting some 
modification to the original work has to be done. 
First of all, since our data is three dimensional, we 

need to replace the i  in the previous expression by 
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bounded linear mappings to 
3R , still denoted by i . 

The energy functional to be minimized becomes: 

1
1

2 2

1

n

i i Hi H
E y P  

The reproducing propert s now: y i

3R H

with the kernel K a mapping with values in vector 

spac

3 , , , , ,.v R t v K t v  

e of endomorphisms of 
3R . Since K

ient to use the notation 

 is linear in 

v, it is conven

instead of . All the previous derivations 

,.K t v  

, ,.K t v

remain valid in this setting, and the representer 
theorem applies verbatim, ex pt for the fact that 
the expansion of the optimal 

ce
 now i

coefficients. Putting  , ,.i it v K t v  gives 

a mapping with values in endomorphisms of 
3

nvolves vector 

R . 
The optimal  has expansion: 

1 1

p n

j jj j
t t tj j  

with 
3

j R . 

To obtain a RKHS for our problem, we will 
assume that all trajectories are defined on the s

time interval 

ame 

0,1 . The Sobolev space 1  0,mW

is the f a space o appings from ll m
30,1 R whose derivatives up to order m exist 

(in the weak sense) and are square summable. Let L 
be a differential operator of order m. The

 

n: 

10,1m mW KerL W

1 KHS (in the previous sense). 

Furthermore, the Green function of L gives 
immediately access to the reproducing kerne

 

with  R

l of 

. Recalling that our purpose is to obtain 

e co
 as 

e th

unfortunately, since the expression of the curvature 

with D the operator of differentiation with respect 
to time. Simple computation shows that this 
particular choice gives piecewise polynomial 
splines of degree 5 on each of the three 

ing 
pond 

ure. 

t to 
locity 

 

with 

mW a

1

mW

piecewis nstant curvature and torsion, the choice 
of L will be made in order to satisfy as well
possible this requirement. Ideally, L should b
derivative of the curvature (or the torsion), but 

is nonlinear, an optimal L cannot be found. The 
standard way of dealing with the problem is to 

require only that the square norm of the third 
derivative be as small as possible, thus giving: 

3

3

3

0 0

0 0

0 0

D

L D

D

 

e 

components: all the results previously given will 
apply. Note that many standard spline smooth
algorithms use instead cubic splines that corres
to an approximate minimum total curvat
Because of the approximation made on the 
criterion, curves reconstructed by quintic splines 
will not be of piecewise constant curvature. In order 
to have a better approximation, it is convenien
add a penalty term so that the norm of the ve
be as constant as possible: in this case, curves tend
to be parametrized by arclength, thus giving a better 
approximation of curvature by the second 
derivative. The corresponding composite criterion 
is: 

0 0

0 0

D

L D  

0 0 D

0

al with 
intensively studied in t

case) 

 a positive real number controlling the 

importance paid to consta  velocity. Functions 
optim respect to this new criterion have been 

he literature (at least for the 

nt

cubic and are named splines under tension (  

is the tension parameter). Increasing  results in

curve with sharper turns and more straight line 

segments, while setting 0

 a 

gives the initial 

quintic (or cubic) splines. As it has been pointed out 
by K. Mehadehbi, it is interesting to make  

depend on time, so that it is possible to more 
accurately model turns by relaxing tension while 
low curvature areas will be associated to high 
tension, yield almost straight lines which is
operationally sound. The choice of the tension
parameter remains anyway a highly heuristic 
process. In order to more accurately take into 
account the real curvature and more generall

 
 

y the 
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shape of the trajectory to be reconstructed, a 
different approach combining a shape optimiz
an a velocity interpolation will be taken. Recal
shape parameters like curvature or torsion are easil
defined only when the curve is parametrized b
arclength. Assuming that such a parametrization has
been obtained, the interpolation criterion has to be 
modified: with time parametrization, measured 

position i

ation 
l that 

y 
y 

 

y  at time it  has to be as close as possib

to the smoothed value it  while with arclength 

parametrization, there is no direct relationship 

between measureme t i

le 

n y  and the corresponding 

on 

i is t s . The  way of dealing with 

the problem is to require that is  be a point 

the curve closest to i

 only

y . Unfortunately, such a poin

ique (take for example as 

t 

is generally not un  a 

circle and as iy  the center of this circle), and to 

correct this flaw, we have to add an extra 
assumption forcing uniqueness. A classical choice

is to select is  as the supremum of the set of those

for which s  is closest to i

 

 s 

y . The assum

is  insuring uniqueness will be implicit now, but ha

to be kept in ind when implementing algorithms. 

The sm ing criterion to be minimized by 
 smoothing curve

ption on 

s 

 m

ooth
the  will thus be of the form: 

2 2
min

n

1 s ii
y s P  

The optimal  minimizing this criterion is 

known as a regularized principal curve (see ]).  

If 

[22

2
P  has to be r tation invariant (meaning 

t n e 

proved usin
scalar, pre

Furth  
 speed-

d to find 

o

tha curves that ca  be obtained by rotations of th
same curve will be equally penalized), it can be 

g 
clu

Schur lemma that P P  has to be 
ing the use of vector valued kernels.   

Remark 6. Since most of the relevant P  for 
aircraft trajectory studies are diagonal, this 
restriction has little impact: interpolation can be 
done with scalar kernels component-wise. 

t

d

ermore, computational speed is greatly
increased when using such kind of kernels: a
up of 9 is theoretically possible since the 
complexity of linear algebra algorithms use

the coefficients of spline expansion is 
3o N  with 

N the dimension of  the matrices involved. With 
general vector kernels, this amounts to a complexity 

of order 
33 27 while the diagonal cas es to 

3 independent resolutions of one dimensional 
problems, thus yielding an overall complexity of 
order 3. 

In [22], it is proposed to find a solution to the 
principal curve problem by assuming that all curv

e reduc

es 
 have an expansion as a weighted sum of a 

reproducing kernel: 

1
, , 1 3

mj j j

i ii
s C K s s j  

with 
jC  real constants and ernel 

satisfy

K  a reproducing k

ing , ,K x . , ,.y P PK y  (K can 

be easily ned as the green function of the 

space of constant functions, bu

t mu prior 

K x

 obtai

 
e 

opera
tP P ). In this setting, the kernel of 

tP P  
has to be th t 
extension to different finite dimensional kernels is 

immediate by replacing the constants 
jC  with 

mappings from the kernel of 
tP P . It is very 

important to note that contrary to the standard 

splines case, the nodes positions is  are w free 

parameters of the problem tha st be chosen 
to performing curve fitting. Putting:  

tor

 no

1 2 3, ,i i i i  

and assuming that the data has been de-trended (so 
that the term corresponding to the mapping from the 

kernel of  is 0), the regularized principal curve 

 
tP P

associated with the measured positions iy  is 

obtained as the solution of the following 
optimization program: 

, 1
, ,i j i ji j

K s s

Because of the minimization on the parameters 

2

1 1
,

,min
i j

m n

j i i jj i

n

y K s  

j , it is no longer possible to use a standard 

solver and an iterative algorithm has to be 
considered. [22] propose to first minimize over the 
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j , then solve in a second step for the i , 

ng those two stages until no further 
improvement is obtained. Theoretical analy
convergence rate has been done in the same paper, 

ng that a nearly optimal learning rate  b
obtained. As in the smoothing splines case, we will 
enforce arclength parametrization by adding an 

extra term in 

iterati

showi

sis of 

 can e 

2
: the resulting kernel will be 

associated with splines in tension.   

Once the optimal shape of the trajectory has 
been obtained by the previous algorithm, it rema
to infer a parametrization matching the really 
observed 4D trajectory. Such a parametr
monotonic real 

ins 

al d  
been obtained, it is relatively easy to exte

e function
 
: 

 the 
moothi

application is obvious, since functional 
representatio

her 

 
ition as 

 
 

tions 

 

inding 
n, 

s exist for performing this task and 
fall i

 

ation can be readily 
all 

ty 
between data.
obtained by computing Sobolev distances between 
func

tive 

not yet 

air

t is 
in this context as long 

ization is a 

ata has
nd 
al 

 of 
ver

ng 

he 

mapping: it will be obtained again 
using a spline interpolation, but this time using a 
well known cubic spline interpolation. It must be 
noted that monotonic splines exist, thus insuring 
that the parametrization has by construction the 
required properties, however, on practical cases, it 
appears that the simple cubic splines algorithm 
produces admissible results with a much lower 
computational cost. For that reason, only this last 
option has be considered in our final 
implementation of spline smoothing. 

Using Functional Data 

Once a tractable (i.e. finite dimensional) 
representation of the original function

classical vector algorithms to th
framework. For the purpose of aircraft trajectory
analysis, two applications have been investigated

 Trajectory smoothing and prediction. 

 Trajectory classification. 

 

We will now briefly explain how the use
functional data representation can improve o
existing procedures. Trajectory s

n of sampled data is obtained by 
solving a smoothing problem. For prediction, sort 
term forecasting can be again directly obtained by 
evaluating the functional representation at t
desired time. However, smoothing splines, eit
standard or shape based are generally poor 
predictors for medium to long term forecasting: 

some knowledge about the future behavior of the 
trajectory has to be incorporated to the model. 
Some information from flight plan can be added is
available by considering those intended pos
measures, but with a low confidence level (this is
obtained simply by weighting the correspond error
term in the smoothing problem). Since 4D posi
are generally badly defined in flight plans, it is far 
better to use the regularized principal curve 
algorithm first, then to use the 1D cubic spline 
smoothing to infer the time/arclength mapping, with
a low confidence on values obtained from the flight 
plan). For long term forecasting, only statistical 
procedures are relevant. Since it amounts to f
the most probable trajectory based on observatio
it is in fact based on the next item that is trajectories 
classification.   

Classification of trajectories is a statistical 
procedure aimed at splitting a dataset into subsets 
with high internal coherence and at finding a best 
representing member for each of those subsets. 
Many algorithm

n one of those two classes: 

 Supervised classification, where the 
number of classes is known and an 
already classified learning dataset is 
available. 

 Unsupervised classification where the 
classes are inferred by the algorithm.

 

Supervised classific
applied in the functional context since almost 
algorithms require only a measure of similari

 In our setting, such a measure can be 

tional data (for operational purpose, an 
interesting distance is obtained by summing the 

2L norm of the differences of trajectories, deriva
of trajectories and second derivatives of 
trajectories).  For the unsupervised case, most 
algorithms include a heuristic step: we have 
investigated such algorithms for the purpose of 

craft trajectory analysis. 

Conclusion and Future Work 

Because trajectories are functional objects i
highly desirable to stay with
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as possible. Since existing statistical proc
with

edure 

t. 
s 

s 

1997, 
Functional Data Analysis, Springer-Verlag . 

Silverman, B.W., 2002, Applied 
 . 

 , 

er 
be 

nce, Proceeding of FAA/Eurocontrol 

 

rial Planning Capability, Boston 

 Worth Air Route Traffic 
 of 

. 
 

or Conflict-Free 
he 

tic 
anagement 

roceeding of the 

ination 
 the AIAA-2001-

r 

  Management, 

e Control and Dynamics, Vol 20-2, 

n 

s, Budapest Hungary, Proceeding of  

r 
port Tools, 

nce. 

logy 

in the frame of ATM are nearly all the time 
based on sampled data, a way of optimally inferring 
a functional model has been presented. Since 
relevant operational quantities are related to the 
shape of trajectories, it is interesting to first model 
the data as a regularized principal curve, then to fit 
an ad-hoc parametrization to match the 4D aspec
This algorithm improves over the smoothing spline
or splines in tension algorithms already in use. 
Furthermore, it is much easier to enforce piecewise 
constant curvature  or torsion using shape models. 
The price that has to be paid for this extra flexibility 
is a more computationally intensive procedure, 
involving an iterative optimization stage. Taking 
into account the computation power of nowadays 
computers, it turns out that computational time 
penalty compared with standard smoothing spline
is acceptable. A extension of the shape algorithm 
using an optimal tension parameter is currently 
under development. At the same time, a dataset of 
arrival trajectories at Paris CDG will be analyzed 
using the functional data approach. 
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