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Abstract. The ENAC University is using and developping the Paparazzi UAV system, which aims to

provide a free and fully autonomous autopilot for a fleet of MAV, including fixed wing and rotary wing

MAVs. The Paparazzi project has now succeeded in providing a fully autonomous navigation system

for multiple fixed-wing aircraft system. One of the main concern of the project is the development of

autonomous decision making algorithms and cooperative behaviour between the different MAV of a fleet

to increase the level of autonomy of the system. We can distinguish 4 different levels of autonomy: the

manual level, the augmented stability level with or without pilot through video, the flight plan level where

the mission is described in terms of trajectories and waypoints, and the mission level where the mission

is described in terms of goals. In this paper, we focus on the latter, which implies to solve the automated

mission planning problem for a fleet of MAV. We first present a formal model for this problem inspired by

the MAV06, EMAV2006 and MAV07 contests, then we propose two different approaches to solve it.The

first one is based on dynamic programming and computes a policy which gives the action to take for each

state, regardless of prior history and taking the uncertainties into account, whereas the second one is a

real-time planning and replanning algorithm based on the A* algorithm.

I. A formal model of a mission

Automated planning1 is a branch of Artificial Intelligence which aims to provide algorithms which

can compute policies or plans to realize a set of fixed goals performed by agents such as ground robots

or UAV. To modelize classic planning problems we use restricted state-transition systems (see figure 1).

These systems are determinist (there is no uncertainty), finite (there is a finite number of state and action),

and completely observable (there is no uncertainty on the state observation). We denote this system Σ =
(S, A, γ) where S is a finite set of states, A is a finite set of actions, γ : S×A → S is a transition function.

A planning problem is then defined as a triple P = (Σ, s0, g) with Σ a restricted state-transition system,

s0 the initial state, and g a set of final states. Solving the mission planning problem consists in finding a

valid sequence of action which permits to go from an initial state to a final state. In our case, the final states

are defined as a state where all MAVs are either at home or on ground (or out-of-order).

Definition 1 A plan is sequence of action π = (ai)i∈[1..n] where n is the size of the sequence. A solution

to P is a plan π(ai)i∈[1..n] that satisfies:

sn ∈ g where sn = γ(γ(. . . γ(s0, a1) . . . , an−1), an)
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Figure 1. A state transition system that describes a mission with 1 vehicle and 2 drop zones. 0 is home, 1 is the first drop zone, 2 is the second

drop zone.

I.A. States description

Each state can be described with first-order logic or with variables representation. In this paper we only use

the variables representation. We define each state as a set of variables which represents the state of each

MAV of the fleet, and the achievement of each goal. Moreover, for a fleet of MAVs we need to synchronize

the actions of the various aircraft. To do this synchronization, we add a variable for each MAV describing

the time left to the end of the current action.

For each MAV i we have the following variables at decision step t:

• position[i, t] ∈ [0, ..., n − 1] is the position of the MAV and n is the number of waypoints in the

mission.

• ball[i, t] ∈ [0, . . . , ballsmax] is the number of paintballs left in the airframe.

• video[i, t] ∈ [0, 1] is set to 1 if the MAV has a video camera sensor. This variable is constant if we

consider that the video camera won’t fail during the mission.

• flying[i, t] ∈ [0, 1] represents if the MAV is flying or not.

• time[i, t] ∈ [0, ..., timemax] is the time to the end of the current action and timemax is the maximum

time of an action.

• action[i, t] ∈ {nop, takeoff, go(x), eight, drop, land, nop}, x ∈ [0, . . . , n − 1] is the current ac-

tion.

For each goal k we have : goals[k, t] ∈ [0, 1], deepending whether the goal k is achieved or not.

At the initial state all MAVs are on ground.

I.B. Actions and transitions description

The transition function γ describes the constraints,2 i.e. the preconditions and postconditions of an action

that bind two successive states. Therefore, we use the language of constraints to express γ. An action for a
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fleet of MAVs is the vector a = (a1, a2, . . . ai . . . , anb aircraft) of the actions of each MAV. In this paper

we consider for each MAV the following actions: Takeoff, Land, Move, Eighta and Dropb.

I.B.1. The preconditions

A MAV has to finished its current action before it begins a new one, therefore for each action we have the

following precondition: time[i, t] = 0.

In this paper we consider the following constraints:

Takeoff The MAV is on the ground and Takes off, which gives the following constraint: (flying[i, t] = 0)

Land The MAV is flying and lands on the ground: (flying[i, t] = 1)

Move The MAV is flying and move to a waypoint x : (flying[i, t] = 1)

Eight The MAV does a eight figure centered over the target x to identify it: (flying[i, t] = 1)∧(postion[i, t] = x)∧
(video[i, t] = 1)

Drop The MAV drops a ball on the target x: (flying[i, t] = 1) ∧ (position[i, t] = x) ∧ (ball[i, t] > 0)

Nop The MAV is on the ground and does no action: ((time[i, t] = 0) ∨ (action[i, t] = nop))∧(flying[i, t] =
0)

I.B.2. Action in progress

Additional other constraints need to be met as well by the following variables.

If time[i, t] > 1 the current action is not finished, so the state variables are constants except for the

time variable:

position[i, t + 1] = position[i, t]

ball[i, t + 1] = ball[i, t]

flying[i, t + 1] = flying[i, t]

action[i, t + 1] = action[i, t]

The evolution of the time to the end:

time[i, t] > 0 ⇒ time[i, t + 1] = time[i, t] − 1

time[i, t] = 0 ⇒ time[i, t + 1] = duration(action[i, t + 1]) − 1

I.B.3. The effects

If time[i, t] = 1, the constraints translating the effects of actions are applied to the state variables:

• After taking off the aircraft is flying, the flying variable is set to 1 (see equation (1)).

• After landing the aircraft is on the ground, the flying variable is set to 0 (see equation (2)).

• After moving to x the aircraft position is x (see equation (3))

aEight: MAV does a eight figure centered on a target
bDrop: MAV drops a paintball on a target
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action[i, t] = takeoff ⇒ flying[i, t + 1] = 1 (1)

action[i, t] = land ⇒ flying[i, t + 1] = 0 (2)

action[i, t] = move(x) ⇒ position[i, t + 1] = x (3)

Let k be the goal corresponding to the realisation of action[i, t] at position[i, t]. If time[i, t] = 1 then:

action[i, t] = eight ⇒ goal[k, t + 1] = 1

action[i, t] = drop ⇒ (goal[k, t + 1] = 1) ∧ (ball[i, t + 1] = ball[i, t] − 1)

goal[k, t] ≤ goal[k, t + 1]

I.C. Optimisation

To compare the quality of different solutions we use a criterion, also called utility function (U : S → R).

This criterion permits to choose the best solution. In some cases, finding the optimal solution can be too

expensive computationaly speaking. In those cases we use the criterion to find a “good” solution (but not

the best).

In this paper, we chose to first maximize the amount of goal achieved (or the sum of the utilities if some

goal are more important than others) within a given time and then to minimize the duration of the mission.

II. Mission planning under uncertainty

In the first part we have not modelised the uncertainties in the problem. We write it as if it traduces

the reality of operations. However, the result of an action is not always deterministic. Markov Decision

Processes3 are a frequently used model to take into account the uncertainty of the effects of an action. It

introduces the probability of transition between two states as a function T : S × A × S → [0, 1]. In this

paper we choose to use a formalism based on Uncertainties, Feasibilitiesc, and Utilities4 which is better

suited to our problem because we have already describe feasibilities and utilities in the previous section.

Therefore we only need to describe uncertainties.

We suppose the result of an action does not depend on the prior history, it depends of the current state

and of the enviroment only.

II.A. The uncertainties

We assume that only the achievement of a goal is uncertain. We define the probability of identification of

a target at the end of the eight figure by the MAV i:

Pid(i) = P (goal[k, t + 1] = 1 | goal[k, t] = 0, action[i, t] = eight, time[i, t] = 1, position[i, t] = pos(k))

Let {i1, . . . , im} be a set of MAV verifying action[i, t] = eight, time[i, t] = 1, position[i, t] =
pos(k). The event “MAV i identify the target k” does not depend of the event “MAV j identify the target

k”, therefore using the Poincaré formula we have:

Pid = P (goal[k, t + 1] = 1 | goal[k, t] = 0)

=

m
∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

[Pid(i1) × Pid(i2) × · · · × Pid(ij)]

cFeasibilities corresponds to the transition constraints.
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And if Pid(i) = p does not depend of the MAV i we have:

Pid =

m
∑

j=1

(−1)j−1

j
∑

l=1

(

j

l

)

pl (4)

We can define the probability of dropping a ball close to the target using the same properties as in (4).

II.B. Solving

To solve a planning mission with uncertainty, we propose to generate an optimal policy π : S → A which

will maximize the expected utility after each step of decision. We use Bellman’s optimality equations

(see equations 5 and 6) and dynamic programming3, 5 to compute the optimal value V ∗
n (s) at each step of

decision n for each state s and the corresponding action πn(s).

V ∗
n (s) = max

a∈A

∑

s′∈S

P (s, s′, a)
(

(U(s′) − U(s)) + V ∗
n+1(s

′)
)

(5)

πn(s) = argmax
a∈A

∑

s′∈S

P (s, s′, a)
(

(U(s′) − U(s)) + V ∗
n+1(s

′)
)

(6)

However some problems cannot be solved within acceptable computation times (e.g. a mission with 3

targets, 1 MAV and 120 decision steps can take as much as 3 hours to solve on a PIV 3GHz). Moreover,

it might be impossible to know the probabilities of transition between state, or to a long time before the

mission the field conditions such as wind.

III. Real time mission planning and replanning

Our second method is a real-time planning and replanning algorithm. It permits to solve problems that

cannot be modelled with probabilities. The algorithm we use to compute the plan is based on the classic

A* algorithm.6 We build a plan offline assuming all actions are deterministic and will succeed. During the

execution of the plan we check whether an action fail or does not end in the forecasted state, and replan

when necessary.

We define three different stages of the real-time planning7 and replanning algorithm. The A* planner

which builds a new plan from current state, the execution which runs the plan, and the controller which

checks if the plan needs to be corrected (see figure 2).

Planner (A*)

Controller

State

Execution

Plan

Continue

Replan

Decision Process

Figure 2. Execution / planning scheme.
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III.A. Planning

The A* algorithm is a pathfinding algorithmd often used in IA planning because of it simplicity and effi-

ciency due to the fact that it expands estimated best nodes first. To estimate the cost of the best solution

that goes through state n we use:

f(n) = g(n) + h(n)

Where g(n) is the time to go from initial state to n. and h(n) is an estimated time to the solution from n.

��
��

��
��

��

��

��
��

Final state

Initial

state

h(n)

g(n)

Figure 3. Estimated cost of a partial solution.

The A* algorithm usually stores partial solutions into a priority queue using a function f to estimate

the cost of a partial solution. It expands the node with the best priority, and store the new partial solutions

into the same priority queue. To minimize the cost of the mission we include a penality in g for solution

state where a goal is not done. Let G be the set of goal that are not achieved, the penality for a solution

state is:

penality =

(

∑

k∈G

U [k]

)

× timemission

cost = g + penality

Where timemission is the maximum time allocated to the execution of the mission.

III.B. Execution Control and replanning

The planner sends to the execution module of the MAV a plan π = (ak)1≤k≤n and the predicted resulting

states p = (sk)1≤k≤n. After each step of the plan, we enter a decision process where the controller decides

whether to continue with the execution of the plan or to build a new plan to cope with an unpredicted state,

i.e. if γ(st−1, at) 6= st. In those cases, the planner needs to give a new plan as soon as possible. The online

computing time ct of a new plan needs to be very small compared to the decision time step time step. We

choose the following condition:

ct <
time step

10
(7)

In case the previous condition fails, we repair the previous plan thus If the last action of MAV i failed, the

MAV i redo this action before resuming his plan. The condition 7 is likely to fail when few goals have

been achieved.

dPathfinding = find the shortest path.
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IV. Results and Further works

We have successfully written a formal model of mission for a fleet of MAVs. We have also proposed and

implements two different algorithms to solve the mission planning problem using this model. Our Dynamic

Programming based algorithm, which takes into account uncertainties, is an offline algorithm (computed

on ground before the mission), and the resulting policy could be airborne in a paparazzi equiped MAV as

a conditional flight plan. We successfully solved a 2 MAVs mission with 4 targets and 120 decision steps.

Our real-time planning and replanning algorithm successfully solved a 2 aircrafts mission with 8 targets.

Our first results show that for it is harder to solve problems if the fleet of MAVs is homogenous (i.e. all

the MAVs have the same sensors), it makes the problem highly symmetrical. The next step is to work on

symmetry breaking and goal allocation to tackle the complexity of the problem.
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