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Abstract: The purpose of this communication is to investigate the usefulness of the non linear inverse control approach to
solve the trajectory tracking problem for a four rotor aircraft. After introducing simplifying assumptions, the flight dynamics
equations for the four rotor aircraft are considered. A trajectory tracking control structure based on a two layer non linear in-
verse approach is then proposed. A supervision level is introduced to take into account the actuator limitations.
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1 INTRODUCTION

In the last years a large interest has risen for the four
rotor concept since it appears to present simultaneously
hovering, orientation and trajectory tracking capabilities
of interest in many practical applications[1]. The flight
mechanics of rotorcraft are highly non linear and dif-
ferent control approaches (integral LQR techniques,
integral sliding mode control[2], reinforcement learn-
ing[3]) have been considered with little success to
achieve not only autonomous hovering and orientation,
but also trajectory tracking In this paper, after introduc-
ing some simplifying assumptions, the flight dynamics
equations for a four rotor aircraft with fixed pitch blades
are considered.
The purpose of this study is to investigate the usefulness
of the non linear inverse control approach to solve the
trajectory tracking problem for this class of rotorcraft.
This approach has been already considered in the case of
aircraft trajectory tracking by different authors [4-6]. It
appears that the flight dynamics of the considered rotor-
craft present a two level input affine structure which is
made apparent when a new set of equivalent inputs is
defined. This allows to introduce a non linear inverse
control approach with two time scales, one devoted to
attitude control and one devoted to orientation and tra-
jectory tracking.

2 FLIGHT DYNAMICS EQUATIONS OF
ROTORCRAFT

The considered system is shown in Fig. 1 where rotors
one and three are clockwise while rotors two and four
are counter clockwise. Annex 1 describes the rotor dy-
namics.
The main simplifying assumptions adopted with respect
to flight dynamics in this study are a rigid cross struc-
ture, no wind, negligible aerodynamic contributions re-
sulting from translational speed, no ground effect as
well as negligible air density effects and very small rotor
response times. It is then possible to write simplified
rotorcraft flight equations [7].
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Fig. 1 Four rotor aircraft

The moment equations can be written as:
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where p, q, r are the components of the body angular
velocity, with 2 ( ) /zz yy xxk I I I− and

4 ( ) /xx zz yyk I I I= − , Ixx, Iyy and Izz being the moments of
inertia in body-axis and m the total mass of the rotor-
craft.
The Euler equations are given by:
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where θ, φ, and ψ are respectively the pitch, bank and
heading angles.
The acceleration equations written directly in the local
Earth reference system are such as:
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where x, y and z are the centre of gravity coordi-
nates
and where :

1 2 3 4F F F F F= + + + (4)
and with the constraints:
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3 THE PROPOSED FLIGHT CONTROL
APPROACH

Here we are interested in controlling the four rotor
aircraft so that its centre of gravity follows a given path
with a given heading ψ while attitude angles θ and φ
remain small. Many potential applications require not
only the centre of gravity of the device to follow a given
trajectory but also the aircraft to present a given orienta-
tion. From equations (1) it appears that the effectiveness
of the rotor actuators is much larger with respect to the
roll and pitch axis than with respect to the yaw axis.
Then we consider that attitude control is involved with
controlling the θ and φ angles. In equations (1) the effect
of rotor forces appears as differences so, we define new
attitude inputs u1 and u2 as:

1 1 3u F F= − � 2 2 4u F F= − (6a)
In the heading and position dynamics, the effects of ro-
tor forces and moments appear as sums, so we define
new guidance inputs v1 and v2 as:

1 1 3v F F= + � 2 2 4v F F= + (6b)
It is supposed that u1 and u2 can be made to vary sig-
nificantly while v1 and v2 can remain constant.

3.1 Attitude Control Layer

Then the attitude dynamics can be rewritten under the
affine input form:

( , ) ( )X f X V g X U= +� (7a)
' ( , )Y θ φ= (7b)

with
' ( , , , )X p q θ φ= , 1 2' ( , )U u u=

and 1 2' ( , )V v v=
(8)

Then, considering the non linear inverse control theory,
it appears that the attitude angles present relative de-
grees equal to one and that there is no internal dynamics
while the output equations can be rewritten as:
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It appears that while π / 2φ ≠ ± , the attitude dynamics
given by (9) are invertible. Then it appears feasible to

consider as control objective to get second order linear
attitude dynamics towards reference values:
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where , , ,θ φ θ φζ ζ ω ω are respectively damping and
natural frequency parameters while θc and φc are ref-
erence values for the attitude angles.
Then the corresponding non linear inverse attitude con-
trol law is given by:

1( ) ( ( ) ( ) )dU M Y N X V P X Y−= − + − �� (14)

3.2 Guidance Control Layer

Considering that the attitude dynamics are stable and
faster than the guidance dynamics, the guidance equa-
tions can be approximated by the control affine form:
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Here also, the outputs of the guidance dynamics present
relative degrees equal to 1 while the internal dynamics,
which are concerned with the attitude angles , are sup-
posed already stabilized. Then, supposing that second
order linear dynamics are of interest for the guidance
variables, we can define desired accelerations by:
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where , , , , , , ,x y z x y zψ ψζ ζ ζ ζ ω ω ω ω are respectively
damping and natural frequency parameters while ψc, xc,
yc and zc are reference values for the attitude angles.
Of course, many other schemes can be proposed to de-
fine desired accelerations at the guidance level.
Once desired accelerations are made available, the in-
version of the guidance dynamics brings nominal the
solution:
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with
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Fig. 2 Proposed control structure

Then, returning to the expression of the attitude control
law , it happens that the centre of gravity acceleration
terms compensate each others and the law becomes:

1( ) ( ( ) ( ) )dU M Y N X P X Y−= − + − �� (19)
with
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The whole proposed control structure is given in Fig. 2. 

4 FLIGHT CONTROL SUPERVISION

Since the above control approach does not consider ex-
plicitly the input level constraints, we introduce here a
supervision layer whose function is to avoid the genera-
tion of unfeasible reference values for the inputs by
modifying, as less as possible, the current control objec-
tives. According to (5), (6) and (7), the control signals
should be such as:

max max , 1,2iF u F i− =� � (21a)
and

max0 2 , 1,2iv F i =� � (21b)
Conditions (21a) implies for the desired attitude accel-
erations to satisfy the following conditions:
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max max 1 1 2 2/ ( ) tan ( )xxa F I N P N Pθ θ= + + − +�� (23c)
Then, reference values for instant attitude angles accel-
erations can be obtained from the solution of the fol-
lowing linear –quadratic optimization problem:
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with

min maxφ β φ�� ��� � (24b)

min maxtanθ α θ β θ−�� ��� � (24c)
Observe that the solution of this problem is equal to
( ,c cθ φ�� �� ) if it is feasible with respect to constraints (24b)
and (24c), otherwise the solution will be on the border
of the convex feasible set.
Then if *α and *β are solution of this problem, u1 and
u2 are given by:
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In the case of v1 and v2 (relations (21b)) and considering
the expressions of θc and φc the above approach leads
to the consideration of an intricate non convex optimiza-
tion problem. A different approach is proposed here. Let
λ be such as:

, , ( )r c r c r cx x y y z g z gλ λ λ= = + = +�� �� �� �� �� �� (26)
then according to (18a) and (18b):

r cθ θ= and r cφ φ= (27)
Feasible reference values for rx�� , ry�� , rz�� and rψ�� can be
obtained from the solution of the following linear
–quadratic optimization problem:
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where η is here a time constant. Let *λ and *μ
be the solution of the above problem, then the control
inputs can be taken as:
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Then:

1 1 1( ) / 2F u v= + � 2 2 2( ) / 2F u v= + (30a)

3 1 1( ) / 2F v u= − � 4 2 2( ) / 2F v u= − (30b)

5 CASE STUDIES

Here we consider two cases:
One where the objective is to hover at an initial position
of coordinates x0, y0, z0 while acquiring a new orienta-
tion ψ1, and
One where the rotorcraft is tracking the helicoïdal tra-
jectory of equations:

( ) coscx t tρ ν=
( ) sincy t tρ ν=

cz tδ γ= +
( ) π / 2c t tψ ν= +

(31)

where ρ is a constant radius and γ is a constant path
angle.

5.1 Heading Control at Hover

In this case we get the guidance control laws:

1
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k
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with the following reference values for the attitude an-
gles:

0cθ = and 0cφ = (33)
Here the heading acceleration is given by:

2
12 ( )c rψ ψ ψψ ζ ω ω ψ ψ= − − −�� (34)

Starting from an horizontal attitude ( θ(0)=0, φ(0)=0),
attitude inputs u1 and u2 given by relation (14) remain
equal to zero. Then, Fig. 3 and 4 display some simula-
tion results:
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Fig. 3 Hover control inputs
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Fig. 4 Heading response during hover

5.2 Trajectory Tracking Case

In this case we get the guidance control laws:
2 2 2

1 2
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Here the permanent reference values for the attitude an-
gles are such as:

0cθ = (36a)
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and the desired guidance and orientation accelerations
are given by:
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Attitude inputs are given by relation (14) where now:
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and
[ ]( ) ' 0 0N X = (39)

In Fig. 5�7 simulation results are displayed where at
initial time the rotorcraft is hovering:
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Fig. 5 Evolution of rotorcraft horizontal track
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Fig. 7 Rotorcraft trajectory tracking inputs

6 CONCLUSIONS

In this communication the theoretical applicability of the
non linear inverse control technique to rotorcraft trajec-
tory tracking has been investigated. It appears that this
approach leads to the design of a two level control
structure based on analytical laws. Considering the
structure of the rotorcraft flight dynamics, other prom-
ising non linear control techniques are differential flat
control[8] and back stepping control[9].
When considering the complexity of these non linear
control laws involving a relatively small number of in-
puts, neural networks components could be of interest
for their effective implementation.
However, the robustness of these control laws with re-
spect to the different aerodynamic effects which have
been taken as negligible should be investigated. Since
only very intricate theories are available to approach this
problem, real flight tests appear, at this stage, to be un-

avoidable.
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