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Abstract: With the increase of traffic density, it appears of interest to design more 

versatile guidance systems for civil transportation aircraft. In this paper, a new approach 

is proposed to design a guidance system able to achieve 4D trajectory tracking. Flight 

guidance dynamics are shown to be implicit differentially flat with respect to the inertial 

position of an aircraft. To overcome the numerical difficulty implied by this implicit  

property, artificial neural networks are introduced to capture the differential relationship 

between guidance parameters and attitude control inputs. A corrective term is also 

introduced to take into account the effects of model approximation, neural network errors 

and disturbances. Copyright © 2007 IFAC
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1. INTRODUCTION 

The sustained increase of air transportation during the 

last decades has led to severe air traffic saturation and 

environmental problems and new needs for aircraft 

guidance applications have appeared: traffic 

avoidance and relative guidance manoeuvres, 

formation flight, continuous descent approaches, etc. 

It has become more and more difficult to integrate 

these new complex functions within the classical 

mode-based approach of guidance manoeuvres where 

complex manoeuvres are performed through the 

scheduling of elementary guidance modes. Until 

recently few studies dealing with what seems more 

profitable and safe in that case: a full trajectory-based 

approach of flight guidance, have been published. In 

this communication, a contribution to this question, 

based on differential flatness (Fliess, et a.l, 1995), is 

proposed.  

Some authors have investigated the differential 

flatness of conventional aircraft dynamics (Martin, 

1992; Lavigne, et al., 2003), although none of them 

has considered separately the flatness property of the 

flight guidance and the attitude dynamics of a rigid 

aircraft.  

 A neural guidance control structure is proposed to 

perform trajectory-tracking manoeuvres. The inertial 

position of an aircraft is taken as a differential flat 

output for its flight guidance dynamics (FGD), giving 

way to their static inversion. Since this differential 

flatness property is implicit, a neural network is 

introduced, as a numerical device,  to deal with the 

inversion of the guidance dynamics. Once 

conveniently structured and trained, the neural 

network is able to generate in real time directives to 

conventional autopilot systems concerned with 

attitude and engine regime control so that the 

reference trajectory can be tracked. In order to 

compensate modelling errors and external 

disturbances, an additional feedback loop must be 

introduced. All these issues, as well as the robustness 

question with respect to modelling errors and external 

perturbations, are discussed in this paper. 

 DIFFERENTIAL FLATNESS 

Here two definitions of flatness are considered: One 

relative to systems for which causal relationships are 

displayed analytically, it is called explicit flatness
and another one, called implicit flatness, where the 

causal relationships are introduced through implicit 

functions. The term differential is dropped in the 

remaining of this paper to avoid unnecessary 

cumbersome denominations. 

Definition 1: A general nonlinear system given by:  
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where F is a smooth mapping, is said explicitly flat 

with respect to the output vector Z , if Z  is an 



     

thm order vector which can be expressed analytically 

as a function of the current state, the current input 

and its derivatives, while the state and the input 

vectors can be expressed analytically as a function of 

Z  and a finite number of its derivatives. Then there 

exists smooth mappings XG , UG , and ZG  such as:  
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where p and q are integer numbers. Vector Z is

called a flat output for the nonlinear system given by  

equation (1). Although today there is no systematical 

way to determine flat outputs and eventually to prove 

its uniqueness, the flat outputs usually possess some 

physical meaning.  

The explicit flatness property is of particular interest 

for the solution of control problems when physically 

meaningful flat outputs can be related with their 

objectives. In many situations, the control problem 

can be formulated as a flat output trajectory 

following problem. In general, for these cases, the 

flat output of equation (2a) can be reduced, through 

state transformation, to a function of a single 

argument, the new system state itself: 
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However, for many systems, no complete analytical 

models are available to describe their full dynamics. 

Some of their components make use of input-output 

numerical devices derived both from theory and from 

experimental data. In these cases, available theory 

provides in general the main mathematical properties 

of these implicit functions while experimental data is 

used to build accurate input-output numerical 

devices. This happens for instance when flight 

dynamics modeling is considered either for control 

or simulation purposes, since in practice the 

aerodynamic coefficients are obtained through 

interpolation across a complex set of look-up tables. 

Definition 2: A nonlinear system given by a general 

implicit nth order state representation: 

0),,( UXXF ,
nRX ,

mRU    (4) 

where F  is a regular implicit mapping with respect 

to X , is said implicitly flat over an interior non-

empty domain mnR if it is possible to find an mth

order vector Z  which meets conditions of equations 

(2) and condition: 
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where G  is locally invertible over  with respect to 

X  and U  . Here r  is an integer. 

Again, vector Z  is said to be a flat output. The 

invertibility of G  is guaranteed if the determinant of 

the Jacobian of G  is not zero according to the 

theorem of implicit functions. Equations (4) and (5) 

imply that given a trajectory of the flat output Z , it 

is possible to map it numerically into the input space 

to derive corresponding control signals so that one of 

the more helpful properties of explicitly flat systems 

is still maintained. 

 ANALYSIS OF FLIGHT GUIDANCE 

DYNAMICS 

 
3.1 A model of FGD  
In this study, only the guidance dynamics of 

transportation aircraft are of concern since it is 

assumed that the considered aircraft are equipped 

with basic autopilots, which deal efficiently with 

their fast dynamics and control their attitude ,,

as well as their thrust regimes (
1N ).  

Fig.1. Aircraft Flight Dynamics Structure 

Here: aV is the airspeed; V is the inertial speed;  x, y

and z are the aircraft coordinates in the inertial frame; 

is the sideslip angle; p, q and r are the angular rates 

in the body-axis frame; , and  are the  Euler 

angles (roll, pitch, and yaw); is the flight-path 

angle; a and e  are the aileron and elevator 

settings; T is the throttle setting. 

It is also supposed that their lateral fast control loop 

can achieve perfect coordinated-turns, so that  is 

supposed to remain very small. Flight variables ,

 and 
1

N , which are the outputs for the fast 

dynamics around the aircraft body frame when 

controlled by a basic autopilot, are taken here as the 

inputs for the guidance dynamics. Figure 1 displays 

the resulting view for the whole flight dynamics. 

Then,  in steady wind conditions (Etkin and Reid, 

1996), the flight guidance dynamics can be expressed 

in the aerodynamics reference frame as: 
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and      

m
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amV
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Considering coordinated-turn motions, the heading 

rate can be related to the bank angle  through the 

following relation:   

                    tan
V

g                         (7c)

The drag D  and lift L are respectively taken as  

functions of altitude z , airspeed aV and angle-of-

attack , while the thrust T is taken as a function of 

altitude z , airspeed aV and engine regime 1N for a 

jet:  

,, aVzDD , ,, aVzLL ,
1,, NVzTT a

       (8)

For local guidance purposes, the flight-path angle 

is usually taken as the control parameter. Meanwhile, 

through the coordinate transformation, the angle-of-

attack  can be expressed as a complex function of 

, , and . Once the bank angle is considered to 

be small enough, this relation can be reduced to:  

                          (9)

3.2 FGD flatness property 

The state variables aV , and , can be expressed 

as functions of the inertial position of the aircraft and 

its derivatives. We have (6-b) and:  

Vz /sin 1
, xy /tan 1

         (10) 

The control variables satisfy the following relations: 

0
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where  can be replaced by a function of , ,

and  using equation (9). 

The following notations are adopted for the position 

of the center of gravity of the aircraft and for the 

guidance inputs: 
TzyxZ ,,  and   1,, NU             (12) 

Once the variables in equations (11) are replaced 

by their expressions in Z  and its first and second 

derivatives, these equations can be rewritten as:  
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We get three implicit functions which are locally 

invertible with respect to the input vector since for 

normal flight conditions  the determinant of their 

Jacobian is not zero (Lu, 2005). Then, TzyxZ ),,(

is a flat output vector for the considered flight 

guidance dynamics. The time evolution of these flat 

outputs represents the trajectory followed by the 

center of gravity of the aircraft. Then according to 

the above theory, from the knowledge of this 4D 

trajectory, it should be possible to find the 

corresponding input history . 

Fig.2. Flatness propagation through guidance 

dynamics 

4. THE PROPOSED CONTROL STRUCTURE 

4.1 Neural Network Open Loop Control 

As a consequence of the above flatness property, 

given a smooth reference trajectory for the flat 

outputs :           
T

cccc zyxZ ,, , tt ,0    (14) 

The corresponding reference input values at the 

instant t , T
cccc tNtttU 1,, , are solutions of 

the set of equations: 

0))(),(),(),((
1

tUtZtZtZG ccccN
,

0))(),(),(),(( tUtZtZtZG cccc

0))(),(),(),(( tUtZtZtZG cccc
   

where )(tZ c , )(tZ c
 and )(tZ c

are the current 

reference parameters. Since it seems quite difficult to 

get an on-line numerical solution to this set of 

implicit equations, it appears of interest to build a 

neural network with this objective. Once correctly 

trained, this neural network should be an efficient 

computing device where the inputs are provided by 

the tracked trajectory, while the outputs of the neural 

network are the corresponding flight control 

parameters. Multilayer neural networks have been 

shown to be able to perform function approximation 

with the adequate selection of a neural network 

structure associated to a learning process (Haykin, 

1994).  

Fig. 3. neural reference input generator for autopilot 

In order to achieve an acceptable accuracy and a 

sufficient generalization capability, a large amount of 

(15)



     

training data is necessary. Here the training data is 

composed of a set of trajectories for Z  and U
which can be provided from either flight test data or 

even from commercial flight data in which 

maneuvers are either performed manually or with an 

autopilot engaged in basic attitude-holding modes 

(no guidance loop must be active at that time).  
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Fig.5. Training performance with different number of 

neurons in the hidden layer 

Since for modern aircraft onboard navigation 

systems are able to estimate with good accuracy the 

current aircraft position, inertial speed and wind 

speed, their records can be used as a basis for the 

training of the neural network.

4.2 Closed Loop Tracking  
 
The direct application of the above approach should 

bring a guidance drift, which will grow uncontrolled 

with time (see figs.6-a and 6-b) since the resulting 

control policy is basically of the open loop class. 

Modelling errors (mainly with respect to the 

aerodynamic and thrust effects), neural network 

generalization errors and external perturbations 

(winds and non standard atmosphere) will be the 

main causes of this drift.  

Fig.6. Example of open loop performances 

Then it appears that a closed loop must be added to 

this structure to guarantee guidance accuracy. Figure 

6 displays a possible flight guidance control 

structure, which integrates a neural network solver 

and a corrective loop. To design this corrective loop 

a model of the dynamics of the drift is adopted. The 

guidance dynamics equations can be written as: 

              ),,( UZXfX                     (16)           

with                                             
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where w is the wind vector expressed in the local 

Earth frame. Then, starting from nominal values 

Va(0) , (0) and (0),  a first order approximation of 

the drift dynamics is given by :  
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g
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Assume that around the reference conditions, the 

output error of the neural network is such as:                                            

where RN*(e) is the unknown exact output for input 

e ,  e is the input deviation from reference and  is a 

bias. Then the flight control input error is such as :   

eXZKU ))0(),0((                        (20) 

where in general the gain matrix K  is such as :  

eXZGeRNeeRN ))0(),0(()()( * (19)

Fig.4. A set of training trajectories
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Since
X

g is non singular (
X

g
= 32

cosaV ),

eliminating X, we get the following fully 

controllable output dynamics:  
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Now, assuming that  w and  are slow varying 

parameters, we get the fully observable dynamics 

from Z : 
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and it is possible to get an on line estimation of E(t),
written Ê(t) and given by : 
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Then a closed loop control law such as :  
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where matrix 

ZZ FNMFN

I0
 is stable and: 

                        IFN E               (28) 

so that the condition 0)(lim tZ
t

  is achieved. 
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Fig. 7. A possible flight guidance control structure 

5. SIMULATION RESULTS 

In this study, the conventional Error-Back-

Propagation neural network with only one hidden 

layer has been selected to perform the inversion of 

flight guidance dynamics, although other neural 

network structures  have been investigated. The 

structure of the retained neural network comprises 

five inputs nodes, empirically determined number of 

thirty neurons with a hyperbolic tangent activation 

function in the hidden layer, and three output nodes 

with linear transfer functions. The seven inputs are 

altitude, three components of inertial velocity and 

three components of inertial acceleration. The three 

outputs are pitch command , roll command and the 

engine command .

A simulation model of a light aircraft (AeroSim,

2003) with a piston-propeller engine and a simple 

PID controller for attitude holding is used for the 

generation of training data and is also used for 

validation purpose.  

The Guidance closed loop gains  have been chosen 

so that they satisfy relations (28). However, for 

ZF and
Z

F a large choice of values remains 

available, so that it is quite easy to deal with 

additional requirements, such as robustness, at this 

level.   

The following figures represent first tracking 

maneuvers in the horizontal plane (figures 8), then in 

the vertical plane (figures 9) and finally in the three 

dimensional space (figures 10).  

The different results obtained show the performances 

in terms of accuracy and robustness of the proposed 

control solution.  

Fig. 8. Trajectories and drift for V = 60m/s,  = 0° 
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Fig.9. Trajectories and drift for V = 60m/s ,  =  

     3*sin(0.1t) and  = 0 

Fig.10. Trajectories and drift for V=60 m/s,  =             

     2*sin(0.1t) and  = 90*sin(0.05t) 

7. CONCLUSIONS 

This paper opens the way to new developments in 

the fields of flight guidance systems. Here, 

differential flatness theory has provided a sound 

basis for the introduction of neural networks 

technology within the architecture of flight guidance 

systems. The resulting approach appears to provide a 

possible basis for the development of a generic 

guidance systems which should allow accurate 

trajectory tracking maneuvers, either classical or not. 

The training of the neural network generator for a 

given aircraft should insure that the generic guidance 

system is compatible with its basic autopilot system. 

Many issues related with the training process of the 

neural network devoted to guidance and with the 

robustness of the corrective term with respect to 

disturbances and modeling errors, remain open. 
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