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Abstract 

In this paper, flight guidance dynamics are shown to be 
implicit differentially flat with respect to the inertial 
position of an aircraft. This prove the existence of a set of 
relations between these flat outputs and the state variables 
representative of flight guidance dynamics and between 
these flat outputs and the basic inputs to flight guidance 
dynamics. A neural network is introduced to obtain, from 
the actual trajectory, nominal flight parameters which can 
be compared with actual values to detect abnormal 
behaviour.  

 Nomenclature 
g :gravitational acceleration, , : fan 
rotational speed of a turbofan engine, RPM (round-per-
minute), Ω : shaft-rotational speed of a piston-propeller 
engine, RPM (round-per-minute), :aircraft mass, 
kg, :lift, drag, and thrust, N, : airspeed, , 

: inertial airspeed, , x, y, z: 
aircraft position in the inertial frame, m, 

2−⋅ sm 1N

m
TDL ,, aV 1−⋅ sm

V 1−⋅ sm
ZUX ,, : state 

vector, input vector, and flat output vector, : 
continuous mappings, :

GF ,
βα , : angle-of-attack, sideslip 

angle, rad, rqp ,,  angular rates in body-axis frame, 

, 1−⋅ srad ψθφ ,, : Euler angles (roll, pitch, and yaw), 
,rad γ : flight-path angle, rad, ea δδ , : aileron, and elevator 

settings, rad, Tδ :throttle setting, Tδ ∈ [0,1]. 
 

1. Introduction 
 

The sustained increase of air transportation during the last 
decades has led to severe air traffic saturation and 
environmental problems and new needs for aircraft 
guidance applications have appeared: traffic avoidance and 
relative guidance maneuvers, formation flight, continuous 
descent approaches, etc. Differential flatness, a property of 
some dynamic systems, introduced by Fliess et al. from 

the theory of differential geometry, has made possible the 
development of new tools to control and diagnose complex 
nonlinear systems. Many dynamic non linear systems have 
been proved to be differentially flat. In the aerospace field, 
some authors have considered the differential flatness of 
the dynamics of vertical-take-off-and-landing (VTOL) 
vehicles, other have considered the differential flatness of 
relative and formation flight dynamics for different types 
of flying devices. In particular, some papers have 
investigated the differential flatness of conventional 
aircraft dynamics, while few have considered separately 
the flatness property of the flight guidance and the attitude 
dynamics of a rigid aircraft. 
In this paper, a neural structure is proposed to detect 
abnormal aircraft behavior. The inertial position of an 
aircraft is shown to be a differential flat output for its flight 
guidance dynamics, giving way to their static inversion. 
Since this differential flatness property is implicit, a neural 
network is introduced, as a numerical device,  to deal with 
the inversion of the guidance dynamics. Once conveniently 
structured and trained, the neural network is able to generate 
in real time estimates of nominal attitude angles and engine 
regime. These estimates can be compared with actual flight 
parameters so that abnormal behavior can be detected. 

 
2. Differential flatness 
 
Here two definitions of flatness are introduced: One relative 
to systems for which causal relationships are displayed 
analytically, it is called explicit flatness and another one, 
called implicit flatness, where the causal relationships are 
introduced through implicit functions. The term differential 
is dropped in the remaining of this paper to avoid 
cumbersome denominations. 

 
Definition 1: A general nonlinear system given by:  

( )UXFX ,=& nX R∈ mU R∈           (1)             ,  ,

Fwhere is a smooth mapping, is said explicitly flat 
with respect to the output vector Z Z, if  is an order thm
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vector which can be expressed analytically as a function 
of the current state, the current input and its derivatives 
and also such as the state and the input vectors can be 
expressed analytically as a function of Z  and its 
derivatives. Then there exists smooth mappings , 

, and  such as:  
XG

UG ZG

     ( )( )p
Z UUXGZ ,,, K=                (2a) 

( ))(,,, q
X ZZZGX K&=               (2b) 

 ( )( )1,,, += q
U ZZZGU K               (2c) 

which are respectively the output , the state and the input 
flatness relations, where p and q are integer numbers. 
Vector Z  is called a flat output for the nonlinear system 
Eq.(1). Although there is no systematical way to 
determine the flat output and its uniqueness as well, the 
flat output usually possesses some physical meanings. The 
explicit flatness property is of particular interest for the 
solution of a control problem when a physically 
meaningful flat output can be related with its objectives. 
In many situations, the control problem can be formulated 
as a flat output trajectory following problem and relation 
(2.c) must be inverted  to get the corresponding nominal 
control inputs. With respect to fault detection, relation 
(2.b) as well as relation (2.c) can be used in an analytical 
redundancy scheme. However, for many systems, no 
complete analytical models are available to describe their 
full dynamics. Some of their components make use of 
input-output numerical devices derived both from theory 
and from experimental data. In these cases, available 
theory provides in general the main mathematical 
properties of these implicit functions while experimental 
data is used to build accurate input output numerical 
devices. This happens for instance when flight dynamics 
modeling is considered either for control or simulation 
purposes, since in practice the aerodynamic coefficients 
are obtained through interpolation across sets of data 
tables. 

Definition 2: A nonlinear system given by a general 
implicit nth order state representation: 

 

0),,( =UXXF & , nRX ∈ , mRU ∈          (4) 

where F  is a regular implicit mapping with respect to 
X& , is said implicitly flat over an interior non-empty 

domain  mnR +⊆Δ if it is possible to find an mth order 
vector Z  which meets conditions Eq.(2) and condition: 

                          
( ) 0),,,,,( =rZZZUXG K&             (5) 

where  is locally invertible over  with respect to G XΔ  
and U r where  is an integer. 

ZAgain, vector  is said to be a flat output. The invertibility 
of G  is guaranteed if the determinant of the Jacobian of G  
is not zero according to the theorem of implicit functions. 
Eq.(4) and Eq.(5) imply that given a trajectory of the flat 
output Z , it is possible to map it numerically into the input 
space to derive corresponding control command so that one 
of the more helpful properties of explicitly flat systems is 
still maintained. Furthermore, any established property for 
implicitly flat systems will also hold in numerical ground 
for explicitly flat systems 

 
3. Flight Guidance Dynamics  
 
In this study, only the guidance dynamics of 
transportation aircraft are concerned. It is assumed that the 
aircraft is  equipped with a basic autopilot which deals 
efficiently with its fast dynamics and controls its attitude 
( )βφθ ,,  as well as its thrust regime (  or Ω ). It is also 
supposed that their yaw damper can achieve perfect 
coordinated-turn motion, so that 

1N

β  should remain very 
small. Here the flight variables θ , φ  and  are taken 
as the inputs for the guidance dynamics as well as the 
outputs for the fast dynamics around the aircraft body 
frame when controlled by a basic auto pilot.  

1N

Thus, in steady wind conditions, the flight 
guidance dynamics can be expressed in the 
aerodynamics reference frame as following : 

 

xa wVx += γψ coscos& , 
 , 

ya wVy += γψ cossin&

za wVz +−= γsin&                  (6a) 

with            

222 )()()( zyxa wzwywxV −+−+−= &&&           

(6b) 

and   

( )
m

mgTDVa
θφαθαα coscossinsincoscos +−−+−

=&    (7a)  

 
( )

amV
mgTL θφαθααφγ coscoscossinsinsincos +−+

=& (7b) 

In coordinated-turn motion, the heading rate is 
related to the bank angle φ  through the 
following relation:   
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TzyxZ ),,(=                    φψ tan⎟
⎠
⎞

⎜
⎝
⎛=
V
g

&  is a flat output vector for the considered 
flight guidance dynamics. The time evolution of these flat 
outputs represents the trajectory followed by the center of 
gravity of the aircraft. Then according to the above 
theory, from the knowledge of this trajectory, it should be 
possible to find the corresponding inputs.  

                     (7c) 

 The drag D  and lift are respectively 
considered to be functions of altitude , 
airspeed  and angle-of-attack 

L
z

aV α . While the 
thrust T can be considered to be function of 
altitude , airspeed and engine regime 
( for a jet and or  for a propeller).  

As a consequence of the above flatness property, given a 
current trajectory for the flat outputs :           z aV

 
1N Ω [ tt ,0∈ 

( )α,, aVzDD = ,   ,   (8) ( )α,, aVzLL = ( 1,, NVzTT a= )

For local guidance purposes, the flight-path angle γ  is 
usually taken as the control parameter. Meanwhile, 
through the coordinate transformation, the angle-of-attack 
α  can be expressed as a complex function of θ , φ , and 
γ .Once the bank angle is considered to be small enough, 
this relation can be reduced to:  

 
γθα −=                          (9) 

 
4. Differential Flatness and Guidance 
Dynamics 
 
Here it is shown how, starting from the knowledge of 

,  and , it is possible to express successively 
all the guidance variables as a function of them and their 
derivatives. By rearranging the kinematical equations 
(Eq.(6-a), Eq.(7-a), and Eq.(7-b)),  and are expressed as: 

( )tx ( )ty ( )tz

           ,             
(10) 

( )Vz /sin 1 &−−=γ ( )xy && /tan 1−=ψ   

The state variables , aV γ and ψ , obviously can be 
functions of the inertial position of aircraft while the 
control variables satisfy relations (7-a, 7-b, 7-c), where α  
can be replaced by a function of φ , θ , and γ  given in 
Eq.(9).  
The following notations are adopted for the position of 
the center of gravity of the aircraft and for the guidance 
inputs: 
                     ( TzyxZ ,,= )  and   ( 1,, NU )φθ=         (11) 

Once the variables in Eq. (7-a), Eq.(7-b) and Eq.(7-c) are 
replaced by their expressions in Z  and its first two 
derivatives, these equations can be rewritten as:  
 

0),,,(
1

=UZZZGN
&&& ,        0),,,( =UZZZG &&&

θ ,                

0),,,( =UZZZG &&&
φ                         (12) 

These implicit functions are locally invertible with respect 
to the input vector since for normal flight conditions  the 
determinant of their Jacobian is not zero. Then, 

( ) ( ) ( ) ( )( )Tcccc zyxZ ττττ ,,= , ]τ        (13) 

the corresponding nominal input values at the instant t , 
( ) ( ) ( ) ( )( )Tcccc tNtttU 1,,θφ= , are solutions of the set of 

equations: 
 

, 0))(),(),(),((
1

=tUtZtZtZG ccccN
&&&

 , 0))(),(),(),(( =tUtZtZtZG cccc
&&&

θ

   (14) 0))(),(),(),(( =tUtZtZtZG cccc
&&&

φ

Since it seems quite difficult to get an on-line numerical 
solution to this set of implicit equations, it appears of 
interest to build a neural network with this objective. 
Once correctly trained, the neural network should be an 
input-output device where the inputs are provided by the 
trajectory followed by the aircraft, while the outputs of 
the neural network are the corresponding nominal flight 
parameters. Multilayer neural networks have been shown 
to be able to perform function approximation with the 
adequate selection of a neural network structure 
associated to a learning process. The selection of a 
structure and of a learning algorithm strongly depend on 
empirical rules while numerous neural networks 
structures and learning algorithms are already available. 
In order to achieve an acceptable accuracy and a 
sufficient generalization capability, a large amount of 
training data is necessary.  Here the training data is 
composed of sets of trajectories for Z U and  which can 
be provided from either flight test data or even from 
commercial flight data in which maneuvers are performed 
manually or by the autopilot engaged basic attitude-
holding mode (no guidance loop must be active at that 
time). Since for modern aircraft onboard navigation 
systems (ADIRS) are able to estimate with good accuracy 
the current aircraft position, inertial speed and wind 
speed, their records can be used as a basis for the training 
of the neural network. 
 
5. Strong analytical redundancy relationships  
 
5.1 The case of the state flatness relations 
 
The state flatness relations of interest here are relations (6-a) 
which allow, since the acceleration components, the 
airspeed, the angles α, θ, φ and ψ can be measured, to 
estimate the components of the wind speed which are 
characteristic of the external perturbation applied to the 
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aircraft. Here different solution approaches with increasing 
levels of complexity can be developed: 
- The above equations can be solved with respect to wx, 
wy and wz, but in this case the measurement errors are not 
taken into account. Even if using redundancy schemes they 
can be turned relatively small. We get for instance the 
estimate:  

6. Simulation and Results 
mmmamx Vxw γψ coscos~ −= &                    (15)  

A raw Kalman filter can be introduced when considering 
that equations (6.a) are observation equations where the 
resulting errors are Gaussian white noise. In this case an 
estimate of wing speed component i , i∈{x, y, z}, is given 
by: 

A simulation model of a light aircraft, the Navion, 
(Schmidt, 1998) with a piston-propeller engine and a 
simple PID controller for attitude holding has been used 
for the generation of training data and for validation 
purposes. 

 Preliminary simulation results have been obtained in the 
case of maneuvers in the vertical plane. In this study, the 
conventional Error-Back-Propagation neural network with 
only one hidden layer has been selected to perform the 
inversion of flight guidance dynamics, although other 
neural network structures (Quiroga Rodriguez, 2005) 
have been investigated.  

{ zyxiwwKw iiii ,,)ˆ }~(ˆ ∈−=&                 (16) 
  where the Ki are appropriate Kalman filter gains. 
 
- A more elaborated Kalman filter when linear models 
of the wind process  ( Dryden model for instance) and of 
the measurement errors are available. The structure of the retained neural network comprises 

seven inputs nodes, about 90 neurons in the hidden layer 
with a hyperbolic tangent activation function, and three 
output nodes with linear transfer functions. The seven 
inputs are altitude, three components of inertial velocity 
and three components of inertial acceleration. The three 
outputs are the pitch

- An adaptive approach when some parameters of the 
wind process model and of the measurement errors must 
be estimated on line. 
 
5.2 The case of the guidance input flatness relations 
 
Here the neural inversion of  relations (7a, 7b, 7c) provides 
nominal values for θ, φ and N1: θ

~
, φ~  and 1

~N . 
Considering that the autopilot is designed such that: 

 
it is then possible to propose a set of eight tests to detect any 
discrepancy with respect to nominal flight guidance 
dynamics: 

 

θ , the roll φ  and the engine input 
signals. Figure 1 presents different training experiences 
while figures 2 and 3 display validation data. It can be 
observed that learning and validation reach a satisfactory 
level of accuracy. 

Ω

  
7. Conclusion 
 
In this communication, differential flatness theory has 
been considered to provide new implicit relations between 
trajectory parameters and flight dynamics variables. 
Neural networks are introduced to capture these implicit 
relations. The resulting approach appears to provide a 
possible basis for the development of fault detection 
systems which should trigger fault tolerant and adaptive 
schemes to guarantee flight safety as well as trajectory 
tracking accuracy under damaged flight dynamics 
conditions.  
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Fig.1. Training error history for different
numbers of neurones in the hidden layer
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