
HAL Id: hal-00938104
https://enac.hal.science/hal-00938104

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Airspace block organization with metaheurisitics and
partitioning packages

Charles-Edmond Bichot, Nicolas Durand

To cite this version:
Charles-Edmond Bichot, Nicolas Durand. Airspace block organization with metaheurisitics and par-
titioning packages. ICRAT 2006, 2nd International Conference on Research in Air Transportation,
Jun 2006, Belgrade, Serbia. pp xxxx. �hal-00938104�

https://enac.hal.science/hal-00938104
https://hal.archives-ouvertes.fr

Airspace block organization with metaheurisitics and

partitioning packages

Charles-Edmond Bichot and Nicolas Durand

Laboratoire d’optimisation globale
ENAC - DSNA/DTI-SDER — Toulouse, FRANCE

{lastname}@recherche.enac.fr

Abstract—In this paper, different metaheuris-

tics applied on an air traffic control problem. This

problem is a graph partitioning problem. It can be

solved by classical methods which are spectral and

multilevel methods. State-of-the-art public-domain

graph partitioning packages, CHACO and METIS

are used to resolve it. A comparison between results

return by these packages and metaheuristics imple-

mentations is made for different objective functions

of the literature. Metaheuristics used are simulated

annealing, ant colony and a new one called fusion

fission developed in the LOG laboratory. Experi-

mental results show that metaheuristics find better

results than classical packages.

I. Introduction

In this paper, different metaheuristics applied on
an air traffic control problem are presented. This
problem is a graph partitioning problem. It can
be solved by classical methods which are spec-
tral and multilevel methods. State-of-the-art public-
domain graph partitioning packages, CHACO [1]
and METIS [2] are used to resolve this problem. A
comparison between results return by these packages
and metaheuristics implementations is made for dif-
ferent objective functions. However, whereas classical
methods are designed for particular objective func-
tion, that can hardly be modified, metaheuristics can
easily be changed of objective function, which is an
advantage for this problem.

The air traffic control problem is presented in
section II. Different objective functions already used
to solve partitioning problems are described in sec-
tion III. In section IV are shortly presented three
metaheuristics, which are simulated annealing, ant
colonies and a new one developed in the LOG labo-
ratory, fusion fission. The comparison between results
of metaheuristics and classical libraries is presented
in section V.

II. An Air Traffic Control problem

“The primary purpose of the Air Traffic Control
(ATC) system is to prevent a collision between air-
craft operating in the system and to organize and
expedite the flow of traffic” [3]. The first objective of
ATC is safety, the second is efficiency.

The Functional Airspace Block Optimized Process
(FABOP) project consists in dividing the European
airspace into blocks. Let us explain some air traffic
control mechanisms. An air traffic controller super-
vises the traffic in an limited area, called air traffic
sector. Controllers are qualified for working on a
set of sectors, which is called a functional airspace
block. The FABOP project consists to partition the
European airspace into functional airspace blocks.
Actually, just a few blocks are crossing countries’
frontiers. In this paper we study a new organization
of blocks based on flows of aircraft and not on
countries’ frontiers.

Controllers only know air traffic sectors on which
they are qualified, and rarely other sectors. Because
“controller-controller coordination is easier and more
effective inside an ATC unit (a block) than between
ATC units” [4], we try to maximize flow of aircraft

inside blocks and to minimize flow of aircraft between

blocks. For human factors, each block must have the

same “size”. This is the aim of the objective function
to minimize.

Let us describe more formerly the problem. We
compare each air traffic sector to a vertex and each
flow of aircraft between sectors to an edge. We have a
graph G = (V,E) with a vertex set V and edge set E.
Each edge e = (v1, v2) has a weight w(e) which is the
flow of aircraft which fly from v1 to v2 and vice versa.
Each vertex vi has a weight, which is the sum of the
weights of connected edges plus aircraft departures
and landings if the sector is connected with an air-

port. A partition of G into k distinct partitions must
respect the following constraints : Pk(G) must be a
partition of G into k non-empty subgraphs V1, . . . , Vk

with ∀ i, j included in 1 . . . k, i 6= j, Vi ∩ Vj = ∅

and
⋃

k
i=1Vi = V .

The problem is to partition the vertices of the
graph G into k roughly equal parts (or blocks), such
that a certain objective function is optimized. Intu-
itively, equal parts are parts with the same number of
vertices, ie. blocks should have the same number of
sectors. Because the number (flow) of aircraft which
go through a sector is very different for each sector,
we can not use this equality between parts. More
probably, comparing the amount of flows of aircraft
between the sectors of a block with the same amount
of flows with another block is better. The number of
conflicts or potential conflicts in a sector increases
considerably the difficulty for a controller to coordi-
nate aircraft. Thus, the computation of the equality
should take into account the number of conflicts or
potential conflicts. The size and the design of a sector
influence the number of coordinations, maybe the
computation of the equality should take into account
this too. Other operationals constraints can be easily
find. As we can see, finding what is the equality
criteria between parts is difficult.

In the experimental tests, the number of vertices
is |V | = 759 and the number of edges is |E| = 3, 165.
This number of vertices is the number of air traffic
sectors of the European countries core area defined
in [5]. This area is the set of countries which have
the highest flows of traffic in Europe. The countries
core area is composed of Germany, France, United
Kingdom, Switzerland, Belgium, Netherlands, Aus-
tria, Spain, Denmark, Luxembourg and Italy.

We have seen that finding equal parts for this prob-
lem is difficult. Indeed, like image segmentation, we
should use objective functions which itself equalize
the different parts of the partition.

III. Objective functions

In this section we present objective functions used
for partitioning problems. The simplest and the old-
est of them is the Cut function, which is the sum
of edges’ weight between partitions. This objective
function is designed for spectral graph partitioning.
Let A ∈ Pk(G), V − A = {u ∈ V, u /∈ A}, we define

cut(A, V − A) =
∑

u∈A,v∈V −A

w(u, v) (1)

and
W (A) =

∑

u∈A,v∈A

w(u, v) (2)

Thus,

Cut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A) (3)

Hagen and Kahng [6] defined the ratio cut :

Rcut(Pk(G)) =
∑

A∈Pk(G)

∑

B∈Pk(G)−{A}

cut(A,B)

|A|

(4)
which removes the requirement |A| = |B| and mini-
mizes cut(A, V − A) when the number of vertices in
each part is roughly equal.

Shi and Malik [7] propose the normalized cut :

Ncut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A)

cut(A, V − A) + W (A)
(5)

which minimizes cut(A, V − A) while maximizing
Assoc(A, V) = cut(A, V − A) + W (A), the sum of
the weights of each partition.

And the min-max cut function was introduced
in [8] :

Mcut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A)

W (A)
(6)

which minimizes cut(A, V − A) while maximizing
W (A) which is the sum of the weights of edges
between vertices of the same partition.

The Mcut objective function seems the most ap-
propriate of the objective functions presented, re-
gards to the objective presented in section II : max-
imizing flows of aircraft (edges weight) inside blocks
(partitions) and minimizing flow of aircraft between
blocks.

IV. Metaheuristics

The three metaheuristics described in this section
are more precisely explained in [9]. More information
about a new method called fusion fission can be found
in [10].

A. Simulated annealing

This metaheuristic was first introduced in [11].
Let us present very shortly the simulated annealing
method. The fundamental idea is to allow moves
resulting in solutions of worse quality than the cur-
rent solution in order to escape from local minima.

The probability of doing such a move is decreased
during the search. In metallurgy, a very hot metal
is cooled very slowly to increase its solidity. In the
same way, vertex are moved among partitions, one by
step. The temperature T is decreased when moves are
increasing the objective function (T tmax−tmin

tmax

with
tmax(tmin), maximal (minimal) temperature). The
objective function e gives the“energy”of the solution.
The result of a move of a vertex which changes
of partition, builds a new move s′. s′ is kept if

exp
e(s)−e(s

′)

T is upper a random number in [0, 1] or if
the objective function is increasing. Else, the old state
s is kept. The algorithm stops when T ≤ tmin.

B. Ant colony

Ant colony optimization is inspired by the foraging
behavior of real ants. This metaheuristic proposed
by Dorigo is explained in [12]. The algorithm uses
the ability of ants to find the shortest path between
food source and their nest. While walking from food
sources to the nest and vice versa, ants deposit a
substance called pheromone on the ground. When
they decide a direction to go, they choose with a
higher probability paths that are marked by stronger
pheromone concentrations.

The ant colony algorithm is based on three (one
optional) steps. While a termination condition is
not satisfied, the three steps are executed, but not
necessarily in the following order :

• The first step is the ants motion. Ants are mov-
ing through nodes of the graph G by applying
a stochastic local decision policy which uses
pheromone values and a local heuristic. While
moving, the ant keeps memory of the path it
was walking on the graph.

• The second step consists in updating
pheromones. Ants always update the pheromone
trails they are using. But if a path lead to “food”
(a local solution), the ant can update backward
the path it used by using its memory. Finally,
like real pheromones, pheromone trail intensity
decreases over the time (to avoid convergence
into a sub-optimal region).

• The last step is optional. It is used to implement
centralized actions which cannot be performed
by single ants.

The adaptation of ant colony to the partitioning
problem uses k colonies, one for each partition of the
graph. These colonies are competing for food. It is
important to notice that an ant can only distinguish

pheromones of its colony. The weights of vertices
correspond to ants food. Ants put down pheromones
on edges. A vertex is owned by a colony if the sum
of his pheromones on adjacent edges is greater than
for other colonies. A local heuristic forces ants to
explore edges which have no pheromone. Ants can
go where they want, so ants from different colonies
can be in the same vertex at the same step. Thus,
the connectivity of sets is not forced. As connected
sets often produces best results, we do not need to
force this connectivity.

To conclude, the approach of k-partitioning with
ant colony algorithm is very different than precedent
works [13], [14].

C. Fusion fission

The fusion fission method is a new method de-
veloped at the LOG laboratory. Its aim is graph
partitioning. The fusion fission method is inspired
by nuclear fusion and fission. The organization of
a molecule can be compared to a k-partition. The
molecule is the graph G, nucleons are vertices and
atoms are partitions. Fusion and fission are two
processes which organize atoms. Fusion is the process
which assembles two atoms in one. On the contrary,
fission is the process which breaks atoms into two
parts. The fusion fission method consists in assem-
bling and breaking atoms successively. Like in the
natural process, fusion and fission can eject alone
vertices (atoms) from a partition. Such vertices can
be added to a different partition, or cut another
partition in two (chained fission).

Because the number of partitions continuously
change, the energy (returned by the objective func-
tion) is smaller for a small number of partitions.
Thus we use a function to increase the value of the
objective function if the number of partitions is not
k.

The fusion fission algorithm is presented figure 1.
cpart is the partition of G into sets of vertices. cpart
is initialized with a near k-partition of G. t is the
temperature. The higher the temperature, the easier
the fusion of big atoms and the easier the fission
of small atoms. parti is a partition of cpart. parti
is randomly chosen between all partitions of cpart.
A new partition npart of G is made by fusion or
fission. The laws correspond to probability lists,
which are probabilities to eject zero, one, two or
three nucleons as described upper. Then nucleons
(in ln, a list of nucleons) are added to another

partition, or, in the fission case, if the temperature
is high (high energy function), these nucleons can
cut partitions. The laws are updated if the result
of the objective function is lower than the preceding
partition. The function which decreases temperature
is decrease(t) = t tmax−tmin

nbt
where nbt is the number

of steps of the temperature decrease. The best result
is memorized in best part. If the temperature is
lower than a minimal temperature, the algorithm is
run with the best partition best part and the upper
temperature. Else, it is run with the partition npart
find and the new temperature new t.

Algorithm 1 Fusion / Fission

cpart ⇐ initial partion;
t ⇐ tmax;
while Stop condition is not fulfilled do

parti ⇐ choose partition(cpart);
if choice(parti) < random number then

— fusion —
(npart, ln) ⇐ fusion(parti, cpart, laws);
for all n ∈ ln do

npart ⇐ nfusion(n, npart, laws);
else

— fission —
(npart, ln) ⇐ fission(parti, cpart, laws);
for all n ∈ ln do

if high energy(n, t) then

npart ⇐ nfission(n, npart, laws);
else

npart ⇐ nfusion(n, npart, laws);
new laws ⇐ update(laws, t);
new t ⇐ decrease(t);
if Energy(npart) < Energy(cpart) and

Energy(npart) < Energy(best part) then

best part ⇐ npart;
if low temperature(t) then

cpart ⇐ best part; t ⇐ tmax;
else

cpart ⇐ npart; t ⇐ new t;

The process of choice between fusion and fission
is function of the number of nucleons x of the atom
choose :

choice(x) =

1 if x > n + 1
2α(t)

0 if x < n − 1
2α(t)

(x − n)α(t) + 1
2 else

where n = nbv
k

, nbv is the number of vertices of the

TABLE I

Objective functions results for each algorithm

Cut Rcut Ncut Mcut

CHACO Spectral 202,353 8504 22.31 75.45
CHACO Multi. 202,095 8492 22.42 76.93
METIS Multi. 208,224 9962 22.76 80.49
S. annealing 203,946 9385 22.34 74.44
Ant colony 203,308 9689 22.30 74.22
Fusion Fission 197,955 8508 21.83 69.03

graph, k is the number of partitions, and α(t) =
q tmax−t

tmax−tmin

+ r where q, r are adjusted by the user.

V. Results

Classical partitioning methods were first used to
solve the air traffic control problem. Kenighan and
Lin [15] have created a very efficient algorithm, which
uses a local optimization strategy. Spectral methods
have been popularized by the work of Pothen, Simon
and Liu [16]. Multilevel methods have been developed
by Hendrickson and Leland [17] and by Karypis and
Kumar [18]. In this example, the CHACO [1] library
was used. This library includes Kernighan-Lin algo-
rithm, a spectral method and the multilevel method
of Hendrickson and Leland. The METIS [2] library
was also used. This library includes the multilevel
method of Karypis and Kumar.

CHACO’s objective is to minimize the Cut objec-
tive function, and minimize the difference between
the number of vertices in each partition. METIS’s
objective is to partition the vertices into k disjoint
subsets such that the sum of the vertex weights in
each subset is the same, and to minimize the Cut
objective function. The metaheuristics algorithms
use the Mcut objective function which is the most ap-
propriate for the air traffic problem (see section III).
In table I the best results of the different methods are
presented. These results are computed for a partition
into 32 sets, on a 3 GHz Intel Pentium 4 running
with Linux. The objective function of the three
metaheuristics is Mcut. CHACO spectral method
uses RQI/Symmlq eigen solver, with the octasection
partitioning method and multiple Kernighan-Lin re-
finement. CHACO multilevel method uses the bisec-
tion partitioning method. METIS multilevel method
uses pmetis with default parameters. kmetis was also
tested but without better results. Note that, if spec-
tral and multilevel algorithms use local refinement
(Kernighan-Lin), metaheuristics do not. The best re-
sults for each objective functions are strewn in bold.

TABLE II

Variances

σ(spb) σ(vw) σ(ewbb)
CHACO Spectral 0.4 1448 1680
CHACO Multi. 0.4 1573 1685
METIS Multi. 8.5 384 779
S. annealing 11.4 1392 1778
Ant colony 12.8 1500 1901
Fusion Fission 15.7 2620 2567

Regards to this results, the fusion fission is the best
algorithm (with Rcut nearest the multilevel method).
If METIS and CHACO software are extremely fast (a
few seconds to compute), metaheuristics are running
30 minutes to give these results.

Figure 1 and 5 details the map of the partitioning
result of the fusion fission algorithm corresponding
to table I result. In the same way, figure 2, 6 and
3, 7 present the partitioning results of the CHACO
spectral algorithm and the METIS multilevel algo-
rithm. Figure 4 and 8 present real partitions of the
European airspace on February 2002. The three maps
are vertical cuts of the European countries core are,
at flight level 380 (11,000 m). Regarding to blocks of
other figures, blocks of figure 5 have disproportionate
shapes and sizes. Especially, the block in the center of
France, which has a lot of sectors (88, compared to an
expected value which is around 23.8). This result is
irrelevant for air traffic control, because no controller
can be qualified for so many sectors.

Table II presents the variance σ(spb) of the number
of sectors per block, the variance σ(vw) of the sum
of vertex weights W (A), per block, and the variance
σ(ewbb) of the sum of edges weights between blocks
cut(A, V −A), per block. Expected values correspond-
ing to these variances are: E(spb) = 23.8, E(vw) ≃
2700, and E(ewbb) ≃ 3500. Because of its goal, the
CHACO software produces the smallest variance of
the number of sectors per block. But with 1,446
aircraft to control for the lowest block and 10,346
aircraft for the highest, it seems that this result is
irrelevant for air traffic control too. METIS multilevel
partitioning methods have the lowest variance of
W (A) and cut(A, V − A). These results correspond
to METIS goal. Considering METIS results, the
maximal number of sectors in a block is 48, which
makes these results more relevant.

Thus, a new approach of the problem is necessary.
Future work on the air traffic problem will deal with
minimizing the Mcut objective function, but with the

following constraints :

1) σ(spb) < 6
2) σ(vw) < 500
3) σ(ewbb) < 500

This defines a multi-objective problem.

VI. Conclusion

An application of three metaheuristics (simulated
annealing, ant colony and fusion fission) to an air
traffic control problem was presented in this paper.
This air traffic control problem is a k-partitioning
problem. These metaheuristics were compared to the
CHACO and the METIS libraries which are classical
methods to solve partitioning problems (Kernighan-
Lin, spectral and multilevel methods). We compare
results of these methods to results of metaheuris-
tics with the Mcut function. Compared to all of
the objectives functions, metaheuristics return better
results, especially the fusion fission algorithm. But
the best result found with fusion fission is irrelevant
for air traffic control. The analysis of CHACO and
METIS partitioning results showed that these results
are not relevant either. Consequently, to be applied,
a solution of the air traffic control problem must
respect some constraints, while minimizing the Mcut
objective function.

References

[1] B. Hendrickson and R. Leland. The Chaco user’s guide.
Sandia National Laboratories, 2 edition, 1994.

[2] George Karypis and Vipin Kumar. MeTis: A software

package for partitioning, 4 edition, 1998.
[3] Federal Aviation Administration (U.S. Department of

Transportation). Air Traffic ControL : FAA Order

7110.65K, July 1997.
[4] Anders Hallgren. Restructuring european airspace: func-

tional airspace blocks. Skyway, pages 20–22, autumn 2005.
[5] Charles-Edmond Bichot and Jean-Marc Alliot. A theoreti-

cal approach to defining the european core area. Technical
report, LOG - ENAC/CENA, 2005.

[6] Lars Hagen and Andrew Kahng. New spectral methods for
ratio cut partitioning and clustering. IEEE Transactions

on Computer-Aided Design, 11(9):1074–1086, 1992.
[7] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):888–905, 2000.
[8] Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu,

and Horst D. Simon. A min-max cut algorithm for graph
partitioning and data clustering. In Proceedings of ICDM

2001, pages 107–114, 2001.
[9] Charles-Edmond Bichot, Jean-Marc Alliot, Nicolas Du-

rand, and Pascal Brisset. Optimisation par fusion et
fission. application au problème du découpage aérien eu-
ropéen. Journal Européen des Systèmes Automatisés, 38(9-
10):1141–1173, 2004.

[10] Charles-Edmond Bichot. A metaheuristic based on fusion
and fission for partitioning problems. In 9th Interna-

tional Workshop on Nature Inspired Distributed Com-

puting, In conjunction with IEEE IPDPS 2006, Rhodes
Island, Greece, 2006.

[11] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671–680,
May 1983.

[12] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics - Part B,
26(1):29–41, 1996.

[13] P. Kuntz, P. Layzell, and D. Snyers. A colony of ant-like
agents for partitioning in vlsi technology. In the Fourth

European Conference on Artificial Life, pages 417–424.
MIT Press, 1997.

[14] A. E. Langham and P. W. Grant. A multilevel k-way
partitioning algorithm for finite element meshes using
competing ant colonies. In the Genetic and Evolutionary

Computation Conf., volume 2, pages 1602–1608, Orlando,
Florida, USA, 1999.

[15] B. W. Kernighan and S. Lin. An efficient heuristic proce-
dure for partitioning graphs. The Bell System Technical

Journal, 49(2):291–307, 1970.
[16] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Parti-

tioning sparse matrices with eigenvectors of graphs. SIAM

J. Matrix Anal. Appl., 11(3):430–452, 1990.
[17] Bruce Hendrickson and Robert Leland. A multi-level

algorithm for partitioning graphs. In Supercomputing,
1995.

[18] George Karypis and Vipin Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM

Journal on Scientific Computing, 20(1):359–392, 1998.

Fig. 1. Partitioning result of fusion fission (FL240)
Fig. 2. Partitioning result of the CHACO package
(FL240)

Fig. 3. Partitioning result of the METIS package (FL240)
Fig. 4. Real block partitioning in February 2002 (FL240)

Fig. 5. Partitioning result of fusion fission (FL320)
Fig. 6. Partitioning result of the CHACO package
(FL320)

Fig. 7. Partitioning result of the METIS package (FL320)
Fig. 8. Real block partitioning in February 2002 (FL320)

	I Introduction
	II An Air Traffic Control problem
	III Objective functions
	IV Metaheuristics
	IV-A Simulated annealing
	IV-B Ant colony
	IV-C Fusion fission

	V Results
	VI Conclusion
	References

