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Abstract

Flight simulators have been part of aviation history

since its beginning. With the development of modern

aeronautics industry, flight simulators have gained an

important place and the industry devoted to their

manufacture has become significant.

In the case of transportation aircraft, accurate

mathematical models based on extensive experimental

data have been developed by their manufacturers to

optimise their aerodynamic and propulsive

characteristics and to design efficient flight control

systems. However, in the case of small general aviation

aircraft this kind of knowledge is not commonly

available and the design of accurate flight simulators

can result in a tedious try and modify process until the

simulator presents a qualitative behaviour close to the

one of the real aircraft.

This communication proposes through the use of

neural networks a method to perform a direct

estimation of the aerodynamic forces acting on

aircraft. Artificial Neural networks appear to be an

appropriate numerical technique to achieve the

mapping of these continuous relationships and

detailed aerodynamics and thrust models should

become no more mandatory to produce accurate flight

simulation software.

1. Introduction

Flight simulators are used by aircraft manufacturers

to test the integration of new on board systems

interfaces and to validate safely new operational

procedures. However, the main use of flight simulators

is related with pilot training: they contribute to lower

significantly training costs and delays while improving

safety. Today, the delivery of costly aircraft includes

in many cases either the acquisition or the hiring of

flight simulators to perform flight simulation training

programs. With the increasing popularity of general

aviation, a large demand for low cost flight training

simulators has also emerged.

The classical way to build a flight simulation

program goes through the use of an accurate model of

its aerodynamical and thrust dimensionless coefficients.

To obtain this data a lot of money and energy must be

consumed with flight tests, raw data collection, and

complex numerical analysis [1]. While some attempts

have been performed using neural networks [2] to

alleviate this last point, many difficulties remain.

However, what is really necessary to be able to run an

accurate flight simulation model is to get good

estimates of the forces and moments acting along its

main reference axis.

Then, this communication proposes to perform a

direct estimation of the global aerodynamic forces

acting on aircraft using neural networks. To validate

the proposed approach, an available analytical model

of a small aircraft has been used to create, through

numerical simulation, reference data. From the data

generated by simulation a set of neural networks

devoted to the estimation of each independent entry has

been built. Then these neural estimators have been

integrated in a new hybrid flight simulator software.

The comparison of the qualitative behaviours of the

analytical and the neural based simulators in different

flight cases has been performed and the validation

results appear satisfactory.

2. Nomenclature

wu, : body axis longitudinal and vertical

components of inertial speed

yzx MFF ,, : body axis longitudinal, vertical and

pitch aerodynamic effects
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θ , q : pitch angle and pitch rate,
e

δ and
f

δ :

elevator and flaps deflection

α : angle of attack, V : airspeed, T: total engine

thrust

m : aicraft mass, yI : Pitch inertia moment, S :

reference surface, c : reference chord

xC , yC , mC : drag, lift and pitch aerodynamic

coefficients

3. Estimation of flight forces: a proposal

In this communication the proposed approach is

illustrated considering the longitudinal flight dynamics

of a rigid aircraft which is assumed to be free from any

lateral dynamics effect. From classical analysis, the

longitudinal flight dynamics equations defined in the

aircraft reference frame and ready for numerical

integration are given by [3]:

qwTgmFu x −+−= )cos(/ θ� (1)

qugmFw z +−= )cos(/ θ� (2)

yy IMq /=� (3)

q=θ� (4)

)/arctan( uw=α (5)

The aerodynamic forces in the aircraft reference

frame, can be expressed using the dimensionless drag,

lift and pitch moment coefficients as given below:

))sin()cos((2/1 2
zxx CCSVF ααρ +−= (6)

))cos()(sin(2/1 2
zxz CCSVF ααρ +−= (7)

my CVcSM 22/1 ρ= (8)

There the dimensionless coefficients are related in a

complex way to the main flight parameters:

),,,,,( fex zVfC δδαα �= (9)

),,,,,( fez zVfC δδαα �= (10)

),,,,,,( fem qzVfC δδαα �= (11)

In a classical flight simulator program, it is

necessary to obtain at each iteration of the simulation a

new estimate of the aerodynamic forces and moments

which would be acting on the real aircraft in the current

flight conditions. With respect to longitudinal

dynamics, dimensionless drag, load and pitch moment

coefficients are computed online. This is one of the

most computational-costly tasks for those flight

simulators. The coefficients calculation is made either

searching the coefficients values corresponding to the

flight conditions in aerodynamic databases composed

of many data tables or using some analytical models.

The first case leads to repeated searches in tables

followed by interpolations (in general this data has an

experimental origin and it is not free from

approximations). The latter one speeds up the

computation of the dimensionless coefficients but in

general at the expense of a lower accuracy. Figure 1

displays the general structure of a flight simulation

program.

Figure 1. Simulation scheme

The tests to build a relevant database and the

computations necessary to obtain accurate analytical

models are costly and the results are not directly

available to flight simulator manufacturers when they

are different from the aircraft manufacturer. Sometimes

the aerodynamics data necessary to build a simulator

for a specific general aviation aircraft is not available at

all. Observe also that the values of the aerodynamic

dimensionless coefficients remain completely

transparent to the flight simulator user. Even, to run the

flight simulator program, what is really necessary is an

on-line accurate estimation of forces and moments

corresponding to the current flight conditions and

control inputs and not the values of the associated

aerodynamic dimensionless coefficients.

Then, what is proposed here is to obtain direct

estimates of the current aerodynamic forces and

moments using neural network estimators. Once, the

neural networks estimators at each iteration, provide

the values for xF , zF and yM : xNNF , zNNF and,

yNNM , these values can be used to integrate

numerically the longitudinal flight dynamics equations

corresponding to equations (1-3).
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The structure of the resulting neural based flight

simulator program will be the same than the one of a

classical flight simulator, the classical aerodynamics

forces computation being replaced by a neural based

one.

4. Neural estimation of flight forces

A feed-forward artificial neural network is a

computational tool composed of interconnected

elements called neurons [4]. Each neuron is an

elementary processor which uses a continuous function

called activation function to evaluate its output

according to the inputs which are submitted to it by

other neurons. When the neurons are arranged in

layers, the connections are made between consecutive

layers, and to each connection it is attached a weight

which is defined through a beforehand training process.

For a given network structure, the training is based on

real input-output data from the system and is performed

by adjustment of the connection weights so as to reduce

a mean squared difference between the network outputs

and the reference outputs. So, neural networks are

particularly useful when a convenient mathematical

model of a system is not at hand while a rich input-

output field database is available for it. It has been

shown that the combination of non-linear activation

functions with weighted connections between neurons

provide to these networks the capacity of

approximating any non-linear mapping relating the

inputs and the outputs of a given causal system [5].

They present also a generalization capability, that is,

the property of interpolating and extrapolating

accurately the data used for training. When neural

networks are implemented in hardware, they display a

parallel computing structure, which leads to a reduction

of computing delays. However when neural networks

are implemented in software in a serial computer,

computation delays are not a problem since in general

their size is quite reduced.

In many applications of Feed-Forward Artificial

Neural Networks it has been shown that the training of

a neural based input-output system is much easier and

more effective when the system is composed of multi

input single output neural networks [6]. In this study

three neural networks have been attached to the

estimation of each component ( xF , yF and yM ) of

the aerodynamical forces acting on the longitudinal

flight dynamics. This results in the structure displayed

in Figure 2. The structure retained for each neural

networks is a three layer feed-forward neural network

with as many neurons in the first layer as there are

variables affecting the forces calculations (V , z , α ,

q , eδ , T – for instance), with a larger number of

neurons in the hidden layer and a single

neuron for the output layer. The number of neurons in

the hidden layers has been determined by trial-and-

error tests during the training phase of the neural

network.

Figure 2. The modified forces estimation
module

The algorithm which has been used for the

networks training is backpropagation associated with

the Levenberg-Marquadt non-linear least squares

implemented to compute the weights update at each

iteration [7]. In fact backpropagation is the

specialization of a gradient descent algorithm.

Backpropagation Levenberg-Marquadt is known to

conduct to a faster training, though memory

requirements are greater than the conventional

backpropagation scheme. A comparative analysis

between different modified backpropagation algorithms

is given in [8].

Figure 3. Error evolution during training

5. Methodology

Since no real flight data was available, the

training of the neural networks has been performed

using data obtained from a flight simulator program

where the dimensionless forces and moment
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coefficients are computed from analytical expressions

of the variables used as inputs to the different neural

networks. This program available at ENAC implements

the dynamics of a small general aviation aircraft, the

TB20 from SOCATA, a subsidiary of Airbus.

Figure 4. TB20 Aircraft

A set of standard manoeuvres have been recorded

for different flight conditions covering the whole flight

envelope of the aircraft. The reference points in the

flight domain have been chosen taking into account the

known non-linear effect of the air speed on the

aerodynamic forces. Note however that since this

aircraft operates exclusively in the incompressible

domain, no Mach number effect has been considered in

this study, and this has been a rather simplifying factor

for this study.

Since sigmoid functions (tangent hyperbolic) were

used in the network’s input and output neurons, it was

necessary to perform a scaling over the raw training

data. Then the networks were trained starting from

different initial weightings to avoid local minima

effects. The mean squared error (MSE) obtained for a

training case is shown in table 1. An initial validation

was performed considering flight conditions different

from the ones used for training. This validation data

was built from simulated data relative to the flight

variables and the input signals, covering a time interval

of 120 seconds sampled at 1Hz. From the samples of

simulated flight variables, the networks provided

estimations of the corresponding forces and moments.

These estimations were compared to the forces and

moment computed by the analytical simulator. The

mean difference (MD) between forces computed by the

analytical simulator and forces estimated by the neural

networks is displayed in table 1.

Table 1. Training results

Network NNFx NNFz NNMy

MSE 3,5901.10
-6

1,9276.10
-6

6,7084.10
-6

ME 0,3531N 0,5244N 0,02621Kg m
2
/s

6. Results
Figure 5Figure 6Figure 7 show a comparison

between xF , zF and yM computed analytically and

estimated by a neural network.

Then the networks were used in the simulator,

substituting the analytical models for the forces. They

were tested individually, in pair and the three networks

at the same time. A comparison between the

performances of the simulator using the analytical

model and the performance provided by the neural

estimators was made by comparing the evolution of the

main flight variables with both kinds of simulations.

Figure 5. Estimated and computed longitudinal

force xF

Figure 6. Estimated and computed longitudinal

force zF
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Figure 7. Estimated and computed longitudinal
moments

Figure 8 shows that with respect to flight qualities of

the simulated aircraft (damping coefficients and natural

frequencies) , the two kinds of responses are quite

similar.

Figure 8. Neural and Analytic Estimations of
pitch rate

With respect to guidance variables (speed, altitude

and angle of attack), the time trajectories obtained

through the neural simulator can present some drift

with respect to those obtained from the analytical

simulator, however the consequences of these

discrepancies can be somehow minored since in a

training device the pilot is in the loop and the

corrections which should be added to a nominal action

by the pilot to join and maintain guidance references

will remain transparent since they are very small.

7. Conclusions

In this communication a proposal has been made to

simplify the construction of flight simulator programs.

This approach, based on the power of neural networks

to relate complex causal signals, has been tentatively

validated. The validation results displayed here, while

encouraging, are not fully conclusive and this work

should be pursued to obtain a practical methodology of

direct use in the flight simulator industry. One

particular area of further research considers the

refinement of the training process to obtain accurate

neural estimators of forces and moments from minimal

flight data.
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