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Abstract

Accurate wind magnitude and direction estimation
is essential for aircraft trajectory prediction. For
instance, based on these data, one may compute
entry and exit time from a sector or detect potential
conflict between aircraft. Since the flight path has to
be computed and updated on real time for such
applications, wind information has to be available in
real time too.The wind data which are currently
available through meteorological service broadcast
suffer from small measurement rate with respect to
location and time. In this paper, a new wind
estimation method based on radar tracks is
developed. An Extended Kalman filter extracts the
wind information by observation of the radar tracks
in tarps. After performing many evaluations in
realistic frameworks, our approach is able to
estimate the wind vectors accurately. By this mean,
each aircraft can be seen as a wind sensor when it is
turning. Based on those measurements, a global
space-time wind field estimation using vector splines
is extrapolated in order to produce wind maps in the
area of interest.The underline mode! for wind field
computation is Shallow-Water, which assumes
geostrophic wind. The accuracy of this wind map is
dependent of the number of aircraft turns in a given
zone; then the estimation is better in the terminal
area (TMA) than in en-route area because aircraft
are tuning more often. Further improvements to the
estimation can be made by correlating with
meteorological measurements.

Introduction

When an aircraft flies from a city A to a city B,
it has to be managed by air traffic controllers in order
to avaid collisions with others aircraft. Evervday,
about 8000 aircraft fly in the French airspace,

inducing a huge amount of control workload. Such a
workload, is then spread by the mean of the airspace
sectoring. The airspace is divided into geometrical
sectors, each of them being assigned to a controller
team. When a conflict between two (or more) -
aircraft is detected, the controller changes their
routes (heading. speed, altitude) in order to keep a
minimum distance between them during the
crossing. A¥ flying aircraft are then monitored
during their navigation and so from the departurc til
the destination. The controller has a 2D visualization
of his traffic by the mean of the radar screen. At the
beginning of radar air traffic control, civil aviation
authority used primary radar. In such a system, the
radar send a big electromagnetic impulsion (several
mega watt (peak power) during one micro second) in
the airspace waiting the echo back. This impulsion
propagates at the light speed (c =300 km per
second), touch the aircraft and comes back 1o the
radar with a very low power (some nano watis).
Based on the time difference between the two
impulsions, it 1s easy to compute the distance
between the radar and the aircraft

(dif faisance = “7%37). This system gives a straight
measure of the distance between the aircraft and the
radar which is a mix between the 2D geographical
distance and the altitude of the aircraft. When
controliers wsed only primary radar, they had to
asked the pilot to give his altitude and his ID in
order to identify more precisely the spot they saw on
their screen. The secondary radar really improved
this system by the mean of active target concept. In
this system, the aircraft is pot passive anymore
(from the radar point of view) but is equipped by an
emitter which answer to the radar when the radar
beam touch the aircraft. Every time the aircraft is
addressed by the radar, the aircraft emitter send back



two codes called ModeA and ModeC. Those
numbers are coded into octal base and give
respectively the ID and the altitude of the aircraft.
When the radar receives back those two pieces of
information, it is easy to compute the 2D
geographical distance and the altitude of the aircraft.
Another radar system, called Mode 8, proposes to
establish a data link between the radar and the
aircraft during the time the aircraft is in the radar
beams. This short connection enables to downlink
some flight data to the ground such like roll angle,
true air speed, heading, altitude rate, etc....and
enable to improve the radar tracking [1).

This comemunication between aircraft and the ground
can be extended by the mean of satellites which are
even accessible over the oceans where there is no
radar. All those radars deliver raw measures with
additional noises coming from eleciromagnetic
perturbations, electronic systems, eic.... Those
measures are then filtered by the mean of a tracker
filter in order to produce smoeth trajectories.

When a controller observes its traffic on the radar
screen, he tries to identify convergent aircraft which
may be in conflict in a near future, in order (o apply
maneuvers that will separate them. The problem is
to estimate where the aircraft will be located in this
near future (5-10 minutes); this process is call
trajectory prediction. This prediction may be also
very useful in order to estimate the workload level
in control sector {o prevent aver capacity cvent. As a
mater of fact, it is very vseful to estimate when an
aircraft will enter a sector in order to compute the
associated sector workload and to apply regulation if
necessary. When a sector is expected to be
overloaded, the aircraft involved in such a process
will be speeded up or slow down by the controller in
order to adapt the demand 1o the actual capacity as
much as possible. The trajectory prediction depends
mainly on the residual noise after filtering (see [2]),
the weight of the aircraft, the temperature and the
wind. The residual noise is integrated with time with
a growing covariance matrice indicating that the
estimated position is less and less accurate, The
weight of the aircraft is relevant in the flight
dynamic model but is still a raw data. The engines
of aircraft are sensitive to the air temperature and
such a data is very useful to'model the trust of the

aircraft but it is also very difficult to measure on real
time. Finally, the wind influences strongly the
cinematic of the aircraft and limits also the
trajectory prediction. Based on the available
accuracy, the actual limit of the trajectory prediction
is about 15 minutes. It means that after 15 minutes
the uncertainty is so big that the estimated position
is no more wvseful for any ATM applications.

Several efforts have tried to improved the trajectory
prediction by estimating or suppressing the wind [3], .
141, [5), [6), [7}. The present paper, proposes a new
method for estimating the wind around aircraft by
the mean of observations of the radar tracks and
some downlink data. One goal of this work is to
show how it is possible to extract wind information
from the radar observations.

The paper is organized as follow : the first part
present the Kalman filter and its non linear extension
called Extended Kalman Filter. The second part
describes two models adapted for the wind
estimation. The third part presents some results and
compare the performance of our two models. Finally,
the fourth part describes how a wind field map can
be built using some spread measures of the wind.

Kalman Filtering

Linear Form

The Kalman filter is named after Rudolph E.Kalman
who in 1960 published his famouns paper describing
a recursive solution to the discrete-data linear
filtering problem [8]. The Kalman filter is essentially
a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in
the sense that it minimizes the estimated error
covariance {when some presurmmed conditions are
met), It has been successfully applied in many real
problems [9], [10], 11 ], [12), [13]. The following
description of the Kalman filter is mainly due to
G.Welch and G.Bishop [14].
The Kalman filter addresses the general problem of
trying to estimate the state X{k) € R" of a discrete
controlled process that is governed by the linear
stochastic difference equation call evolution
equation .:

X(k+1) = E(k).X(K) +Gk).OK) +v(k) (1)



with a measurement Z(k} € R :

Z(k) = H(k).X(k) + (k) (2)

The n.n matrix F(k) in the evolution equation 1
relates the state at the present step k to the state at
the next step k+ 1, in the absence of either a driving
function or process noise. The n.p matrix G(k)
relates the optional control input [ (k) € R¥ to the
state X. The n.m matrix H(k) in the measurement
equation 2 relates the state to the measurement Z(k).
The random variables v(k) and w(k) represent the
process and measurement noise (respectively). They
are assumed to be independent (of each other),
centered, white, and with normal probability
distributions. Furthermore the optional control is
disturbed by a random variable n(k)

(U (k) = U(k)+n(k)) which will be supposed to
have a normal probability distribution also.

p(u(k)) N[0, 0(%))
p(w(k)) ~ A(0,R(K) 3)
plak)) -~ N(0,N{k))

So we have :

Ek)]=0 E z(k)z(j)Z] = Q(k).&;
Elw(k)=0 E m(k)&(j)ﬂ=£(k).5kj o)
Enk) =0 Enkn(j)"|=N(k).5;

where T is the transpose operator and &;; is the
Kronecker symbol which is [ if k= jand 0 if £ # j.
We define X(k+ 1/k) € R” to be the a priori state
estimate at step k4 1 given knowledge of the
process prior to step k+ 1, and X(k+1/k+1) e R®
to be the a posterior state estimate at step k+ 1
given measurement Z{k -+ 1).

We can then define a priori and a posteriori estimate

€rror as .

elk+1/K) = X(k+1) - X(k+1/k)
ek +1/k+1) =X(k+1)—-R(k+1/k+1)

The a priori estimate error covariance is then:

Plk+1/k) =E [e(k+/K)e(k+1/K)]  (6)

(%)

and the a posteriori estimate error covariance is:

Plk+1/k+1)= )
E [e(k+1/k+ Ue(k+1/k+ )]

In deriving the equation for the Kalman filter, we
begin with the goal of finding an equation that
computes an a posleriori state estimate

X(k+ 1/k+1) as a linear combination of an a priori
estimate X (k- 1/k) and a weighted difference
between an actual measurement Z(k+ 1) and a
measurement prediction H.X (k +1/k)

Rk+1/k+1)=X(k+1/k)+ ®)
K{k+ 1) (Z(k+ 1)~ HX(k+1/k))

The differénce(Z(k + 1)~ HX(k+ 1/k)) in
equation 8 is called the measurement innovation, or
the residual. The residual reflects the discrepancy
between the predicted measurement H.X (k+ 1/k)
and the actual measurement Z(k+1). A residual of
zero means that the two are in complete agreement.
The n.m matrix K(k+1) in equation 8 is chosen to
be the gain or blending factor that minimizes the a
posteriori error covariance 7. This minimization can
be accomplished by first substituting equation 8 into
the above definition for e(k + 1/k-+1), substituting
that into equation 7, performing the indicated
expectations, taking the derivative of the trace of the
result with respect to K(k+ 1), setting that result
equal to zero, and then solving for K(k+1). One
form of the resulting K(k+ 1) that minimizes
equation 7 is given by :

Kk 1) = P(k+1/k).Hk+1)T.
[H{k+ DP(k+1/RHK+ 1T +RE+1)]™
Looking at equation 9 we see that as the

measurement error covariance R(k+ 1) approaches

zero, the gain K(k+ 1) weights the residual more
heavily. Specifically -

lim K(k+1)=H"" (10)
Rik+1)—0Q

&)

On the other hand, as the a priori estimate error
covariance P(k+1/k) approaches zero, the gain
K(k+1) weights the residual less heavily.
Specifically :

” J}%_@gtm 1) =0 an

As the measurement error covariange R(k+1), the
actual measurement Z(k+ 1) is “trusted” more and
more, while the predicted measurement
H.X(k+1/k) is trusted less and less. On the other
hand, as the a priori estimate error covariance



P{k+1/k} approaches zero the actual measurement
Z(k+1) is trusted less and less, while the predicted
measurement H.X(k+ 1/k) is trusted more and
riore.

The Kalman filter estimates a process by using a
form of feedback control : the filter estimates the
process state at some time and then obtains feedback
in the form of (noisy) measurements. As such, the
. equation for the Kalman filter fall into two groups :
time updaie equations and measurement update
equations, The time update equations are responsible
for projecting forward (in time) the current state and
error covariance estimates to obtain the a priori

K(k+1) = P+ 1/R).HGEk+UT [Hk+ DPk+ 1/OHE+ DT +R(k+1)]”
R4 1/k) + K(k+1). (Z{k+ 1) — Hk+ 1) X(k+ 1/k))
UK+ 1).Hk+1)] -!i((f;; 1/k)

Rk+1/k+1)
Plk+1/k+1)

i

f

The first task during the measurement update is to
compute the Kalman gain, K(k+1). The next step is
to actually measure the process to obtain Z(k+1),
and then to generate an a posieriorni state estimated
by incorporating the measurement. The final step is
to obtain an a posteriori error covariance estimate,

After each time and measurement update pair, the
process is repeated with the previous a posteriori
estimates used to project or predict the new a priori
estimate. In order to initiate the process, the first
initial state and the associated covariance has to be
set up. Usnally, the first state is build with an initial
measure and the associated covariance is set up with
the measure covariance or with a big values, beciuse
the filter has no confidence in its initial state (it
comes from a measure).

Extended Form

The standard Kalman filter addresses the general
preblem of trying to estimate the state X (k) € " of
a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what
happens if the process to be estimated and (or) the
measurement relationship to the process is
non-linear ? A Kalman filter that linearized about
the current mean and covariance is referred to as an

estimates for the next time step. The measurement
update equations are responsible for the feedback
-i.e. for incorporating a new measurement into the a
priori estimate to obtain an improved estimate.

The time update equations are the following :

R(k+1/k) F(k).X (k) + G(k).U(k)
Pk+1/k) .= E(k).P(k/k).FE(k)T+ (12)
G(k).N(k).G(k)T + Q(k)

The first equation is the state prediction and the
second one gives the associated covariance.

The measurement update equations are the
following :

]

it

1

extended Kalman flter or EKF. We can linearize the
estimation around the current estimate using the
partial derivative of the process and measurement
functions to compute estimates even in the face of
non-linear relationships. Let us assume that our
process again has a state vector X (k) € R”, but that
process is now governed by the non-lipear stochastic
difference equation :

X(k+1) = F X0 U] +uk)  (14)
with 2 measurement Z(k) € R™ that is :
Z(k+ 1) = HRXE) bl (15)

where the random variable v(k) and w(k) again
represent the process and measurement noise.
The new time update equations are now the
followings :

X(k+1/k) = FkX(K),UK)]
Plk+1/k) = F,().P(k/k).F, (k) +
zg(k).ﬂ(k)-&(k)r+2(1:216)

il

where ¥, (k) is the Jacobian matrix of partial
derivatives of F with respect to the vector X and is
given by the following :

£z [ox (£l xu)] a”

X=2(k/iy U =0¥)



where

.[ad d d
Vs= [a—sr’ 95,0 5;} (18) The linearized measurement update is now given by:
K(k+1) = P(k+1/R).Hy (k- D)7 [Hy (k+1).Pk+1/0) Hy (k+ )T +R(k+1)]
R+ 1/k+1) = Rk+1/0)+KE+1). [Z(k+1) = H (k,X(k+1/5))]
Plk+1/k+1) = [I-K(k+1).Hy(k+1)].P(k+1/k)
(19)
More information about the Kalman filter may be where
fO}Jnd m.[lS].. Those forms have' been used in our (10 Clwg) Glag) A 0]
wind estimation problem for which the associated 0 1 —Glw) Clo) 0 A
models are now presented.
E(k) — 00 C3 (wa) C4((Da) 0 0 (23)
0 0 ~Cye) GCs(wg) O O
Models 0o 0 0 10
. 00 0 0 0 1 ]
Model without Command )
The model used for this application supposes that Z{k) = [ (1) 0 g 00 8 } X() +wk) 4
aircraft are flying at constant speed and are turning ! 00
with a constant air turning rate o,{(k). This turning where sal,(58)

rate is also supposed to be always known without
noise. This last hypothesis will enable to use the
linear form of the Kalman filter. The wind is alse
supposed to be constant. This simple model will
show that wind can be extracted by observing the
radar tracks in the turns.

The state vector is given by :

X (k) (20)

where xi,ye is the position, T'x, Ty, the True Air
Speed (TAS) and Wx;, Wy, the wind.

= loeye Txe Tye W W]

The experimentation have been done in 2 dimensions

(for having shorter equations) but the extension to
the third dimension can be done without probiem.
The measure vector consists in the radar positicn:

Z(k) = [xn(k) ym(K)]" 1)
The structure of the system is the following :
X(k+1) = (k) X(0) + v(k) 22)
R(k)=E [w(k)w(k)'] =

2 2 2% sin(26,
(GP bt po.oe) L (2 0)

G

2
p

1s the differential operator.

(@,(0k)) =
cm%<n=:%E@M

Ci(04(k)) = cos(w,(k)A;)
Ca(a(k)) = sin{e, (k)A}

A; is the time period between two samples (k and
k+1). This simple model being exact the matrix
Q =0 (f aircraft are changing their speeds, this
matrix has to be set up in order to enable the
Kalman filter to follow such trajectories (with a
poorer estimate of the wind)).

The initial measures produced by the radar are
expressed in the polar coordinates ({p,0)) and the
associated standard deviations are :(G, = 0.12VM
G = 0.14%) for a secondary radar. The state vector
being expressed in the Cartesian coordinate (x,y),
the noise covariance matrix R{k) is build by
projection of polar noises onto the Cartesian
coordinate system and is given by :

(25)

o3.sin’(80) + p3.63. 00_52(00) (05 - p§-05) i)
.cos?(8g) + p2.03.sin* ()



where py is the distance between the aircraft and the

radar, 0 is the azimuth of the aircraft.
This model will extract the wind from the radar

observations by using a filtered downlinked air
terning rate. When such a turning rate is not filtered,
it ean be included in the command of the filter in

order to build a more realistic filter which is
presented now in the following section.

Model with Command
The state vector is the same as in the previous

and the True Air Speed measures :
Z(k) = [xa(K) yu(k) Ten (K) T ()} (28)

and the command vector is build with the air turning
rate m,(k) and the acceleration of the aircraft y(k) :

U (k) = [wa(k)}v(k)]" (29)
The measure Ty,(k), (k) and the command U (k)

are supposed to be downlinked from the aircraft.

model :

The measure vector consists in the radar position

X (k) = [ ys T Tye W W) Q27

y(k) = {C; + D.Cs}Tx(k) + {Cy + D.Cs} Ty (k) + Wy(k)
(14+D)(Cs.Tx(k) + Cy.Ty(k)}

where

[ x(k) +{C1 +D.Cs} Tx(k) +{Ca + D.Cs}Ty(k) + Wx(k) T

The model is now non linear and has the following
structure :

(30)

z- (14 D)(~Ca.Tx(k) +C3.Ty(k))
Wx(k)
L Wy(k)
(31)
where Cy,C;,C3,Cy are the same as in the first Those disturbed trajectories are then filtered by the
model and Kalman filters which generate the filtered trajeclories
Cs=A,.C — S which are then compared to the reference
ALCRO) iectories. Thi bl M
Co= G —p G trajectories. This process enable to compute Monte
(k) 14 " wa (k) Carlo statistics for the validation of the filters. This
D= TR LT (k) framework is summarized on figure 1 (see the end

Those equations have been linearized in order to

build the extended Kalman filter. The matrix @ has
been set up to 0 for the first experiments, When the
averaged wind is changing during the flight (which
is the real framework), the values related to
Wx{k),Wy(k) :Owx, Ow, must be adjusted to the max
change between to samples (for the high altitude
wind this max value is about 0.1 kts).

Results

Simulation Framework

In order to test and compare those filters, a radar
simulator has been used to produce the reference
trajectories which are disturbed several times (30).

of the paper).



Figure 1. Test Framework

The first trajectory used for our applications is built

with 3 straight lines (10 minutes for each) cannected
with turns as it can be seen on figure 2.

Trowcory wihou sccelarmmcn
VIRAGE_ 50 XML TR Lang 34 ——

Figure 2. Trajectory Witheut Acc

A 30 kts wind coming from the north has also been

included in the simulation. After simulation, we
have 30 estimated trajectories and one reference
trajectory, For each time step, the differences
between the estimates and the reference are
computed. Wind errors in magnitude go(k) and
direction €y (k) are then computed. The power of
those error are evaluated :

RMSg, (k) = 54/ ZiL, €5 (ki)
RMSe,,, (k) =%, /3¥ ~ 1+ Sy (ki)

The wind estimation is summarized on the figure 3.
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Figure 3. Residual Estimation Error for the
Wind in Magnitude and Direction

As it can be noticed on the figure, the filter begin to
converge to the right wind after the first turn
{600sec). Before, it is not able to estimate the wind
because the rebuilt speed may come from the
aircraft speed only or from the aircraft speed and the
wind. The wind estimation accuracy given by the
filter is close to zero showing the model is strongly
adapted to the simulation. Unfortunately, this model
is only adapted to constant speed trajectory with a
full knowledge of the air turning rate. A more
realistic framework consist in using trajectories with
acceleration and noisy downlinked data such as
acceleration rate and air turning rate. This model is
able to track any kind of trajectories and to produce
the right estimation of the wind. This model with
command has been detailed in the previous section®.
In order to make run such a filter, information about
the noise in the command U(k) has to be known to
build the covariance matrix N (k). The associated
standard deviation are the following :
oy, = 0.01m/s? and G, = 0.15°%/s. Furthermore,
those noises have been supposed independents, so
the matrix N(k) is diagonal (N(k){1,1] = 65, and
N(k)[2,2) = o},). This filter has been tested with a
trajectory composed with segments with acceleration
period (see figure 4). This trajectory is composed by
9 segments : 5 mn constant speed, lmn acceleration
(1m/s%), 4 mn constant speed, 1 mn turn (1°/s), 4
mn constant speed, 1 mn deceleration, 5 mn constant



speed, Tmn acceleration (2m/s?) and turn (—1°/s)
and 10mn constant speed. A 30 kts north wind has
been applied during all trajectory.

Yim)
&

0
& a0 g ¢ X a0 & s w0
Xiom}

Figure 4. Trajectory With Acc

The residual wind estimation error is given on
figure 5. As it can be noticed on this figure the wind
estimation is about 0.05kts for the speed and 0.1°
for the direction.

ANS VENT VIRAGE B0 ACC

-4 20 40 600 B00 1003 1200 1400 1800 1800 2000
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Figure 5. Residual Estimation Error for the
Wind in Magnitude and Direction

If the wind is able to change in space (which the

real case) the matrix @ has to set up accordingly :

0000 0 0
0000 0 0
0000 0 0 .
Qb=100600 o 0 (32)
0000 (ow)? O
10000 0 (ow)?.

where Gy is the maximum change of averaged wind
speed between two samples and will fix the new
accuracy of the filter (a regular value is about
0.54kz5). This last filter is really adapted for the wind
estimation based on the radar tracks. It can address
any commercial evolution aircraft and produce
accurate wind estimations.

Having now some wind estimations on some points
in the airspace {where the aircraft are located), the
next step consist in the global wind field
interpolation based on the meteorological model
called "Shallow-Water”. This model is described
in [16] and the associated discretization in given
in [17]. ‘

Vector Spline Interpolation

Shallow Water Wind Model

Let V be the vector field giving the wind velocity at
each point. We will assume in the following that area
of interest is located high enough above the ground
level so that viscous effects are negligibles. Assume
furthermore that wind field is two dimensional (that
is does not depends on altitude}. Then the evolution
of V is described by the system of equations :

BLUE+E—fu=0
%+U‘};+ E+fv=0 (33)
2HUE+O0) [ +E] =0

V:[U'—;-u]

with :
v

U the mean west-east component of the wind, f is
the cericlis parameter which can be expressed as :

f =2Qsin by — 2QR " cos Py

. . 2n .
with Q = T the rotation rate of the earth, ¢, the

latitude (assumed to be constant in the domain of



interest) and R = 6.370 x 10%m the earth radius. @ is
the geopotential of the isobaric suiface and is
written as :
D =06(y)+0
with :
8(y) = 0q— [2Q(sin bo)y — QR !(cos ¢g)y2] U

and :
b =3x10*ms™2 U=25ms"

The set of equations 33 is known as shallow water
model. With little rewriting, it can be shown that
this model has the following synthetic form :

d

-a-;-l*L)X
with :
173
X=]v
¢
and L the differential operaior :
d d
L=A—+B—+C
xXTPHT
where
v o 90 0 0 0
A=| 0 U 0 B=10 0 1
® 0 U 0 & 0
0 ~-f 0
C=1f 0 0
0 @ 0
EHD+U?) + f2 £16:@ + i, (@D —

Interpolating Vector Splines

The symbol ¢(y,&) of this differential operator L
easily computes as :

—i& U —f 0
o(y.§) = f —i&U —i&>
=g ®(y) ~ib®(y)+P'(y) —i&U
Since a solution 0 of the Shaliow-Water model must

fulfill :
d

(&
we will seek for a vector field V such that:

T
V:argmin/[
0 Jp

under the constraints that :

+L)V =10

a 2
(§ + L)X (x,0)i] dxdt

X(x,-,t,-) =v,i=1...n

if v; 1s the wind measurement at time f; and location -
x;, D is the domain of interest and [ is the time
interval chosen for computation. Assuming that
boundary conditions vanish, we obtain that the
functional criterion has expression:

/ / ———+L‘L)X(x,t),X(x,t))dxdt

with I’ the adjoint operator of operator L. Operator
L'L has symbol :

20U) -~ -+ 5UP)

o(38)= | Li&®—i& (@ -2fU f+EUI+EO +0%  §E(U + @) - i@

i€+ U

L'L admits an eigenvector expansion (4, ey with
associated eigenvalues (A,).cn. We will week for a
kernel K(x,y,¢, u) such that :

S Jp (K (x. 1), (= 22 + L'LYX (3, u))dydu
=X(x,1)

Formally, we may write :
K(I,y,f, H) = ch(ti M}q)n(){) ®¢’H(y)
n .

and find the right expression for ¢,(r,u). In the case
I =R and wind fields of finite energy over tirmne,

E & (U + D)+ ik

Gu+&

some computations show that the sought after kernel
has expression :

—pint--u|

€
K(x,y,t,u):z 2

n

On(x) @ 0n ()

with : g, = v/A,. The constraints that
Xxpt)=vii=1...n may thus be rewritten as :

J [ Gy, (-5

which is much more Lractable than the point version.
Introducing Lagrange multipliers (g;)i-1._n, the

+L’L)X(y u))dydu = v;



problem may be solved and the solution written as :

X(x,t)= 3, &K(xix,1t,1)
=l..n

so that optimal vector field is a linear combination
of kemels evaluated at measurement points
(Xis#;)i=1_n- This is a classical result within the
frame of interpolating spline theory, with the
restriction that the kernel is not translation invariant.
From now, only numeric evaluations of the keme])
can be made, based on finding finite elements
approximations of the eigenfunctions, then
truncating the infinite sum in the kernel expansion at
an order where residual is low enough. This yields a
piecewise polynomial approximate kernel, which can
be computed once and used afterwards (note that if
the kernel is computable, finding the wind field
expansion is done by solving a linear system),

Conclusion

This paper has given a new approach for extracting
the wind information from the radar tracks. A first
linear model has been used to demonstrate that turn
observations are enough to estimate the wind around
the aircraft. The estimation is only possible if the air
turning rate is available at any time. In order to
address more realistic trajectories, a second model
with downlinked commands has been presented and
tested on simulation with acceleration giving good
results. This non-linear model has been linearized in
order to make run an Extended Kalman Filter.
Having wind measures spread in the airspace, the
second part of the paper propose an extrapolating
method using vector splines. Based on the
differential operator of the Sallow-Water mode! and
the observations produced by the Kalman filters, this
method build a vector field using kernel functions.
The assoctated eigenfunctions (¢,} have to be
computed numerically on each point of the grid
where the vector field has to be computed. It must
be noticed that the Shallow-Water is only vatid
above 2000m; this means this method may be used
mainly for En-Route traffic.
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