
HAL Id: hal-00938024
https://enac.hal.science/hal-00938024

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Kirkman’s schoolgirl problem in a few
seconds

Nicolas Barnier, Pascal Brisset

To cite this version:
Nicolas Barnier, Pascal Brisset. Solving the Kirkman’s schoolgirl problem in a few seconds. CP 2002,
8th International Conference on Principles and Practice of Constraint Programming, Sep 2002, Ithaca,
United States. pp 33-41, �10.1007/3-540-46135-3�. �hal-00938024�

https://enac.hal.science/hal-00938024
https://hal.archives-ouvertes.fr

Solving the Kirkman’s Schoolgirl Problem in a

Few Seconds

Nicolas Barnier1 and Pascal Brisset2

1 Centre d’Études de la Navigation Aérienne, Toulouse, France
2 École Nationale de l’Aviation Civile, Toulouse, France

{barnier,brisset}@recherche.enac.fr

Abstract. The Social Golfer Problem has been extensively used in re-
cent years by the constraint community as an example of highly sym-
metric problem. It is an excellent problem for benchmarking symmetry
breaking mechanisms such as SBDS or SBDD and for demonstrating the
importance of the choice of the right model for one problem. We ad-
dress in this paper a specific instance of the Golfer Problem well known
as the Kirkman’s Schoolgirl Problem and list a collection of techniques
and tricks to find efficiently all its unique solutions. In particular, we
propose SBDD+, an generic improvement over SBDD which allows a
deep pruning when a symmetry is detected during the search. Our im-
plementation of the presented techniques allows us to improve previous
published results by an order of magnitude for CPU time as well as
number of backtracks, and to compute the seven unique solutions of the
Kirkman’s problem in a few seconds.

Keywords: Symmetry Breaking, Social Golfer Problem, Resolvable Steiner Sys-
tems.

1 Introduction

Highly symmetric problems are always challenging for Constraint Programming
and breaking, removing, discarding symmetries among solutions has been the
subject of much interest among researchers of the CP community in recent
years. We focus in this paper on one particular symmetric problem: the Social
Golfer Problem[7], also known as resolvable Steiner system in the combinato-
rial area[12]. Except for small instances, this problem is open and Constraint
Programming gives balanced results: formulation is straightforward but far from
being sufficiently efficient to solve all instances.

We are interested in breaking as much symmetry as possible, as well as
combining and improving previously proposed techniques to find all solutions
of one specific instance of the problem. The first important choice concerns the
model. We naturally choose a set model [9] which automatically removes one
kind of symmetry. The next step is to statically remove symmetries by adding
constraints. Additional redundant constraints may be added to detect failures

as soon as possible. The crucial point is then to be able to find an isomorphism
relating two solutions quickly; we propose a “lazy” approach which splits the
detection into two phases, building and checking, that provides the required
efficiency.

One of the key ideas of the paper is to exploit an isomorphism found between
two solutions, or partial solutions, to prune as much as possible of the subsequent
search tree. We show that this is possible if the structure of the search tree is
intrinsically related to the symmetries; in this case an isomorphism which maps
a solution to another one similarly maps also some ancestor nodes. Combined
with SBDD [5], we call the technique SBDD+.

Our experiments show that results presented in previous papers[17] can be
greatly improved both in number of failures and in CPU time. The problem of
finding all solutions to the Kirkman’s Problem, which might have been consid-
ered hard to solve one year ago using Constraint Programming (two hours of
CPU mentioned in [5]) can be solved in few seconds using our approach.

The remainder of the paper is structured as follows: we first define the Social
Golfer Problem and model it, giving numerous possible redundant constraints. In
the next section, we present our algorithm used to check symmetry and explain
extensively our deep pruning technique associated with symmetry finding. Sec-
tion 4 displays results of our experiments, confirming the approach. We conclude
by recalling that many challenges remain.

2 Model

The classical instance of the Social Golfer Problem is described in the following
terms:

32 golfers want to play in 8 groups of 4 each week, in such way that any
two golfers play in the same group at most once. How many weeks can
they do this for?

The problem may be generalized to w weeks of g groups, each one containing
s golfers. This instance will be denoted g-s-w in the sequel of the paper. We note
n = g × s the total number of golfers. The most famous and historical instance
is the 5-3-7 for which all 7 unique (non-symmetric) solutions were already com-
puted by Kirkman in the early 1850’s [11]. In the combinatorics area, solutions
for s = 3 are known as Kirkman triple systems or resolvable Steiner systems.
Such systems have been extensively investigated (see for example [2]).

In the context of constraint programming, different models have been pro-
posed in [18] to the Golfer Problem. The integer set model1 which automatically
removes symmetries inside groups is the one we chose for our experiments. In
this model, the variables are the groups themselves and constraints are expressed
as operations on sets.

The variables Gi,j , with i index of weeks and j index of groups, are sets and
their associated domain is a lattice of sets defined by its greatest lower bound

1 http://www.icparc.ic.ac.uk/eclipse/examples

(the necessary elements) and its lowest upper bound (the possible elements) [9].
The Gi,j ’s are subsets of the set of golfers. Each of them contains exactly s
elements. All the groups of a week are disjoint and every pair of groups from
different weeks share at most one element. All these properties are expressed
with the following constraints:

1 ≤ i ≤ w, 1 ≤ j ≤ g Gi,j ⊂ {1, 2, ..., n}

1 ≤ i ≤ w, 1 ≤ j ≤ g |Gi,j | = s (1)

1 ≤ i ≤ w, 1 ≤ j < j′ ≤ g Gi,j ∩ Gi′,j = ∅ (2)

1 ≤ i < i′ ≤ w, 1 ≤ j, j′ ≤ g |Gi,j ∩ Gi′,j′ | ≤ 1 (3)

The constraints (2) may be basically implemented as w all_disjoint global
constraints instead of the wg(g − 1)/2 binary disjoint constraints. Note that no
global consistency is achieved for this global constraint. The number of con-
straints of type (3) grows quadratically with the number of groups. It may pre-
vent to solve large instances with this model.

According to [18] experiments, the naive set model is not the best one. How-
ever, we choose it for several reasons. First it is the simplest one and it uses the
highest abstraction level. Second, redundant constraints described in the follow-
ing section are easy to express with this model. Third, this is the model used in
[5, 17] and it allows us to compare our approach with this previous ones.

2.1 Redundant constraints

Several constraints can be added to the original model. While they may help
to solve the hardest instances, the induced overhead is sometimes too large for
small instances like Kirkman’s one.

The fact that a player plays only once per week is not explicit in the origi-
nal model, but only entailed by the constraints (1) and (2). The corresponding
constraint is written using reified membership constraints:

1 ≤ i ≤ w, 1 ≤ p ≤ n
∑

1≤j≤g

(p ∈ Gi,j) = 1 (4)

Warwick Harvey (www.icparc.ic.ac.uk/~wh/golf) proposes to express the
fact that the players of a group appear in exactly s groups in other weeks:

1 ≤ i 6= i′ ≤ w, 1 ≤ j ≤ g
∑

1≤j′≤g

(Gi,j ∩ Gi′,j′ 6= ∅) = s (5)

Taking into account the size of the groups, the global constraint atmost1

proposed by [16] may also be set on the list of all groups.

atmost1({Gi,j/1 ≤ i ≤ w, 1 ≤ j ≤ g}, s) (6)

where atmost1(S, c) states that sets of S must have cardinal c and must intersect
pairwise in atmost one element. The propagation associated with this constraint

basically ensures that the possible number of partners of a player p is large
enough, i.e. greater or equal to (c−1)Np where Np is the number of occurrences
of p. In our case, Np is statically known (equal to w) so the propagation rule of
the constraint can be efficiently customized.

2.2 Breaking Symmetries Statically

Our first goal is to compute all the unique non-symmetric solutions to the prob-
lem. As described in previous papers[18, 5, 17], the Social Golfer Problem is
highly symmetric:

– Players can be exchanged inside groups (φP);
– Groups can be exchanged inside weeks (φG);
– Weeks can be ordered arbitrarily (φW);
– Players can be renamed among n! permutations (φX).

The symmetry inside groups is inherently removed by modelling groups as sets.
The symmetry inside weeks may be handled by ordering the g groups. Because
these groups are disjoint, a total order can be achieved by sorting the smallest
element of the groups.

1 ≤ i ≤ w, 1 ≤ j ≤ g − 1 min Gi,j < minGi,j+1

Note that this implies that the first player is in the first group for each week.
Following the same idea, weeks can be ordered with the first group as key,

which can be easily done with the second smallest element:

1 ≤ i ≤ w − 1 min(Gi,1 \ {1}) < min(Gi+1,1 \ {1})

Symmetries among players are more difficult to handle and only dynamic
checks will be able to remove them completely. Statically:

– First week is fixed;
– First group of second week is fixed with smallest possible players
– “Small” players are put in “small” groups: for every week, pth player is in a

smaller group than the pth group

1 ≤ i ≤ w, 1 ≤ p ≤ g Ḡi,p ≤ p

where Ḡi,p is the number of the group of player p in week i, i.e. the Ḡi,p are
dual variables defined by

1 ≤ i ≤ w, 1 ≤ p ≤ n Ḡi,p = j iff p ∈ Gi,j

– Players together in a same group in the first week are placed in ordered
groups in the second week

1 ≤ j ≤ g, p1, p2 ∈ G1,j , p1 < p2 Ḡ2,p1
< Ḡ2,p2

– Groups of the first week are ordered in the second week:

1 ≤ j < j′ ≤ g Ḡ2,G1,j
<lexico Ḡ2,G

1,j′

where Ḡi,{x1,x2,...} is the tuple (Ḡi,x1
, Ḡi,x2

, ...) and <lexico stands for the
lexicographic order on integer tuples.

Unfortunately, the conjunction of all these constraints does not remove all the
symmetries among players. For example, for the 5-2-2 instance, the two following
solutions are found:

1 2 3 4 5 6 7 8 9 10
1 3 2 4 5 7 6 9 8 10

1 2 3 4 5 6 7 8 9 10
1 3 2 5 4 6 7 9 8 10

Both solutions satisfy all aforementioned breaking symmetry constraints but
the second one is isomorphic to the first one through the functions (φG is the
same for the two rounds):

φX = {1 → 7, 2 → 8, 3 → 9, 4 → 10, 5 → 1, 6 → 2, 7 → 3, 8 → 4, 9 → 5, 10 → 6}

φG = {1 → 4, 2 → 5, 3 → 1, 4 → 2, 5 → 3}

φW = {1 → 1, 2 → 2}

We notice that even if permutations within weeks and groups may be stati-
cally removed by constraints when considered alone, it is still necessary to take
them into account when the permutation within players is handled.

Remaining symmetries must be dynamically discarded; we discuss an efficient
way to do it in the next section.

2.3 Integer Model with a Cardinality Constraint

We give here another model which allows us to solve efficiently the problem. Its
originality comes from the use of a global cardinality constraint [15]. To the best
of our knowledge, it is the first time it is proposed.

Decision variables in this model are Ḡi,p, the number of the group of player
p in week i.

1 ≤ p ≤ n Ḡi,p ∈ [1..g]

1 ≤ i ≤ w gcc({Ḡi,p/1 ≤ p ≤ n}, < (1, s), ..., (g, s) >)

where gcc(S, < (v1, c1), ..., (vk, ck), ... >) constrains the number of occurrences
of elements of S equal to vk to be equal to ck.

The “not with the same golfer more than once” is straighforward with rei-
fied constraints (whose number is increasing quadratically with the number of
golfers):

1 ≤ p1 < p2 ≤ n
∑

1≤i≤w

(Ḡi,p1
= Ḡi,p2

) ≤ 1

This model allows for example a short program2 to solve the classic 8-4-9
instance in half a second and 32 backtracks to find the fist solution. However, as
explained earlier, it is not the one used for the experiments in this paper.

3 Handling Symmetries During Search

In this section we present our adaptation to the Social Golfer Problem of a
generic symmetry breaking mechanism proposed in [5].

3.1 Generic Techniques for Breaking Symmetries

Symmetry breaking constraints fail to remove statically all symmetries among
the players in the Social Golfer problem. Therefore, several solutions have been
proposed to prune the search tree taking into account these symmetries dynam-
ically.

Using SBDS [8], which needs to list explicitly the symmetries to remove,
Barbara Smith in [18] was able to break most of the symmetries and obtain new
results. Later, two generic and similar approaches were proposed in the same time
[6, 5]. In the second one, the technique called SBDD (for Symmetry Breaking via

Dominance Detection) was applied with success to the Social Golfer Problem
and allows us to compute all the non-symmetric solutions of small instances.

In SBDD, states during the search (i.e. nodes of the search tree) are compared
to previously explored ones modulo a symmetry mapping function. A (new) state
P ′ is dominated by an (old) state P if P ′ is subsumed by φ(P) where φ is a
symmetry mapping function. When searching only for non-symmetric solutions,
a state which is dominated by an already explored ones is discarded. Then, it
requires to store all explored nodes. However, it can be noticed that if P ′ is
dominated by P then it is dominated by the father node of P . It means that
when all the sons of a state have been explored, one can remove them from
the store and keep only the father. Concretely, in case of depth first search, the
store for SBDD can be handled as a stack where states are associated to their
depth. When a new state must be added to the store, all the states on top of the
stack which have a greater depth may be removed. We will see later that it is
worthwhile to store states in a compiled form in order to ease future dominance
checks against this state.

One issue of the technique is its efficiency because checking dominance may
be very expensive: w(s!)gg! symmetries to check in the Social Golfer Problem.
Some restrictions are necessary to get an effective procedure:

– storage of explored states may be limited;
– checking of dominance may be restricted to some depths.

We propose to specialize the SBDD technique for the Social Golfer Prob-
lem, first to be able to check for dominance quickly, second, to better exploit
symmetries found.

2 This solution for the Golfer Problem is an example provided in the constraint library
we use.

3.2 Filtering Efficiently Symmetric Solutions

It is shown in experiments of [5] that it is not worth to check dominance for
every node during search for golfer solutions. For the 4-4-4 instance, authors
conclude that checks every 8-th depth give the best result. Results given in the
next section show that lazy dominance checking is effective when solving small
instances of the Golfer Problem.

General dominance check for the Golfer Problem as described in [5] requires
to compute a matching in a bipartite-graph, for which the best algorithm is in
O(n5/2) [10]. However checking that there exists a symmetric mapping function
which maps an old solution (a leaf in the search tree) to a new one is significantly
easier.

Actually, it can be noticed that a solution to the Golfer Problem is fully
specified by the week number of the pairs of players3. Precisely, a solution can
be described by the following mapping:

(p1, p2) → i such that Ḡi,p1
= Ḡi,p2

(7)

where (p1, p2) is a pair of golfers. Note however that the mapping is not total
for instances where a player does not play with all others.

A check must be done for each possible symmetry. [5] remarks that the pos-
sible symmetries may be easily enumerated looking for a matching from the first
week of the first solution (or partial solution) P to any week of the second so-
lution P ′. The key idea to compute symmetry checking efficiently is to compute
it lazily: instead of choosing a complete matching and checking the other weeks
afterward, it is worth checking them while the matching is built.

1 2 3 4 5 6

1 4 7 2 6 10

1

1 2 3 4 5 6

1 4 7 2 5 8

8 2 5 76

P P ′

Week 2 is mapped to week 2

Failure: building of this symmetry can be stopped

Partial φ

Fig. 1. Partial symmetry between solutions. Solid arrows show isomorphism building
while dashed lines show isomorphism checking.

Figure 1 illustrates this principle: Suppose a partial isomorphism is built by
mapping an exchange of the first two groups of the first week (1 ↔ 4, 2 ↔ 5,
3 ↔ 6). There is enough information in this partial matching to check all pairs

3 Is is the integer model proposed by Barbara Smith in [18].

among other weeks with index of players less than 6. In this example, one can
check that pairs (1, 4) and (2, 5) of the second week would be mapped in the same
week of the second solution. Because it is not the case (pair (1, 4) is mapped to
(4, 1) which appears in second week, (2, 5) is mapped to (5, 2) which does not
appear at all), it is not necessary to try to complete this partial matching and
we can “backtrack” to consider another mapping for the first two groups of the
first week.

The check for pair mapping may be easily performed at a low cost by a
precomputation phase:

– Derive the set of pairs of each week i of the first solution P , sorted according
to the greatest element of the pair, denoted Ci(P). Note that this precom-
putation may be done only once when the solution is found and stored.

– Build a table of the week numbers indexed by the pairs of the second solution
P ′ (mapping of equation (7), noted WP (c)).

The complete procedure is detailed in figure 2. The worst case complexity is the
same as a näıve approach but experiments show that this checking algorithm,
while only applied on leaves of the search tree, is efficient enough to compute all
solutions of the Kirkman’s problem in a reasonable time (c.f. section 4).

Procedure CheckSymmetry(P, P’)
Compute Ci(P) for i ∈ 2..w Usually already computed with P

Compute WP ′(c) for all pairs c of P ′

for i′ ∈ 1..w Map first week of P to week i′ of P ′

φW [1] ← i

for φG ∈ Pg Permute groups within the week

for j ∈ 1..g

for φP ∈ Ps Permute players within the group

Set φX such that P ′

i′,φG(j) = φX(φP (P1,j))

try

for i ∈ 2..w For all other weeks of P

for c ∈ Ci(P) s.t. c ≤ j s For all mapable pairs

if c is the first encountered pair of Ci(P)
φW [i] ← WP ′(φX(c)) Store image week of week i

else
if WP ′(φX(c)) <> φW [i] Check if pairs of week i in P are

continue mapped to the same week in P ′

return φX Symmetry found is returned

return NoSymmetry

Fig. 2. Search for symmetry φX mapping a solution P to P ′

3.3 Pruning Deeply

An efficient symmetry checking procedure applied on leaves allows us to compute
all the unique solutions but does not improve the search itself: no subtrees are
removed. However, following an idea of [13] used in an algorithm to compute
graph isomorphisms4, symmetry checking on leaves may be used to prune large
subtrees.

If P ′ = γ(P)P

s Then s′ = γ(s)

n

Fig. 3. Illustration of McKay’s idea: The dark subtree can be pruned.

The idea is illustrated in figure 3. Let P be a first solution (the tree is explored
in depth first search, from left to right) and P ′ a second solution proved to be
isomorphic to P (P ′ = γ(P)). We note n = P \P ′ the lowest node in the search
tree which is common to paths from the root to P and P ′, and s (resp. s′) its
immediate successor (we suppose that we do only binary branching) leading to
P (resp. its immediate successor leading to P ′). Under some conditions (which
we call “McKay condition” in the sequel), it can be shown that node s′ is the
image of s by the isomorphism γ (more precisely the canonical extension of γ
over partial solutions). In this case, the remaining unexplored subtree of s′ is
itself the image of an already explored subtree starting from s. Then it can be
pruned because it would lead only to solutions that are images by γ of already
found solutions.

In order to be able to apply this idea to a search tree, the structure of
the tree (i.e. the labelling procedure) must be compatible with the symmetric
mapping function we consider. For the Golfer Problem, all symmetries but the

4 The nauty software based on McKay ideas is used by combinatorics people to find
resolvable Steiner sytems[2].

one on players permutation may be removed simply with constraints. So the
symmetries discovered at the leaves concern only φX . Following these remarks,
the right choice is to label golfer by golfer to be able to apply φX extension on
a node of the search tree. Note that a full choice for one golfer p amounts to
labelling the w Ḡi,p variables.

Unfortunately, this labelling does not ensure the McKay condition if the set
of golfers above node n (c.f. figure 4) is not stable through the found isomorphism
γ: suppose node n concerns golfer 3 and γ is such that γ(1) = 4; we clearly cannot
have s′ = γ(s) in this case. The problem in this example is that the choice on
golfer 1 for P is mapped to the choice on golfer 4 in P ′, the latter being under

the node n. Hence, node n cannot be pruned.

The necessary adaptation of McKay idea for our search tree is to consider
two nodes s, s′ which are descendants of n, leading respectively to P and P ′,
such that the set of choices above s is mapped by γ to the set of choices above
s′. In this case s′ can be pruned. Of course, it is better to choose the highest
such node in the search tree to prune as much as possible. Figure 4 illustrates
the idea; the smallest set of golfers stable for γ which contains 3 (node n) is
{1, 2, 3, 4, 5, 6}.

Results given in next section show that this deep pruning is highly effective.

2

5

4

3

1

4

6 6

5

P ′ = γ(P)P

s
s′ = γ(s)

n
γ = {1 ↔ 4, 2 ↔ 5, 3 ↔ 6, ...}

{1, 2, ..., 6} is the smallest set

which is stable for γ

Dark subtree may be pruned

Fig. 4. Deep Pruning for the Golfer Problem.

2

5

4

3

1

4

6

5

n
P is stored, P ′ is compared with P

{1, 2, 3, 4} is the smallest set

which is stable for γ

s

P

γ(P) ⊆ P ′

Dark subtree is pruned

s′ = γ(s)

Fig. 5. SBDD+: Deep pruning integrated to SBDD.

3.4 SBDD+

We propose in this section an integration of the idea of deep pruning presented in
the last section with the symmetry breaking mechanism SBDD. This mechanism
computes isomorphism not only on solutions (leaves of the search tree) but on
states of the search tree which can be described with the current domains of the
variables. In SBDD+, we will exploit such isomorphism and try to show that it
is applicable on ancestors, leading then to a best pruning.

Based on SBDD, the approach is generic: no hypothesis are required on the
nature of the variables (integer or set variables) or the nature of the isomor-
phism. However, we present here the application of the method only to the
Golfer Problem and we did not try to implement it in a generic way.

Fine symmetry checking on leaves improved with deep pruning allows us to
solve our problem in a reasonable time. However, better pruning may be obtained
if the method is integrated with SBDD approach. It requires first to be able to
apply a refinement of the algorithm given in figure 2 to incomplete solutions
(nodes of the search tree), second to call the procedure only at the appropriate
times.

Experiments show that most of the symmetries found between two complete
solutions involve a mapping from the first week to itself5. Moreover, incomplete
solutions always get a complete first week. This means that the previous sym-
metry checking algorithm may be easily modified to be applied to incomplete
solution if only this kind of symmetry is considered; building of the symmetry
can be kept. However, the checking phase of the algorithm remains the same: a

5 For 7 non-symmetric solutions, 927 solutions are found and 603 of them have this
property.

symmetry is found if all pairs of P get an image in P ′. But it does not mean
that the symmetry is necessarily found when it exists, i.e. we possibly do not
find all symmetries.

Dominance checking remains expensive and it must not be done too often.
The check frequency must of course be related to the structure of the problem.
A good compromise for the Golfer Problem is to

– Store nodes at every depth of the search tree;
– Check dominance for nodes only against stored nodes of smaller depth;
– Check dominance only for nodes at depth multiple of s.

The maximum size of the node store may be estimated: the depth of the search
tree is the number of golfer gs; at each level, there may be gw (for one golfer, g
choices for each week) nodes to store. So the size of the store is bound by gsgw

(12 890 625 for Kirkman’s Problem). This bound is a bad upper bound due
to numerous symmetries removed by constraints (first week fixed, small golfers
fixed, ...). For the Kirkman’s Problem, with the detailed previous choices, only
15 nodes are effectively stored in the same time.

SBDD is compatible with the deep pruning mechanism: when a dominance is
found, it is usually possible to prune more than the dominated node, just looking
for the highest ancestor of the node for which the McKay condition is verified.
We call the method SBDD+. It is illustrated in figure 5.

4 Results

We give in this section results of our experiments with the different techniques
described in previous sections. The implementation has been done using FaCiLe
[1], a functional constraint library written in Objective Caml (caml.org). This
library provides usual finite domain variables over integers and sets, arithmetic
constraints, set constraints[9], global constraints and an extensive mechanism to
build search goals. It also includes basic mechanisms to maintain invariant ex-
pressions. This library, under LGPL license, and its documentation are available
at www.recherche.enac.fr/opti/facile. CPU times are given for a Pentium
700 MHz running Linux 2.4.5.

The set model has been used with the labelling described earlier, golfer by
golfer, choosing a group for each week, in increasing order. Additionally, some
simple symmetries are dynamically removed during the search: when a golfer is
placed in a group which does not contain any other golfers, this choice is fixed6.
The refinement of the redundant atmost1 (c.f. equation (6)) constraint is set in
every experiment.

Labeling is slightly improved according to the following remark: the unique
solutions of 5-3-7 are extensions of unique solutions of 5-3-2. Let S and S′ be
isomorphic solutions of 5-3-2 such that S′ = γ(S). If S is extended into a solution

6 A similar idea is used in graph coloring algorithm: if a “new” unused color is tried
for a node, there is no need to consider later other new colors for this node.

P of 5-3-7, then it is clear that γ(P) is an isomorphic solution of 5-3-7 and also
is an extension of 5-3-2. Then, our labeling first computes all unique solutions
of 5-3-2 and extend them to 7 weeks. There are only 2 unique solutions for 5-3-2
and it takes 0.1 seconds to compute them.

Table 1 shows the number of created choice points, the number of backtracks,
the total number of found solutions, the number of dominance checks and the
CPU time for different combinations of methods and tricks presented in this
paper to compute all 7 unique solutions to the schoolgirl problem (then 11 found
solutions means that isomorphism has been detected only at the leaf of search the
tree for 4 of them). First column (Leaves) gives the results for the straightforward
search with simple discarding of symmetric solutions at leaves. This time can
be compared with the one annouced in [5] (two hours). Next column (McKay)
corresponds to the symmetry detection at leaves with deep pruning. We see
that the number of failures and the time are smaller by an order of magnitude
from the previous ones. Column SBDD uses our incomplete dominance checking;
SBDD+ adds deep pruning. It is the best time achieved with our experiments.
It can be compared with the result of [17] (400s on a similar CPU).

However, the number of backtracks can still be reduced with redundant con-
straints: in column “+(4)”, the redundant constraint (4) stating that a golfer
plays only once per week allows us to further reduce the search but the overhead
is too large (with our implementation) and CPU time is not improved. The last
column adds redundant constraint (5) which expresses that players of a group
are spread among s different groups in other weeks. The overhead is here dis-
suasive but the number of backtracks is 5 times smaller than what was done in
[17].

Table 1. Computing the 7 solutions of the Kirkman’s Problem

Leaves McKay SBDD SBDD+ +(4) +(5)

Choice points 20062206 1845543 107567 29954 18705 18470

Fails 19491448 1803492 104134 28777 16370 16169
Solutions 20640 934 11 11 11 11
Dominance checks 5373 456 456 443

CPU(s) 5925 484 24 7.8 9.4 36

Our combination of tricks to solve the Golfer Problem allowed us to solve
open (at least for constraint programming) instances (6-4-6, 7-3-9, 8-3-7, 7-4-
6, 6-5-7, ...). Some of these instances, at the time of writing this paper, are no
longer open [14] and last updates of Warwick Harvey’s web page include all these
results (http://www.icparc.ic.ac.uk/~wh/golf/).

5 Conclusion

We have presented in this paper a combination of techniques which allows us to
find efficiently all solutions to the Golfer Problem. The main contribution of the
paper is an improvement of the SBDD principle that we call SBDD+. The key
idea of the improvement is, while breaking symmetries, to exploit the symmetry
function to be able to prune higher in the search tree. Extensive experiments
show that this new mechanism can reduce by an order of magnitude the CPU
time as well as the number of backtracks on the considered problem.

The deep pruning technique has been applied only to the Golfer Problem
but is general. The only restriction is to have a relative compatibility between
the structure of the search tree and the considered symmetry mappings in order
to be able to prove that a symmetry found between two nodes is also true for
ancestors of these two nodes. We believe that the notion of stability through
the isomorphism of ancestor nodes, a necessary and sufficient condition for our
problem, should be a general property. Further work is needed in this direction.

For the Golfer Problem itself, some instances remain open to constraint pro-
gramming approaches (even if they are well known by combinatorics, for example
7-3-10 and 7-4-9 are extensively studied). Our model may be improved using the
incomplete propagation techniques proposed by [17] in order to attack these in-
stances. Note that SBDD+ must be refined and tuned for larger instances to
avoid an explosion of node store and an extreme time overhead due to node
dominance checking.

In spite of many efforts from the constraint community, the 8-4-10 instance
is still open. This challenge is fascinating and it can be considered with the
highest priority to show that constraint technology is really suited for this kind
of combinatorial problem.

References

1. Nicolas Barnier and Pascal Brisset. Facile: a functional constraint library. In
Proceeding of CICLOPS2001, Paphos, 2001.

2. M.B. Cohen, C.J. Colbourn, L.A. Ives, and A.C.H. Ling. Kirkman triple systems
of order 21 with nontrivial automorphism group. Mathematics of Computation,
2001.

3. CP’01: 7th International Conference on Principle and Practice of Constraint Pro-

gramming, Paphos, Cyprus, 2001.

4. CPAIOR’02: Fourth International Workshop on Integration of AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimisation Problems, Le
Croisic, France, 2002.

5. Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking.
In CP’01 [3], pages 93–107.

6. Filippo Focacci and Michaela Milano. Global cut framework for removing symme-
tries. In CP’01 [3], pages 77–92.

7. Ian Gent, Toby Walsh, and Bart Selman. CSPlib: a problem library for constraints.
csplib.org.

8. I.P. Gent and Barbara Smith. Symmetry breaking during search in contraint
programming. In W. Horn, editor, EACI’2000, pages 599–603, 2000.

9. Carmen Gervet. Interval propagation to reason about sets: Definition and
implementation of a practical language. Constraints, 1(3):191–244, 1997.
www.icparc.ic.ac.uk/~cg6.

10. J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matching in bipartite
graphs. SIAM Journal of Computing, 2(4):225–231, 1973.

11. T.P. Kirkman. Note on an unanswered prize question. Cambridge and Dublin

Mathematics Journal, 5:255–262, 1850.
12. JR Marshall Hall. Combinatorial Theory. Wiley Classics Library, second edition

edition, 1983.
13. Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,

30:45–87, 1981.
14. Steven Prestwich. Randomised backtracking for linear pseudo-boolean constraint

problems. In CPAIOR’02 [4], pages 7–19.
15. Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.

In Proceedings of the Thirteenth National Conference on Artificial Intelligence,
1996.

16. Andre Sadler and Carmen Gervet. Global reasoning on sets. In Formul’01, Work-

shop Modelling and Problem Formulation, 2001.
17. Meinolf Sellmann and Warwick Harvey. Heuristic constraint propagation. In

CPAIOR’02 [4], pages 191–204.
18. Barbara Smith. Reducing symmetry in a combinatorial design problem. In

CPAIOR’01, pages 351–359, April 2001. www.icparc.ic.ac.uk/cpAIOR01.

