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Abstract. The aim of Air Traffic Flow Management (ATFM) is to enhance the capacity of the airspace

while satisfying Air Traffic Control constraints and airlines requests to optimize their operating costs. This

paper presents a design of a new route network that tries to optimize these criteria. The basic idea is to

consider direct routes only and vertically separate intersecting ones by allocating distinct flight levels, thus

leading to a graph coloring problem. This problem is solved using constraint programming after having

found large cliques with a greedy algorithm. These cliques are used to post global constraints and guide

the search strategy. With an implementation using FaCiLe, our Functional Constraint Library, optimality is

achieved for all instances except the largest one, while the corresponding number of flight levels could fit in

the current airspace structure. This graph coloring technique has also been tested on various benchmarks,

featuring good results on real-life instances, which systematically appear to contain large cliques.

Keywords: air traffic flow management, route network, graph coloring, cliques, greedy algorithm, con-

straint programming

Introduction

Airspace congestion is today the most critical issue European Air Traffic Flow Manage-

ment (ATFM) has to face. French en-route Air Traffic Control (ATC) centers capacities

are far exceeded by a constant growth in air traffic demand, resulting in ever increasing

flight delays.1 These time and management costs are such a nuisance for all airlines and

passengers that the European Commission has released a special statement (European

Commission, 1999) acknowledging that current ATFM systems are unable to support

high traffic loads and unscalable for the predicted growth. Several measures have been

taken at national and European scale to enhance ATFM, among which is the design of a

new route network.

The current French (and European) route network has been chronologically de-

signed by small local additions and modifications over time to meet users demand and

ATC regulation requirements (and some other constraints like avoiding military areas

accordingly to a given schedule). Obviously, such a process does not lead to an efficient

solution and underestimates the global capacity of the French airspace. Furthermore, it

generates excessive deviations from optimal (direct) routes.

Several research studies have been and are currently being run at Eurocontrol

(Letrouit, 1998; Maugis et al., 1998) and CENA (French Civil Aviation Research Cen-

ter) (Mehadhebi, 2000) to overcome this issue. This work addresses the feasibility of

the following “ideal” approach: only consider direct routes (straight lines between ori-

gin and destination) for flows of more than a given number of aircrafts2 and separate
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intersecting ones vertically to avoid conflicts (and thus their resolution by ATC). This

scheme does not take any additional operational side constraints into account, so that the

model used leads to a graph coloring problem.

The graph coloring problem is a well-studied NP-hard problem and an active re-

search topic with many practical applications (see (Trick, 1994) for examples). As it is a

difficult problem, especially for large random graphs with poor structure, heuristic tech-

niques are widespread among the best approaches, like greedy algorithms (Brélaz, 1979;

Leighton, 1979) or local search (Hertz and de Werra, 1987; Morgenstern and Shapiro,

1986; Fleurent and Ferland, 1994). However, for real-life problems, complete enumer-

ation algorithms can be made very efficient by taking advantage of the structure of the

graph. (Coudert, 1997) notices that all the real instances he could find were 1-perfect,
i.e. the size of their maximum clique is equal to their chromatic number. By computing

maximum clique with an efficient algorithm, his branch and bound exhibits excellent re-

sults on various benchmarks. Constraint Programming (CP) fits well to implement such

exact algorithm as reported in (Van Hentenryck, 1990): vertices are simply mapped to

variables and edges to disequality constraints. Furthermore, branch and bound is na-

tively provided within (most) CP systems and the versatility of search goals eases the

design of search heuristic. Last but not least, additional constraints can be quickly added

to the model thanks to the high level of abstraction of CP.

The main idea of our coloring algorithm is based on the search of large cliques

by a greedy algorithm during a first stage. This static step provides a lower bound and

feeds our constraint program with global “all different” constraints. Then, disequality

constraints are posted among the remaining intersecting flows and an optimal solution is

searched with a standard branch and bound algorithm. The set of cliques found by the

greedy algorithm is also used to guide the search towards the parts of the graph which are

the most difficult to color. Through the search, the symmetry between allocated colors

is removed by cutting the choice-points associated with the instantiation of a flow to an

unused color.

The combination of these techniques allows to obtain optimality proofs for all the

instances tried, except the largest one, within short computation time. The optimal num-

ber of distinct allocated flight levels for flows of relevant (large enough) sizes could fit

within the upper airspace. Our algorithm is efficient on the real-life instances of the DI-

MACS benchmark (Johnson and Trick, 1996) as well, and compares well on our problem

with DSATUR (Brélaz, 1979), a standard greedy coloring method.

The description of the flight level allocation problem and its modeling with flows

of minimal given size using constraint programming is presented in section 1. Sec-

tion 2 then details the use of a greedy algorithm to find cliques in order to improve the

efficiency of propagation during the search. The strategy used to obtain the results pre-

sented in section 4 is exposed in the preceding section 3. We discuss the relevance of

our approach with respect to related work in section 5, which ends with the benchmark.

Conclusion and future work are featured in last section.
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Figure 1. Direct routes (with flow size) in the French Airspace.

1. Problem description and modeling

The design of the routes in the French and European airspace is an incremental process

determined by air traffic demand and the evolution of ATC ground facilities, aircraft

equipment and flight procedures. The regulation of flights to ensure separation between

aircrafts (usually 4–8 NM3 horizontally and 1000–2000 ft vertically) is handled by Air

Traffic Control Centers, which are divided in numerous sectors. The shape of these sec-

tors allows controllers to manage the complexity of the traffic and solve the conflicts that

may occur. But the resulting network is made up of a large number of short segments

which force airliners to deviate from the direct route joining origin and destination. This

Air Traffic Management scheme obviously is not very flexible and is costly for the air-

lines.

An ideal network, i.e. direct routes for each flight, would be too complex to manage

for (human) controllers if the aircrafts were not vertically separated: conflicts occurring

in the horizontal plan would form a very tight web, as shown in figure 1 where the width

of each route is proportional to the number of flights that takes it. The main idea is

therefore to allocate different flight levels to (horizontally) intersecting routes in order to

avoid conflicts. With this scheme, flights sharing the same origin and destination would

sequentially take the same direct route at a given flight level, distinct from all other

intersecting routes. But only aircrafts whose flight time windows overlap will be taken

into account for potential vertical separation.

Our model implements this strategy through the notion of flows: flights with the

same origin/destination pair are gathered in one flow of size equal to the number of

aircrafts involved, and its start and end dates are computed with respect to its earliest

and latest flights. For a given day, the flows are precomputed such that the input data of

the model are:
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• F : the set of flows of cardinality |F | = n;

• ri : the route of flow i;

• ni: the size of flow i;

• ti : the time window of flow i.

The decision variables are the flight levels of the flows:

Li, ∀i ∈ [1..n]

Their common initial domain is [1..n]. Finally, the cost to minimize is the number of

distinct flight levels:

c = card(F)

with initial domain [1..n].

However, to control the size of the problem, the set of flows is filtered according

to parameter nmin: only the flows of more than nmin flights will be kept. Actually, the

traffic can usually be divided into two main categories. Daily (or scheduled) commercial

flights correspond to most of the big flows and request a high flight level to optimize

their fuel consumption. Private IFR4 flights are responsible for the flows of small size

and can reach low flight levels only, so that they hardly interfere with the first category.

To take into account this operational behavior, it may be relevant to solve the problem

for flows of more than 5–10 flights only, assuming that smaller flows will fly below the

lowest flight level granted to the main ones.

The constraint model is straightforward: disequality constraints are posted between

the levels of intersecting flows whose time windows overlap.

∀i, j, 1 � i < j � n, Li �= Lj if intersect(ri, rj ) ∧ overlap(ti, tj ).

The objective simply is to minimize the number of distinct allocated levels, such that

this model is equivalent to a graph coloring problem. Figure 2 shows a route network

and its corresponding graph obtained by mapping routes and intersections to nodes and

edges.

Figure 2. From air traffic network to constraint graph (where {L1, L2, L3, L4} is a clique).
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2. Searching for cliques

The preceding constraint model only posts local disequality constraints between two

flows. However, for our intersection problem, large complete sub-graphs (cliques) of

the induced constraint graph are very likely to occur. They can be used to post global

“all different” constraints and thus to detect inconsistencies earlier during the search.

Though the search for the maximum clique (the largest one) or all maximal cliques5 of a

graph is well known to be NP-hard, greedy or approximation algorithms can be used to

provide a subset of them, assuming that the heuristic will be efficient for the particular

structure of the graph.

We use a very simple greedy algorithm, similar to the ones featured in (Bomze et

al., 1999), to build a set of cliques, trying to find the largest ones. From each node of

the graph, a clique is incrementally built from candidates belonging to its adjacency list,

starting with the node which has the largest intersection between its neighbors and the

other candidates. This algorithm has the property to produce only maximal cliques so

that no strict subset of a generated clique will be returned. However, identical cliques

might be discovered through different initial nodes. The set of found cliques is then

filtered to obtain distinct cliques only, of size (number of nodes) strictly greater than 2

(as cliques of size 2 will be handled with regular disequality constraints).

The theoretic worst case complexity for this algorithm is O(n4) and occurs when

the graph is complete, i.e. when the number of edges belongs to O(n2). This seems to

be a fair estimation for the small instances of our problem. For the biggest ones, only

small flows with tight time windows are added, so they only intersect few other flows.

For these less dense graphs, the number of candidates to augment a clique dramatically

falls when the clique grows. So the complexity becomes much less than the one of the

worst case. Figure 3 shows the time to compute the cliques as a function of the number

of nodes. Each point corresponds to a value of nmin (the minimum number of flights in

a flow, see section 1) ranging from 1 to 20: the plot corresponds to the expected O(n4)

growth for the small flows, and lesser for the big ones.

(a) (b)

Figure 3. Computation time (seconds on a PIII 700 MHz) of the cliques as a function of the number of

nodes n. Complexity in O(n4), but lower for the largest instances (b).
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(a) (b)

Figure 4. Ratio “number of cliques”/n and “number of distinct cliques”/n (a), size of the largest clique (b),

as functions of the number of nodes n.

Furthermore, a high percentage (between 50% and 90%) of the starting nodes gen-

erates cliques which are candidates for posting global constraints (distinct cliques with at

least three nodes). This percentage grows with n as shown in figure 4(a) where the ratio

between the number of cliques and n is plotted as a function of n, for all found cliques

(upper curve) and for distinct cliques (lower curve). Note that only a small number of

the cliques are redundant.

For each distinct clique returned by the greedy algorithm, an “all different” con-

straint is posted, using the bin-matching algorithm provided by FaCiLe. This global

filtering provides a more powerful consistency checking than the equivalent set of dise-

quality constraints. Of course, disequalities on variables already involved in a clique are

no longer posted to avoid useless (and time-costly) redundancy. The size of the largest

clique is also used as a lower bound for the cost variable. Figure 4(b) features the size

of the largest clique as a function of the number of nodes: cliques of significant size are

found as this lower bound seems to be close from the optimal solution for the instances

solved (see sections 4 and 5).

3. Search strategy

The search strategy that seems to be the most efficient of the ones we tried on our prob-

lem is guided by the cliques found during the first static step (see section 2). The basic

idea is that large cliques correspond to the most constrained part of the flow network

and that early instantiation of their variables can produce efficient domain reductions,

making advantage of the global “all different” constraints.

The results featured in the next section are obtained by a standard depth first search

combined with a branch and bound to minimize the number of flight levels. The largest

clique is first deterministically colored, then the other cliques are chosen by decreasing

size. All the uninstantiated variables that belong to a given clique are selected with a

standard minimum domain size ordering. This strategy is robust enough for most of the

problem sizes.
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During the search, the symmetry between the remaining equivalent free colors is

also broken. When branching on the instantiation of a flow, if there is no more already

chosen color in its domain, then the flow is deterministically instantiated to the smallest

possible value. Otherwise a choice point is created.

4. Results

The implementation of the search for cliques and the constraint program has been made

in Objective Caml (caml.inria.fr) with FaCiLe (Barnier and Brisset, 2001), our

open source constraint library (www.recherche.enac.fr/opti/facile). The

results presented in this section were obtained with all the techniques described in the

previous sections:

• Greedy algorithm to find distinct cliques of size strictly greater than two flows.

• “All different” constraints on all the cliques.

• Disequalities on the remaining intersecting flows.

• Search strategy based on the cliques.

• Breaking of the symmetry between equivalent colors.

The program was run on the problem with the minimum size of the flows nmin ranging

from 1 to 20. All sizes were optimally solved except for the biggest problem, i.e. for

nmin = 1 (1779 flows, 165859 intersections), with an optimal solution between 20 and

24.

The optimal number of flight levels is plotted in figure 5 (upper curve) as a function

of the number of flows, and dots are the corresponding nmin values. Solving the problem

for flows of more 5 flights (less than 352 flows) requires no more than 12 flight levels. So

with a vertical separation of 1000 ft, the flows involved could fit in the upper airspace,

which roughly ranges between 20000 ft and 40000 ft. On the same figure, the lower

Figure 5. Optimal number of flight levels (upper curve) and size of the largest clique found (lower curve)

as a function of the number of flows. Dots are the corresponding minimum size of the flows (nmin).
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(a) (b)

Figure 6. CPU time in second (a) and number of backtracks (b) for optimality proof as a function of the

number of flows.

curve shows that the size of the biggest clique found is a good lower bound for the

problem.

CPU time for the proof of optimality (a) and required number of backtracks (b) are

shown in figure 6. However, for nmin = 2 (912 flows, 68759 intersections) the optimal

solution could only be obtained by further constraining the cost variable to its optimal

value 18 (with largest clique of size 16). Note that this problem size does not appear on

the backtracks graph (252 backtracks). Furthermore, the proof of optimality for nmin = 6

could only be obtained by using the Brélaz heuristic within the labelling by cliques.

5. Related work

The two following sections compare our algorithm to previous works on route network

design for Air Traffic Management and on graph coloring. The third one presents the

results obtained on standard graph coloring benchmarks, followed by the performance

of DSATUR on our route network problem.

5.1. Route network design for ATFM

The need to increase European airspace capacity has led to various approaches regarding

the design of a new route network. The Eurocontrol project TOSCA (Maugis et al.,

1998) considers the possibility of such a direct route network. However, the report

assesses its intractability for current ATC because the model does not include vertical

separation of the flows. It rather focuses on ATFM tools as well as ATC devices (ground

and on board) and procedures to add flexibility and capacity within the current network.

Yet such measures appear to have poor capacity growth potential as they stick too much

to the current “over-constrained” system. An alternative work presented in (Mehadhebi,

2000) tries to simultaneously minimize the ATC complexity within dense areas and the

length of the routes: a Voronoi diagram is built around dense crossing points and a

complexity indicator of these points is devised to model ATC; local moves are then
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performed on this structure to optimize the network. Our approach is quite different,

as we get rid of the ATC modeling by ensuring separation with distinct flight levels.

However, it is far from existing ATFM procedures and its operational integration would

require a lot of additional features (see section 6).

A very different concept that tries to address the same issues is “free flight”. This

approach allows aircrafts to freely choose their route, then the conflicts are solved in

real-time with various algorithms. (Alliot and Durand, 1998) introduces a free flight

distributed algorithm which uses priority tokens to order the conflicts and solve each

one with an A∗ algorithm using simple manoeuvres only. This algorithm seems to be

very efficient for the upper airspace. But it is again quite different from our work, as it

only focuses on automated distributed ATC, a concept which is also far from the current

operational system.

The approach of (Letrouit, 1998) is certainly the most similar to ours. This work

includes a technique to recognize subnetworks for which the associated graph is a per-

mutation graph. These graphs admit a polynomial algorithm to compute the maximum

clique. Cliques are then used to guide an incomplete coloration algorithm. The proposed

algorithms are integrated in an interactive graphic tool for designing a new European air

traffic network.

5.2. Graph coloring

As our very simple model leads to a pure graph coloring problem, a well-studied and

active research topic, our algorithm can be compared with previous approaches. Be-

cause the graph coloring problem is NP-hard, most of them are heuristic methods like

greedy algorithms (DSATUR (Brélaz, 1979), RLF (Leighton, 1979)), local search (tabu

(Hertz and de Werra, 1987), simulated annealing (Morgenstern and Shapiro, 1986), ge-

netic algorithm (Fleurent and Ferland, 1994)), possibly featuring a certain amount of

enumeration. Most techniques generate the coloring either by sequentially assigning a

color to all the vertices, or by partitioning the vertices into independent sets mapped to

color classes. Some of them also search for a clique to provide a lower bound and initiate

the coloring. Loosely related with our search strategy using cliques, (Culberson, 1992)

mentions the use of cliques as a tie breaker to order the variables within DSATUR, but

without success. Note that finding a maximum independent set or clique is NP-hard as

well, such that most techniques used for these tasks are greedy.

These algorithms and refined/hybrid versions (e.g., (Dorne and Hao, 1998) presents

a “genetic tabu search” initialized with DSATUR) are successful at finding “good” so-

lutions for large random graphs such as the DIMACS challenge instances (Johnson and

Trick, 1996), for which enumeration may have a prohibitive cost. However, complete al-

gorithms relying on enumeration and backtracking techniques have been devised as well

to provide optimality or failure proof (yielding lower bounds), like the early works fea-

tured in (Christofides, 1971) and (Brown, 1972) and their refined sequels (e.g., Brélaz,

1979; Peemöller, 1983). More recently, Coudert (1997) proposes a complete algorithm

which first efficiently finds a maximum clique, then uses an exact sequential coloring.
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Table 1

Hardware benchmark.

r100.5 r200.5 r300.5 r400.5 r500.5

0.01 0.23 2.06 12.78 47.78

The author notices that every real-life instances he could find are 1-perfect graphs. Such

graphs have a chromatic number equal to the size of their maximum cliques, so that

the search is always bounded by the discovery of a coloring of the same cardinality.

Although our problems seem to exhibit the same property,6 our technique rather takes

advantage of the numerous cliques found by the greedy algorithm (the largest one being

suboptimal). For such application problems, (Coudert, 1997) reports excellent results.

However, graphs which are not 1-perfect heavily impedes the search, and finding a max-

imum clique still is exponential in the worst case.

Constraint programming has already been used as well to color graphs of “rea-

sonable” size. They are most often implicitly represented, mapping nodes on vari-

ables and edges on disequality constraints. Actually, CSPs are often considered as

constraints graphs to reason about them, possibly with hyper-arcs to model global

constraints. The most popular variable ordering strategies were inspired by heuris-

tics developed for “pure” coloring problems, e.g., see (Smith, 1999) about the Brélaz

heuristic (Brélaz, 1979). The search is then generally handled by a branch and

bound algorithm to obtain optimality or failure proof. Van Hentenryck (1990) presents

this framework with an ordering strategy similar to the Brélaz’s one and the same kind

of symmetry breaking among colors than the one we use. However, this early approach

did not use cliques or global constraints to speed up the search. A very different CSP ap-

proach is presented in (Caramia and Dell’Olmo, 2002) to obtain better lower bounds than

the one provided by the maximum clique for solving instances which are not 1-perfect.

The algorithm is extended to yield upper bounds as well and optimality proofs are ob-

tained when both collapse. However, this technique would be hard to implement using

the high level primitives of a standard CP system only.

Unlike previously mentioned ad hoc techniques, the Constraint Programming par-

adigm provides a high level of abstraction which allows to easily refine the model by

adding other various constraints. This is a highly suitable feature for our application (see

section 6). One of its important limitations is the computational cost of standard back-

tracking search on large instances. Various attempts can be found to overcome this is-

sue like the Incomplete Dynamic Backtracking algorithm presented in (Prestwich, 2001)

with good results on the DIMACS challenge, but at the cost of loosing completeness.

5.3. Benchmarks

5.3.1. Graph coloring benchmarks
We have compared the performance of our algorithm with various benchmark problems

of the DIMACS challenge7 (Johnson and Trick, 1996). Our hardware is rated in table 1
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Table 2

Coloring random instances with cliques.

Name χ Best bt (sol) CPU (sol) bt (proof) CPU (proof) Clique

le450_5a 5 5∗ 225 4.18 228 4.24 4

le450_5b 5 5∗ 3564 51 3567 51 4

le450_5c 5 5∗ 10 0.79 13 0.89 4

le450_5d 5 5∗ 7 0.78 10 0.86 4

le450_15a 15 15 3905043 37976 ∞ ∞ 14

le450_15b 15 15 26509 240 26512 240 14

le450_15c 15 23 4 5.96 ∞ ∞ 14

le450_15d 15 23 2 6.04 ∞ ∞ 14

le450_25a 25 25 0 0.97 3 1.09 24

le450_25b 25 25 0 0.95 3 1.05 24

le450_25c 25 28 0 2.00 ∞ ∞ 24

le450_25d 25 28 2 0.96 ∞ ∞ 24

myciel3 4 4 0 0.0 5 0.01 2

myciel4 5 5 0 0.0 50 0.06 2

myciel5 6 6 0 0.02 4417 11 2

myciel6 7 7 0 0.06 ∞ ∞ 2

myciel7 8 8 0 0.24 ∞ ∞ 2

flat1000_76_0 76 113 33 28 ∞ ∞ 13

with the standard DIMACS machine benchmarks, running the dfmax8 program written

by Johnson and Applegate (complete search of the maximum clique).

Results are gathered in tables 2 and 3. They feature the problem name, the chro-

matic number (if known), the number of backtracks needed to obtain the best solution

found and the corresponding CPU time, the number of backtracks needed to reach op-

timality proof and the corresponding CPU time, and the size of the largest clique found

by our greedy algorithm. The search times (excluding data reading and the static greedy

search for cliques) are obtained on a PIII 700 MHz running Linux 2.4.5.

Unlike for the route network problems, various heuristics including the Brélaz’s

one and dom/deg (cf. Bessière and Régin, 1996), often combined with the cliques-

driven strategy (described in section 3) have been tried, as the latter alone did not provide

good results on some instances.

Table 3 reports the results on real-life instances from industrial (register allocation,

class scheduling) or academic (“books” graphs, geometric graphs from real maps, etc.)

applications: optimality proofs are quickly obtained except on the queen problems9

on which only lower bounds (indicated by LB in the chromatic number column) and

upper bounds have been found above size 8. However, the results reported by (Coudert,

1997) and (Kirovski and Potkonjak, 1998) suggest that these problems are very difficult.

Coudert does not even consider them as “real-life” problems (but as random ones: not all

instances are 1-perfect graphs) or does not mention results above size 9. For the latter,

its algorithm takes more than 561 · 106 backtracks and five hours to complete (whereas

other real-life problems only take a couple of seconds).
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Table 3

Coloring application instances with cliques.

Name χ Best bt (sol) CPU (sol) bt (proof) CPU (proof) Clique

fpsol2.i.1 65 65 0 0.33 3 0.51 64

fpsol2.i.2 30 30 0 0.77 3 1.26 29

fpsol2.i.3 30 30 0 0.23 3 0.36 29

inithx.i.1 54 54 0 0.74 3 1.11 53

inithx.i.2 31 31 0 0.58 3 0.89 30

inithx.i.3 31 31 0 0.60 3 0.90 30

mulsol.i.1 49 49 0 0.08 3 0.12 48

mulsol.i.2 31 31 0 0.09 3 0.12 30

mulsol.i.3 31 31 0 0.09 3 0.12 30

zeroin.i.1 49 49 0 0.08 3 0.13 48

zeroin.i.2 30 30 0 0.06 3 0.11 29

zeroin.i.3 30 30 0 0.07 3 0.12 29

school1 14 14 27 13.23 30 13.36 13

school1_nsh 14 14 272 8.91 275 9.04 13

games120 9 9 0 0.02 3 0.02 8

anna 11 11 0 0.05 3 0.07 10

david 11 11 0 0.02 3 0.03 10

homer 13 13 0 0.15 3 0.16 12

huck 11 11 0 0.01 3 0.01 10

jean 10 10 0 0.00 3 0.00 9

miles250 8 8 0 0.03 3 0.03 7

miles500 20 20 0 0.03 3 0.04 19

miles750 31 31 0 0.07 3 0.09 30

miles1000 42 42 0 0.09 3 0.12 41

miles1500 73 73 0 0.17 3 0.17 72

queen5_5 5 5 0 0.00 3 0.00 4

queen6_6 7 7 89 0.08 115 0.10 5

queen7_7 7 7 122 0.12 125 0.12 6

queen8_8 9 9 19088 17 97964 89 7

queen9_9 9 10 77218 453 ∞ ∞ 8

queen10_10 LB: 10 11 12494627 10741 ∞ ∞ 10

queen11_11 LB: 11 13 1855 17 ∞ ∞ 10

queen12_12 LB: 12 14 172119 187 ∞ ∞ 11

queen13_13 LB: 13 17 20 0.67 ∞ ∞ 12

queen14_14 LB: 14 17 4597 4.91 ∞ ∞ 13

queen15_15 LB: 15 18 5094 84 ∞ ∞ 14

These results are obtained with the full algorithm. However, we tried to separately

observe the effects of the global “all different” constraints and of the cliques-driven

labelling because they are supposed to be complementary: their combination should

allow earlier pruning by selecting variables involved in the biggest global constraints.

Surprisingly, for a few instances, optimality could only be achieved by the cliques-driven

heuristic when the global constraints were disabled, therefore emphasizing the interest

of computing a set of large cliques.
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Table 4

Performance of DSATUR on the route network problem.

Size nb vars nb edges DSATUR Cliques

10 168 2151 9 9

9 188 2720 9 9

8 213 3562 10 10

7 249 5156 10 10

6 290 7274 11 11

5 352 10581 13 12

4 434 16106 15 14

3 610 33059 16 15

2 912 68759 21 18

1 1779 165859 24 24

But our algorithm less efficiently behaves on random graphs which often have a low

maximum clique cardinality (not 1-perfect) or many sub-optimal colorings. The size of

the problem impedes the search as well, because standard backtracking search does not

scale well (especially on problems with poor structures (Smith and Grant, 1995)).

5.3.2. DSATUR on the route network problem
We finally report in table 4 the performance of a version of DSATUR, a standard greedy

coloring algorithm, implemented by Culberson.10 For each flow size are presented the

corresponding number of vertices (or variables) and edges, and the size of the best col-

oring found by DSATUR and by our algorithm. We show the result of the best heuristic

available with this implementation for each problem size, but note that a more sophisti-

cated version of the algorithm could provide better results. All the computation times fall

below one tenth of a second on the same system than the one used for the benchmarks.

However, DSATUR cannot provide optimality proof or finds larger colorings than our

algorithm on large instances (typeset in bold in table 4).

6. Conclusion and future work

A simple model to handle the air traffic on a direct route network over France has been

presented. This model, unlike most other approaches (Maugis et al., 1998; Mehadhebi,

2000), statically avoids conflicts and ATC constraints by vertically separating intersect-

ing flows. The resulting optimization problem is an allocation of flight levels to flows

(aircrafts sharing the same origin and destination) and its size can be tuned by restrict-

ing the minimum size of the flows. This allocation problem is equivalent to a graph

coloring minimization problem and this paper presents a combination of techniques to

tackle it.

First, a greedy algorithm is used to find maximal cliques on which global con-

straints are posted. The algorithm reveals to be efficient on the structure of our problem:

a large number of cliques are found and the size of the biggest one is a good lower bound

of the minimum number of flight levels. Then a variable ordering based on the set of
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cliques returned by the first step is used in a branch and bound to search for the minimal

number of flight levels. During this search, the symmetry between the equivalent flight

levels is broken when the instantiation of a flow to a new level occurs.

With an implementation in FaCiLe of these techniques, we were able to optimally

solve in short computation time most of the sizes of the problem on a typical day of

traffic, except for the biggest one. The optimal solutions for flows of “operational” size

suggest that the traffic could fit within the upper airspace. This traffic would be sepa-

rated from the flows of smaller size assumed to fly at lower flight levels and differently

handled by ATC. We have also shown that our method behaves well on real-life bench-

mark instances for which “large” cliques can be found. It also finds better solutions than

DSATUR on the large instances of the route network problem.

However, this model is over-simplified and only aims at providing a feasibility

study for long-term innovative redesign of ATC like the “sectorless” project11 (Gaw-

inowski and Guichard, 2002). To be more realistic, some additional constraints may

be taken into account. For example, aircrafts have a preferred flight level to optimize

their performances, depending mostly on the type of the aircraft and on the length of

the route. This could be modeled by restricting the domains of the flows or adding the

preferences in the cost. Current flight procedures, like the use of existing beacons, the

avoidance of military areas or the parity of the flight level depending on the heading,

may also be considered to allow a smoother integration of a new route network. The first

two procedures may be taken into account in the horizontal precomputing of the route.

The routes would then be made of a limited number of segments instead of straight lines,

but the resulting intersection graph should not contain less or smaller cliques. The third

one can be modeled simply by constraining the parity of flows. Note that adding some

of these constraints to the model would make the flight levels non-equivalent, so that

the symmetry breaking technique could not be used anymore. Furthermore, French and

European air traffics are tightly coupled, so that the operational implementation of a

direct route network should affect at least neighboring countries. The problem should

be globally solved but optimality may be unreachable because of the huge size of the

resulting instances, so alternative local or incremental CP methods could be more effi-

cient.

Further work includes the use of more efficient techniques to find larger cliques,

the design of criteria to dynamically select the cliques during search or use them inside

standard strategies, the addition of more flexibility to the model by taking into account

some of the previously mentioned constraints, and trying to solve it at an European

scale. A further considered refinement of the model would be to allow the splitting of

flows with noncontinuous time windows to change their allocated flight level during the

day.
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Notes

1. Note that the situation is quite different in the US where congested areas subject to ATC regulations

are mostly located within terminal sectors around big airports (vs. en-route sectors for Europe).

2. Smaller flows only would then be managed by ATC. If all the flows are considered (i.e. with at least

one flight), no ATC would ideally be required any more.

3. 1 NM = 1852 m.

4. Instrument Flight Rule: flight for which a flight plan must be posted and which is systematically con-

trolled by ATC.

5. A maximal clique has the property that it is not a strict subset of any other clique.

6. A complete algorithm has been used to check this property for the small instances.

7. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.

8. http://www.cs.sunysb.edu/~algorith/implement/dimacs/distrib/color/

graph/.

9. These graphs correspond to a square chessboard of size n × n on which n sets of n queens must be

placed such that no pair of queens within the same set is in conflict.

10. http://www.cs.ualberta.ca/~joe/Coloring/Colorsrc/.

11. A controller would not be responsible of one single small sector anymore, but of an entire flow from

origin to destination.
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