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FaCiLe: a Functional Constraint Library

Pascal Brisset! and Nicolas Barnier?

! Fcole Nationale de I’Aviation Civile, Toulouse, France
2 Centre d’Etudes de la Navigation Aérienne, Toulouse, France
{brisset,barnier}@recherche.enac.fr

Abstract. FaCiLe is an open source constraint programming library
over integer finite domain written in OCaml, a functional language of
the ML family. It offers all usual constraint system facilities to create
and handle finite domain variables, arithmetic constraints (possibly non-
linear), built-in global constraints and search goals. FaCiLe allows as
well to build easily user-defined constraints and goals from scratch or by
combining simple primitives, making pervasive use of higher-order func-
tionals to provide a simple and flexible user interface. As FaCiLe is an
OCaml library and not “yet another language”, the user benefits from
polymorphic type inference and strong typing discipline, high level of
abstraction, generic modules and object system, as well as native code
compilation efficiency, garbage collection and replay debugger. All these
features allow to prototype and experiment quickly: modelling, data pro-
cessing and interface are implemented in the same powerful language
with a high level of safety.

1 Introduction

When designing a Constraint Programming (CP) system, several committing
choices have to be made. Here we try to give convincing arguments to justify the
ones we have made in the development of FaCiLe with the functional language
Objective Caml [12].

First, we have deliberately avoided the “Yet Another Language” approach: we
do not want to reinvent the wheel and restart the language designers work and
compromises. From this point of view, we differ from Oz [20] or Claire/Choco [10]
systems. Among CP dedicated languages, a modelling language like OPL [24]
plays a different role: it may be viewed as an upper layer over some CP system
which still needs to be accurately chosen. We found that the most suitable ap-
proach would be to design a library for a programming language which has to
meet the following requirements: efficiency, portability and availability (“open
source”).

Secondly, a choice must be made between “low-level” imperative languages
and “high level” applicative languages. In the first class, we find the unavoid-
able and widespread C++ for which the world leading commercial system Ilog
Solver [21] has been developed. The main advantage of such a language is execu-
tion speed efficiency but the list of drawbacks is too long for our taste: tedious



and error-prone manual memory management, endless problems with pointers,
poor typing, lack of data-structures, weak modularity, verbosity... In the second
class, we find logic programming and functional programming.

Logic programming historically was the best candidate for the Constraint
(Logic) Programming paradigm [23]: constraints are predicates and non-deter-
ministic search is inherently provided in Prolog. Unfortunately, if this adequation
works well for toy examples, it has a significant cost in real-size programming;:
data processing, writing of efficient propagation algorithms for global constraints,
displaying results, etc. are not easy tasks within logic programming. The lack of
typing and compile-time checks in common Prolog systems® is also a reason to
avoid them in large projects development for safety and robustness arguments.

Functional programming does not offer the adequate logic for constraints but
avoids the previously mentioned drawbacks of “low level” languages and pro-
vides several suitable features: strong semantics, higher-order, automatic mem-
ory management, modularity with genericity (functors), strong typing with poly-
morphism. Last but not least, the OCaml implementation offers well-documented
libraries, portability and efficiency [1, 13, 15]. All these suitable features have led
us to use OCaml both as a source language for writting constraint programs
and for the implementation itself of the library. A few constraint frameworks
have already been designed over functional languages such as Lisp like the sem-
inal object oriented PECOS [16] system or SCREAMER [18]. Our approach is
closer to the work presented in [7] which uses higher-order support and exception
handling of ML to provide programmable search engines and backtrack.

This paper is divided in two main parts: we first introduce in section 2 the
main features of FaCilLe, starting with a small standard example and focusing
on the usage of the library, notably on the design and expressiveness of FaCiLe
search goals; then we explore the architecture and implementation issues in sec-
tion 3. Section 4 features a small benchmark of FaCiLe based on classic examples
from the litterature. Conclusion and future work are eventually presented in sec-
tion 5.

2 A Tour of FaCiLe

FaCiLe is divided into numerous modules which structure the library and its
usage: Domain for domain handling, Fd for finite domain variables, Arith for
arithmetic expressions, Cstr for constraint handling, Goals for search specifica-
tion and control, etc. The main type in each of these modules is named ’t’ and
we will refer to it with its qualified “dot” notation: Module. t.

We first give a taste of FaCiLe through the pervasive “magic sequence” exam-
ple, quickly reviewing a few features of the library. The next section introduces
the arithmetic and global constraints of FaCiLe. The third part is devoted to
a thorough exploration of the clean semantics and expressive power of FaCile
search and optimization procedures.

! Except recent systems like Mercury [22] and Godel [8].



2.1 A Short Example

Programming with FaCiLe follows the classic CP scheme as illustrated in the
example below that (naively) solves the magic sequence problem (a magic se-
quence is a sequence of n integers X = (x¢, x1, ..., Tp—1) such that 0 will appear
in the sequence z( times, 1 will appear x; times etc.): 1. definition of domains
and variables — 2. definition and posting of the constraints — 3. search, possibly
with optimization.

let xs = Fd.array n 0 (n-1);;
let is _equal toix = fd2e x =77 i2e i;;
Array.iteri
(fun ixi ->
let cardi = Arith.sum (Array.map (is_equal toi) xs) in
Cstr.post (fd2e xi =~ cardi)) xs;;
Goals.solve (Goals.Array.forall Goals.indomain xs) ;;

We first define an array xs of n variables ranging from 0 to n — 1, us-
ing the function Fd.array. Then we iterate on xs to post the family of con-
straints specifying the number of occurences of a given integer in the array:
|[{x € xs s.t. © =i}| = x;. The iterator is a simple call to the standard library
function Array.iteri which sequentially applies a function on each index and
element of an array. Here, the cardinality constraints are computed thanks to
the reified equality operator =~~ which returns a boolean expression. To per-
form this step, we define the function is_equal_to which is then mapped on
all the element in xs at each iteration. Then the sum of all the element of this
new array is obtained with the operator Arith.sum. The cardinality constraint
(of type Cstr.t) is eventually posted to the constraint store with the function
Cstr.post.

Note that operators are suffixed with character >~’ ("~~" for reified ones) and
explicit conversion functions (i2e, i.e. “integer to expression” and £d2e, i.e. “FD
variable to expression”) must be used to build an arithmetic expression because
of the strong typing discipline of OCaml which does not allow overloading or
implicit casting. In compensation, the behaviour of expressions is simply and
soundly specified: the result is exactly what expected and errors are caught at
compile time.

Finally, a goal is defined by an iteration of a standard labelling built-in
function on each variable (Goals.indomain). Another polymorphic iterator is
here used, Goals.Array.forall with type:

(o — Goals.t) = a array — Goals.t

« being a type parameter (standing for any type) and Goals.t the type of goals.
Only a function working on the elements of the array and returning a goal needs
to be supplied to the iterator to build the conjunction of the corresponding goals
in increasing order of the indices. Then, a solution is searched by passing the
goal to the Goals.solve function. Goals.solve has type Goals.t — bool and
returns true if the goal succeeds and false otherwise.



This basic example might not feature fewer lines of code than with an ad
hoc language, but its concision is noticeable for a library-based scheme. The
ability of OCaml to handle functions as first class objects and the iterator-
oriented programming style, together with the type inference, allow to define
and compose functions in a concise way.

2.2 Constraints

FaCiLe features classic linear and non-linear arithmetic constraints, global con-
straints such as the “global cardinality” constraint and the novel “sort” constraint.
Reified constraints and logical operators over constraints are provided as well.
Moreover, FaCiLe allows the user to easily define its own constraints through a
higher-order interface and fine control of waking conditions.

Arithmetic Constraints FaCiLe provides standard linear constraints and non-
linear constraints such as exponentiation, modulo or absolute values. For exam-
ple, an inequation such as:

let x = Fd.interval (-2) 6 and y = Fd.interval 4 12;;

let xe = fd2e x and ye = fd2e y;;

let expr = i2e 10 *7 (xe **7 2) *7 ye +7 i2e 4 *7 ye;;
let ineq = expr >=" i2e 4300;;

once posted to the constraint solver (with Cstr.post), yields a single solution:
x =06 and y =12.

As mentioned earlier, finite domain variables of module Fd (type Fd.t) are
not arithmetic expressions (type Arith.t) and conversion functions must be
used to transform a variable or an integer into an expression (fd2e and i2e),
or to transform back an expression into a new variable (e2fd). Arithmetic con-
straints (equality, difference, strict and non-strict inequality) are infix operators
that takes two arithmetic expressions and returns a constraint (type Cstr.t).
Moreover, all the operators of module Arith must be suffixed with character
»~3_ This is due to OCaml strong typing discipline that leads to clearly make
the difference between these various objects and does not allow to mix them
without being aware of the desired behaviour. However, the verbosity cost often
pays off by avoiding spurious confusions between variables and expressions — for
example trying to instantiate an expression with an integer value. The combi-
nation of overloading with implicit casting indeed often tends towards hard to
debug code.

Global Constraints FaCilLe provides some well-known global constraints like
all different or element, and the novel sort constraint [6] which optimally (com-
plexity and consistency) narrows the variables bounds of two arrays, stating
that the second one must be equal to the sorted first one. A global cardinality
constraint is also available (Gec.cstr) and the magic sequence example can be
improved by making use of it, as it triggers more domain reductions than its
reified arithmetic counterpart:



let card values = Array.mapi (fun i x -> (x, 1)) xs;;
Cstr.post (Gcce.cstr xs card _values) ; ;

This constraint takes as arguments an array of variables xs and an array of
couples (card, value), where card is a variable and value an integer, to enforce
that card variables in xs are equal to value. Note that the cardinality and
difference constraints take an optional argument to finely specify the consistency
level / time cost trade-off; the sort constraint optionally takes the permutation
array as argument.

A simple interface with higher-order functionals allows the user to define its
own (possibly reifiable) constraints. Implementation of complex filtering algo-
rithms is eased by the expressiveness and safetiness of OCaml: e.g. the intri-
cate sort constraint (numerous complex data structures and incremental main-
tenance) has been efficiently implemented in a short time and very straightfor-
wardly (230 lines of code).

2.3 Search

Goals To control the search for solutions, FaCiLe provides built-in goals and
functions to create simple or recursive user-defined goals which can be combined
by conjunction (&&~ operator) or disjunction (||~). All the functions, constants
and operators related to goals are gathered in module Goals and the type of
goals is Goals.t.

For example, the enumeration of all solutions such that a given goal g suc-
ceeds would trivially be written in FaCiLe as follows:

let all solutions g = g & &~ Goals.fail

The side effects needed to print or store the solutions found, as in the classic Pro-
log goal £indall, can be performed by using the FaCiLe primitive Goals.atomic.
The following function stores each solution in a list; it takes a “functional goal”
g as argument which itself takes the variable x from which we want to find all
the possible values such that g succeeds; it could correspond to the Prolog term
findall(X, g(X), Sol):

let findall g x =
let sol = ref [] in
let store = Goals.atomic (fun () -> sol := Fd.int value x :: !sol)
let goal = gx &&~ store &&~ Goals.fail in
ignore (Goals.solve goal);
sol

First, a reference (sol) on an empty list is declared to store all the solutions.
Then the store goal is defined to push any new solution on the head of sol; it
uses Goals.atomic which “goalifies” any function that does not return a goal (or
anything else), but only performs side effects. The main goal is the conjunction
of g, store and a failure. This goal obviously always fails, so we “ignore” the

in



boolean returned by Goals.solve that informs whether the goal has succeeded
or not, and the list of solutions is eventually returned.

A more general version of findall that returns any kind of solutions (possi-
bly not integers) can be very easily written as well. While the previous findall
function had type:

(Fd.t — Goals.t) — Fd.t — int list (1)

this new polymorphic findall function would take a goal and a function ex-
tracting the solution from the involved variables. Therefore its type would be:

Goals.t — (unit — a) — a list (2)

a being a type parameter. In contrast to type 1, type 2 shows that no variable is
given anymore to findall, but the goal and storing function can refer to them
with a closure. Note that the unit predefined type is the type that has only one
value, namely (); it is here used as a “dummy” argument to defer the evaluation
of a function that should not be executed at the time of its creation but at a
later given time (OCaml has a strict evaluation scheme).

This general findall function can be written as follows:

let findall g extract =
let sol = ref [] in
let store = Goals.atomic (fun () -> sol := extract () :: !'sol) in
let goal = g &&~ store &&~ Goals.fail in
ignore (Goals.solve goal);
!sol

Such flexible reusable functions are very easily defined with FaCiLe, due to the
polymorphic typing and higher-order functionals of OCaml.

Thanks to higher-order and the clean semantics of goals in FaCiLe, more
flexibility can be achieved like, for example, to use the result of the findall
function as the argument of a continuation goal, which is passed as the third
parameter to findall. This latest findall function does not return a list any-
more as shown with type 1 or 2, but it builds a new goal that may be combined
with other ones to yield a complex search procedure:

let findall g extract cont =
let sol = ref [] in
let store = Goals.atomic (fun () -> sol := extract () :: !sol) in
(g &&~ store &&~ Goals.fail) ||~ (Goals.create cont !sol)

The cont higher-order argument is simply a function working on a list (whose
elements are of the same type « than those returned by extract) and return-
ing a goal. To build this continuation goal, we here use the built-in function
Goals.create, thoroughly explained later, that allows to create a goal that it-
self returns another goal. Hence, this new findall function has type:

Goals.t — (unit — a) — («a list — Goals.t) — Goals.t (3)



Implementing sophisticated search goals that need to exchange data is quite
natural in Prolog: logic variables are simply shared between goals and unification
does the rest. As illustrated in the following scheme, “out” parameters of the first
goal are just taken as “in” parameters of the second one (Prolog syntax):

g1(In, Out), g2(Out)...

With FaCiLe, only finite domain variables are suitable objects to follow a similar
scheme, but integers obviously lack expressive power. However, we can use the
higher-order continuation scheme to overcome this issue, such that the previous
conjunction can be translated into the following composition (functional syntax):

g1 in (Mout (g2 out))

Goal g; actually only takes the continuation as an extra argument — as seen
in the last findall example — and any result of the computation of g; can be
passed to gs.

Another workaround to address this issue would be to share global variables
between goals. Unfortunately, this scheme does not get along well with the non-
deterministic control of goals and backtracking (though FaCiLe provides back-
trackable references). So we believe that continuation style encoding of complex
search goals is a suitable and handy paradigm that integrates well in functional
programming and achieves an expressiveness close to Prolog systems one.

Iterators Functional programming allows the programmer to compose higher-
order functions using iterators. An iterator is associated to a datatype and is
the default control structure to process a value in that datatype. There is a
strong isomorphism between the datatypes and the corresponding iterators and
this isomorphism is a simple guideline to use them. Imitating the iterators of
the standard OCaml library (such as Array.iteri used in the first example),
FaCiLe provides iterators for arrays and lists: Goals.Array and Goals.List
modules of FaCiLe allow to construct conjunctions and disjunctions of goals.

The polymorphic function Goals.Array.forall uniformly applies a goal to
every element of an array:

Goals.Array.forall g [lel; ...; enl] = (gel) &&~ ... &&~ (gen)
and has the following type:
(a = Goals.t) — a array — Goals.t

The labelling of an array of variables is the iteration of the instantiation of
one variable with Goals.indomain:

let labeling array = Goals.Array.forall Goals.indomain; ;

and this function obviously has type Fd.t array — Goals.t. A matrix is an
array of arrays; following the isomorphism, labelling of a matrix simply is a
composition with the array iterator, which can be elegantly written in OCaml:



let labeling matrix = Goals.Array.forall labeling array;;

with type Fd.t array array — Goals.t.

The ability to partially apply function and handle them as first class ob-
jects yields very concise and simple code to build search goals that iterate over
complex data structures. Together with optional arguments, soundly integrated
within OCaml type system, these features offer a very user-friendly and consis-
tent interface, more efficient and safer than “macros” or Prolog goals wich have
poor support for variables handling, and less verbose and tedious than writting
new objects (with an OO language) for example. We believe that programming
languages like OCaml have enough expressive power (with higher safety) to meet
the aim of modelling languages such as OPL, while having the efficiency and pro-
cessing/interface abilities of main-stream imperative languages.

Recursive goals To define a recursive goal, i.e. a goal that returns another
goal, FaCiLe provides the Goals.create primitive which has the following type:

(o — Goals.t) — a — Goals.t

Goals.create f a builds a goal which will apply £ to a when it will be eval-
uated, i.e. goals creation implements some kind of deferred (or lazy) evaluation
(as previously mentioned, OCaml has a strict evaluation scheme). Note that
this value (a) has a polymorphic type («) and so can be used to pass several
arguments (with a tuple) — or the function itself may contain a closure.

The following example illustrates the use of such recursive goals. This piece
of code disjunctively explores a list with a continuation applied to one element
and to the rest of the list, preserving the original order of the elements of the
list:

let rec deletel cont =

Goals.create
(function
[1 -> Goals.fail
| x :: xs ->
cont x xs ||7 deletexs (fun yr -> conty (x :: r)))

|

We here use an extensional definition by pattern-matching for the function
passed to Goals.create (starting with the OCaml keyword function): if the
list is empty, we simply fail; otherwise we build the disjunction that either ap-
plies cont to the head x and the rest of the list xs (cont must return a goal)
or recursively tries the next element, keeping the integrity of the list by putting
back x on the top of the rest of the list during the application of cont in the
next iteration. Note that :: is the OCaml constructor for lists, which may be
use either for building a new list or for pattern-matching.

This last example involving a recursive goal shows well how versatile can be
the FaCiLe goals module. Due to the matchless support for higher-order provided



by OCaml, FaCiLe search procedures achieve a degree of expressiveness close to
Prolog goals. This feature combined with the processing ability and safety of
the host language lead to very fast and concise prototyping of complex search
strategies.

Optimization FaCiLe provides also a Goals.minimize primitive which, once
given a goal and a cost (a finite domain variable), builds a new goal that, when
executed, runs a branch and bound algorithm. Goals.minimize has the following
type:

Goals.t — Fd.t — (int — unit) — Goals.t

The first argument obviously is the goal to solve and the second one is the cost
variable. The third one is a function applied to the instantiation value of the
cost whenever a solution is found. It may be used to print the solution and its
cost or store them with a reference.

As it simply builds a new goal, Goals.minimize has a clean semantics, such
that FaCiLe optimization procedures can be safely nested and finely controlled
to yield complex strategies.

3 Implementation

The implementation is as naive as possible in order to keep the library short
and maintainable (4000 lines of code). FaCiLe is entirely written in OCaml, even
low-level critical parts like domain manipulations or propagation over arithmetic
expressions. The advantages are the conciseness and robustness of the result. The
drawbacks may be low efficiency compared to hard-coded libraries.

We give in this section a description as precise as possible within the available
place. The description follows the architecture of the library which is reflected
in its decomposition into modules. This decomposition and the dependences
between the modules are displayed in figure 1.

3.1 Stack

Non-deterministic search is classically handled by a stack in FaCiLe. The Stack
module provides one (and only one) global abstract stack. This stack is struc-
tured into levels. A level contains a success continuation (i.e. a list of goals) and
a trail. A trail (the failure continuation) is a list of things to undo. This is imple-
mented as a list of closures, providing the most general mechanism. It may be
considered too expensive for the majority of trailings (which are reduced to the
restoration of a pointer) but our time profilings does not confirm this intuition.
The bad point surely is the heavy memory consumption of this technique and
we are waiting for the annouced OCaml memory profiler to trace it.

A level is created to handle one choice-point. It is created when it is pushed
on the stack. It is used while backtracking: closures of the undo list are called and
the stored success continuation is returned (usually to replace the current one).



Domain Stack
Integer finite domains Trail, levels, backtrack, cut

Backtrackable references

Var Cstr Goals

Attributed variable Creation, OR/AND control

Constraints, events

Refine, susbtitute Creation, scheduling, waking Iterators
Attached constraints Labelling, optimization
Reify Arith FdArray
Reification Arithmetic expressions Array of variables
Operators on constraints Indexation, min, max
Gee Alldiff Sorting

Global cardinality constraint All different constraint Sorting constraint

Fig. 1. Architecture of the FaCiLe library

A level can be cut; it is then marked (tagged) inactive and further backtracks
ignore it.

The module provides abstract backtrackable polymorphic references built on
top of the basic mechanisms (the undo closure related to an assignment is an
assignment with the old value).

Eventually, this module provides the failure mechanism simply implemented
with the exception handling of OCaml.

3.2 Constraints

The module Cstr offers several abstract datatypes, priority, event and constraint,
and provides functions to handle constraints: creation, scheduling and waking.
A constraint is essentially a callback function (named update in FaCiLe ter-
minology) which is called when the constraint is woken. This callback is respon-
sible for checking the satisfiability and consistence of the relation between the
involved variables, refining the domains by removing the non consistent values



and possibly raising a failure. A consistent constraint is tagged solved and is no
longer considered. All these processings are the responsability of the designer of
the constraint.

To be scheduled for waking, a constraint has to be delayed on an event. An
event (abstract type) is a collection of constraints (we say that constraints are
registered with the event) which may be woken when the event is scheduled.
FaCiLe attaches events to variables (see below) and to the OR control. This
particular event is scheduled each time a choice point is created.

A scheduled constraint is woken according to its priority: constraints are
stored in a queue and the following rule is ensured: a constraint ¢ of a given
priority is woken after all the constraints of higher priority scheduled before the
waking of c¢. A tag mechanism ensures that a constraint cannot be scheduled
twice in the same time, even by two different events.

This module also manages a global store of all the active (not satisfiable)
constraints. This store is handled in such a way that it does not interfere with
the garbage collector: weak pointers of OCaml ensures that a constraint no longer
used by other data-structures may be automatically removed from the store by
the GC (i.e. the store is not a root for useful data).

The stack and the constraint store constitute one single global state. However,
encapsulation of this state would be easy to implement through a funtorization
of the whole library .This solution has been tested and finally abandoned for the
sake of simplicity and because we did not encounter convincing programming
examples where concurrent states were required.

3.3 Goals

The search control is implemented on top of the stack, coding the success con-
tinuation as a list of goals, an abstract data type provided by this module. Like
constraints, a goal is essentially a callback, a function called when the goal is
activated which possibly returns other goals. Goals of the success continuation
are called one after the other until a failure (an exception) is raised; in this case
the last choice-point is popped and the saved continuation is restored.

Goals are built from atomic ones (closures), binary operators (conjunction
and disjunction), bounded loops (for to), existential quantification and iterators
on data-structures. Functional programming allows the user to compose itera-
tors, simply mapping them on its data-structures.

This search-goal approach is inherited from logic programming and has been
kept for simplicity and efficiency reasons. The search could be made more generic
if the state restoration mechanism (currently a stack) is modified.

The other feature of the module is an optimization goal which implements
a branch and bound search. With restart mode, the search restarts at the root
of the tree each time a solution is found (cut is then used). With the continue
mode, only the constraint bounding the cost variable is updated in place each
time a solution is found.



3.4 Finite Domains

Domains are represented as minimum and maximum values, size and list of in-
tervals (it was the coding used in the early finite domain library of ECLiPSe).
Modification on domains are functional (no in-place modification) so (transpar-
ent) structure sharing is essential. Profiled execution shows that this coding is
correct for time processing. For this reason, we did not try to implement more
sophisticated data-structures (binary trees would give logarithmic access to el-
ements while the current solution provides linear complexity for most of the
operations).

Note that this non-destrutive coding may facilitate state restoration required
by sophisticated search strategy[3]

3.5 Finite Domain Variables

Variables are standard attributed variables as described in [11]. The attribute
contains the domain and the constraints related to the variable. These constraints
are listed according to their associated waking events. FaCiLe currently offers
four kinds of event for variable modification: instantiation to an integer value,
change of lower bound, upper bound or any value in the domain. Because no
modification takes place inside domains (functional data-structure), they can be
shared among several variables.

FaCiLe currently offers only variables over integer domains but the described
mechanisms are not specialized to integers and abstraction facilities of the lan-
guage allows to easily generalize these variables to any domains (interval of
floating point numbers, sets, etc.).

3.6 Reification

The Reify module defines the relation between a constraint and a boolean vari-
able (actually an 0-1 integer variable). This relation is itself implemented as
a constraint. This mapping allows to define logical operators over constraints,
translating constraint expressions into arithmetic expressions.

To be reifiable, a constraint requires a supplementary callback responsible
for checking the relation without doing any propagation. It also needs a “not”
method which returns the negation of the constraint.

Once again, strong typing of the language forbids to mix arithmetic expres-
sions and constraints without explicit conversion (provided by this module). We
consider it as an advantage because this operation is not given for free (reification
is a constraint) and the user has to be aware of it.

3.7 Arithmetic Expression

Classic linear and non-linear arithmetic constraints are available in FaCiLe, in-
cluding exponentiation, division, modulo and absolute value. Furthermore, when
an arithmetic constraint is posted, FaCiLe compiles and simplifies (“normalizes”)



the expression as much as possible so that variables and integers may be scat-
tered inside an expression with no loss of efficiency: the adequate constraints, i.e.
the ones that trigger the most domain reductions, will be chosen by the solver.

Moreover, internal intermediate variables used to simplify expressions con-
taining absolute value, exponentiation etc. are collected and hashed to detect
redondancy and use as few extra variables as possible.

It is also worth mentioning that arithmetic constraints involving (large enough)
sums of boolean variables are automatically detected by FaCiLe and handled in-
ternally by a specific mechanism more efficient than the one used for standard
sums.

FaCiLe provides these arithmetic constraints with a high degree of robust-
ness: for example, the implementation of the magic sequence problem included
as an example with the standard current distribution works fine with more than
4500 variables on a PC running Linux with 512MO of RAM - much more than
all systems benchmarked in [4] if enough memory is available.

3.8 Global Constraints

FaCiLe currently provides three kinds of global constraints. The A11diff con-
straints is implemented with a bin-matching algorithm [9] which ensures that the
constraint is satisfiable in complexity n? in worst case. The cardinality constraint
(Gee) implements the algorithm described in [17] and proposes three levels of
propagation : satisfiability, removing of non consistent values from variables, re-
moving of non consistent values from cardinals. The sort constraint implements
the algorithm described in [6] (complexity nlog(n)).

4 Examples and Benchmark

We give in this section other samples of code and results obtained with FaCiLe for
some benchmarks. Times are compared with those of ILOG Solver and ECLiPSe.

Magic Sequence This classic problem is described in the early section 2.1. Results
given in table 1 show the robustness of the system and especially of the global
cardinality constraint.

N Queens We give here a formulation with FaCiLe of this classic example: we
define an array of variables (Fd.array) and two auxiliary arrays obtained by
shifting the first one by addition (+~) and substraction (-~).

let queens = Fd.array n 0 (n-1) in
let shiftop = Array.mapi (fun qi -> Arith.e2fd (op (fd2e qi) (i2e i))) in
let diagl = shift (+7) queens and diag2 = shift (-7) queens

Global A11diff constraints are then set on the three arrays:

Cstr.post (Alldiff.cstr queens); Cstr.post (Alldiff.cstr diagl);



To implement the strategy which first selects the variable with the smallest
domain and the smallest minimum, we use the choose_index function which
returns a selector (optional argument ~select of forall) according to a com-
parison function which will be applied to unbound variables only.

let ha = (Var.Attr.size a, Var.Attr.min a) in
let min_min = Goals.Array.choose index (fun ala2 -> hal < ha2) in
let labeling = Goals.Array.forall “select:min min Goals.indomain

Table 1 gives some results with this program; the number of bactracks, not
displayed here, is always very small (a dozen) with the given strategy.

Golomb Ruler A Golomb ruler is a set of integers (marks) a1 < ... < aj such
that all the differences a; — a; for i < j are distinct. We may assume a; = 0.
Then ay, is the length of the Golomb ruler. For a given number of marks, we are
interested in finding the shortest Golomb rulers [5].

Results shown in table 1 are obtained with a basic model and a straightfor-
ward strategy.

Social Golfer Problem The problem consists in trying to schedule m groups of
n golfers over a number of w weeks, such that no golfer plays in the same group
as any other golfer twice (i.e. maximum socialisation is achieved). Default values
(problem 010 in CSPlib, www-users.cs.york.ac.uk/~tw/csplib) are m = 8
groups of n = 4 golfers. Best known results for this problem are collected by
Warwick Harvey and available at www.icparc.ic.ac.uk/~“wh/golf. The 5-3-7
instance is also known as the “Kirkman’s Schoolgirl Problem”[19].

We have tried three models for this problem using respectively the global
cardinality constraints, the sorting constraints and sets. Table 1 gives some re-
sults for the three models. First column is the standard benchmark of 32 golfers
over 9 weeks. Last column is the result for the last case of Warwick Harvey’s
table; note that this instance is easily solved. Fourth column corresponds to the
Kirkman’s Schoolgirl instance while second and third columns are subproblems
of the latter: they are surprisingly harder although less constrained.

5 Conclusion

We have described in this paper a new functional constraint library written
in OCaml. We have given arguments and examples to show that the choice of
a high-level functional language is a good compromise among other solutions
(modelling language, library for an imperative language, high-level logic pro-
gramming system) to get an expressive, precise and efficient system. We agree
on this point with the last proposal of Van Hentenryck with his Modeler++[14]
but with a safer though less trendy host language.

We have chosen a straightforward implementation with as many abstractions
as possible (abstract data-types, modularity) in the same vein than the standard



Magic 100 200 400 800 1600
0.250.05 1.5|1.0 0.15 6.1 | 4.9 048 26 |21 2 #° (89 7.8 4

Queens® 16 32 64 128 256
0.03 0.03 10 |0.07 0.04 oo [0.26 0.06 oo |1.2 0.2 oo 6.0 0.74 oo

Golomb 6 7 8 9 10
0.04 0.04 0.18/0.33 0.11 1.2 [ 3.3 0.75 11 |30 7.0 99 280 65 820

Golf* 8-4-9 5-3-4 5-3-6 5-3-7 8-8-9
gec| 2.0 0.7 5.3[370 100 373 |1660 400 2146 243 62 521 (7.6 2.5 23
sort|2.1 - 9.5(380 - 14800|1740 - 11250(250 — 575(8.0 — 24.5
sets| 1.6 1.1 22 (390 96 2215|3000 380 26093|380 240 4380(2.5 1.5 38

“ Memory overflow with 118 Mo

® The model used is not fair for ECLiPSe because of bad propagations on equalities.
The solution provided with the ECLiPSe distribution gives results similar to the
ones obtained with FaCiLe (4.3s for 256 queens).

¢ No sort constraint is provided by ILOG Solver.

Table 1. Times in seconds on Ultra Sparc for FaCiLe, Ilog Solver 4.3 and ECLiPSe

5.2.

library of the language. The different modules of the library may be linked to
produce an interactive toplevel or included in any standalone application.

The first release of FaCiLe has been made available on January 2001. It has
been used in our team in a real-size application (7000 decision variables, 140
sorting constraint, 35000 intermediate boolean variables) for air traffic manage-
ment|2].

We still continue to add features to the library and the short-term plan is
the integration of an invariant (a la Localizer) module.

Acknowledgments The authors would like to acknowledge the numerous remarks
and suggestions of the reviewers.

Availability FaCiLe sources, examples and documentation are available from:
www.recherche.enac.fr/opti/facile

It requires only the OCaml system and runs on any platform supported by the
compiler.
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