
HAL Id: hal-00938015
https://enac.hal.science/hal-00938015

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Slot allocation with constraint programming : models
and results

Nicolas Barnier, Pascal Brisset, Thomas Rivière

To cite this version:
Nicolas Barnier, Pascal Brisset, Thomas Rivière. Slot allocation with constraint programming : mod-
els and results. ATM 2001, 4th USA/Europe Air Traffic Management Research and Development
Seminar, Dec 2001, Santa Fe, United States. pp xxxx. �hal-00938015�

https://enac.hal.science/hal-00938015
https://hal.archives-ouvertes.fr


Slot Allocation with Constraint Programming:
Models and Results

Nicolas Barnier, Pascal Brisset and Thomas Rivière
ENAC - CENA, Toulouse, France

barnier,brisset,riviere@recherche.enac.fr
http://www.recherche.enac.fr/opti

Abstract

Current European Air Traffic Control system is far exceeded by the demand and the resulting delays
are a financial and psychological burden for airlines and passengers. The Central Flow Management
Unit, in charge of regulating the flights to respect en-routecapacity constraints of Air Traffic Control
Centres, uses a greedy algorithm to allocate departure slots which features several drawbacks concerning
soundness, interpretation of the constraints and optimization. A new model taking advantage of Con-
straint Programming (CP) has been proposed within the SHAMAN system (from CENA) but still suffers
from unevenly distributed workload and capacity violation. This paper presents two alternative models,
also implemented using CP technology, of the slot allocation problem focused on the controllers work-
load: an extension of the SHAMAN model with a standard formulation, and a novel approach involving
thesort constraint. Both of them can maintain workload constantly below a given capacity and the latter
also provides efficient failure proof on over-constrained instances. The behaviours of the different mod-
els are discussed and results are presented with partial andfull instances from real French air traffic data
set. We eventually describe the potential operational improvement supplied by thesecontinuousmodels.

Keywords: Slot Allocation, Constraint Programming, Combinatorial Optimization, Modelling

1 Introduction

Airspace congestion is today the most critical is-
sue European Air Traffic Management (ATM) has
to face. French Air Traffic Control Centres (ATCC)
capacities are far exceeded by a constant growth in
air traffic demand, resulting in ever increasing flight
delays. These time and management costs are such
a nuisance for all airlines and passengers that the
European Commission has released a special state-
ment [IP/99/924, 1999] acknowledging that current
ATFM systems are unable to support high traffic
loads and unscalable for the predicted growth.

The Central Flow Management Unit (CFMU) in
Brussels is in charge of reducing these congestion
costs by, among several other strategic or tactical
measures, delaying departure slots for the flights in-
volved in overloaded sectors. The purpose of de-
laying is to respect the en-route capacity constraints
provided by each ATCC as a number of planes per
hour according to their daily schedule.

The CFMU currently solves this problem in two
stages [CFMU, 2000]:

� A “pre-tactical” tool (PREDICT) identifies
overloaded sectors and helps (an experienced
human operator) to place regulations by sim-
ulating their impact.

� Then a “tactical” system (TACT) including
the CASA (Computer Assisted Slot Alloca-
tion) tool uses a greedy algorithm to dynam-
ically allocate regulated departure slots on a
“first planned first served” basis while flight
plans data are received.

Basically, CASA computes a list of slots by divid-
ing the time length of the regulated period by its
capacity and tries to fill each slot according to the
estimated arrival time of the flights in the concerned
sector. Several revision processes occur when new
flight plans are received that may shift all the flights
already scheduled during the same period to respect
the “first planned first served” principle.

The solution obtained obviously depends very
much on the resolution order of the constraints

1



and no optimization is possible1. Moreover, the
regulation for a given flight is computed with re-
spect to the sector inducing the greatest delay (in
case of multiple regulations), which may lead to
capacity constraints violation for the other sectors
crossed by the same flight. Eventually, a former
study [Gotteland et al., 2000] estimates that CFMU
local regulations have little effects on ATCCs over-
all overload. However, CASA is an operational tool
which must comply with other additional constraints
(not taken into account in the models presented in
this paper) and well integrated in a complex ATM
process.

To overcome the drawbacks and lack of
efficiency of CASA, the CENA (French Air
Navigation Study Centre) has developped a
slot allocation module based on Constraint
Programming within the SHAMAN2 platform
[Plusquellec and Manchon, 1998]. This tool states
capacity constraints on all of the open sectors by
dividing their overall lengths in contiguous 30 min
long slices and constraining the number of flights
arriving in the sectors over each slice (e.g. suppose
sector AIX is open from 12h00 until 13h30 with
capacity 32 flights per hour, three constraints ensur-
ing that no more than 16 flights will enter the sector
between respectively 12h00 and 12h30, 12h30 and
13h00, 13h00 and 13h30, are posted). In this ap-
proach, the use of Constraint technology provides a
global view of all the capacity constraints such that
solutions (if found) are consistent (all the constraints
are satisfied).

However, the SHAMAN model does not prevent
traffic peaks exceeding the sectors capacities during
periods which do not begin at multiples of 30 min
from the start time of their constraints, such that
controllers have to face too high workloads. Fur-
thermore, even if SHAMAN does not perform any
optimization on its solution3, the search strategy is
guided by the minimization of the sum of the delays.
Hence delayed flights have a chronic tendancy to
gather at the beginning of the 30 min periods, yield-
ing traffic peaks above the requested capacities.

As the statements of capacity constraints are ob-
viously not very satisfactorily interpreted by current
ATFM systems from an operational point of view,
a better model of these requirements would be to
maintain controllers workload below the specified
capacities continuously. We provide for this aim
several new models endowed with a more realistic,

thus harder, satisfaction of capacity constraints:
� Sliding discrete windows which allow to

smooth the profile of controllers workload
from the weakest constrained model (the
SHAMAN model) to the hardest (the satis-
faction of capacity constraints over any time
period of a given length);

� The “sorting” model which states continu-
ously the constraints over the ranks of the en-
try time of flights within a given sector.

Constraint Programming allows to express a
very straightforward formulation of these two lat-
ter models, as well as for a “twin” of the SHAMAN
model presented for comparison purpose. The ver-
satility of CP technology eases fast implementation
and alternatives testing. An all-purpose constraint
library, FaCiLe4 [Barnier and Brisset, 2001] written
in Objective Caml [Leroy, 2000] has been used to
experiment with the various models, leading to dras-
tically different allocation schemes and abilities to
obtain proof of optimality or unfeasibility.

The paper is divided as follows: we first give a
precise description of the problem and some hints
about the size and complexity of the instances we
are interested in. The next section introduces briefly
Constraint Programming technology, thereafter we
present several models for the capacity constraints,
starting with standard ones and refining them with
a more continuous formulation. Eventually, section
5.2 is devoted to the results for simplified and real
instances where behaviour of the different models
are compared. We conclude with an overview and
some indications about possible future work.

2 Slot Allocation Problem De-
scription

Air traffic flow management is a daily pre-tactical
filter intended to regulate scheduled flights across
controlled airspace. Its main aim is to limit the num-
ber of planes in a given space over a given period.
This planning will be precisely scheduled by the air-
traffic controllers in real-time.

The ATFM problem is described in terms of
� Flights: A flight starts from one airport at a

specified time, follows a predefined route at a
fixed speed and arrives at another airport.

1Except at the very final stage when the slots allocated to lately cancelled flight may be redistributed.
2System to Help Analysis and Monitoring of Acc resources and Air route Network
3Usually done in Constraint programs with a standard Branch &Bound algorithm.
4Functional Constraint Library

2



� Sectors: The airspace is divided into sectors
crossed by the routes of the flights. A sec-
tor is a 3D polyhedra, usually a vertical cylin-
der endowed with acapacityexpressed as the
maximum number of flights entering the sec-
tor during a time period (usually one hour).
The partition of the airspace, i.e. the number
and the shape of the sectors, varies during the
day. The capacity of the same sector may also
changes at given times. We callsector-period
a sector for particular period of time and ca-
pacity.

The constraints of the problem are the capacities
of the sectors. There are several degrees of free-
dom to satisfy these constraints: choosing differ-
ent routes for flights, delaying departures, changing
speed of the aircrafts during flight, asking aircrafts
to hold their position... In this paper, we focus only
on the ground-holding policy: each flight may be
delayed at departure. ATFM is in charge of solving
the problem on a day-by-day basis.

The difficulty of the problem does not come
from the complexity of its constraints but from its
size. We have used real data archived by the French
civil aviation tool COURAGE to solve the ATFM
problem. E.g. for May 20th, 1999:

� The French airspace is concerned by 7375
flights entering between 0h00 and 23h59.

� 140 sectors are active during the day, some of
them with various capacities (up to 6 differ-
ent).

� More than 700 flights may enter a single
sector-period.

� Capacities vary from 19 to 52 flights per hour.

The objective of the slot allocation problem is to
reduce the delays. There are several ways to achieve
this purpose: reducing the total sum of the delays
(utility), the maximum delay (equity), the average
delay, etc. [Maugis, 1996] gives an extensive de-
scription of what could and should be a cost function
and finally concludes with results for the simplest
one, the total sum of delays. It is also the choice of
[Bertsimas and Stock, 1995] with a slightly differ-
ent model. In this study, we choose to minimize the
maximum of all delays, but we are more interested
in the qualitative properties of the solution than in
its numerical cost.

3 Constraint Programming

Constraint Programming (CP) is an emergent mod-
elling technology for declarative description and ef-
fective solving of large combinatorial optimization
problems. The idea is to solve problems by stating
constraints (conditions, properties on the decision
variables) which must be satisfied by all the solu-
tions while avoiding the tedious and error-prone task
of explicitely maintaining the consistency of these
constraints as search goes on.

Constraint solvers efficient enough to compare
well with Operational Research technology emerged
in the early 90s, based on the CLP (Constraint Logic
Programming) paradigm and integrated in Prolog
systems [Van Hentenryck, 1989]. Nowadays, CP is
a challenging technology addressing a wide range
of combinatorial academic and industrial hard prob-
lems in many fields (planning, scheduling, crew ros-
tering, configuration, circuit design, DNA sequenc-
ing etc). State-of-the-art constraints solvers like Ilog
Solver [Solver, 1999], Eclipse [ECL, 2001], CHIP
[Dincbas et al., 1988], Prolog IV, SICStus Prolog or
Mozart are used by more and more important com-
panies (British Airways, British Telecom, SNCF,
Hong Kong International Terminals, Michelin etc
[Barták, 1998]).

CP is a very active research field and solvers
technology evolves very quickly. One of the most
promissing areas is the integration in constraints
solvers of other paradigms of combinatorial opti-
mization technologies, e.g. local search, stochastic
search, linear programming. A current working ver-
sion of a constraint program solving the slot allo-
cation problem written with FaCiLe uses a generic
invariants library [Michel and Hentenryck, 1997]
typically designed towards the implementation of
local search algorithms [Rivière, 2001]5. The next
three sections attempt to describe the main underly-
ing ideas of CP.

3.1 Constraints

A constraint is a logical relation among several vari-
ables (or unknowns), each taking a value in a given
domain (e.g. an integer interval). A constraint
thus restricts the possible values that variables can
take by maintaining itsconsistency. Basically, con-
straints remove from domains values which cannot
appear in solutions: for instance an inequality con-
straint✁ ✂ ✄ between two variables✁ and✄ with re-
spective domains☎✆ ✝✝✞✟✠ and ☎✟ ✝✝✞✡✠ will reduce the

5In our application, it helps to maintain efficiently complexdata structures involved in a dynamic search heuristic.

3



variables domains to respectively☎✆ ✝✝✞☛✠
and☎☞ ✝✝✞✡✠

.
Each time a constraint is posted to theconstraint
store of a solver, the involved variables domains
are refined and trigger the awakening of other con-
straints involved in one of the formerly reduced vari-
ables. This process is repeated until a fix point is
reached where no more reduction can be deduced.

Constraints are declarative statements, close
to natural description of combinatorial problems,
which describe what relationship must hold with-
out specifying a computational procedure to enforce
it. This feature confers to CP solvers the status of
modelling tools. They allow to express straight-
forwardly practical problem thanks to a rich lan-
guage of constraints from linear or non-linear arith-
metic to global constraints on sets of variables (dif-
ference, cardinality, sequence etc) and higher-order
constraints (or logical constraints on constraints6).
Modern solvers integrates a wide variety of built-
in constraints whose consistency schemes are bor-
rowed from state-of-the-art OR techniques, thus of-
fering the versatility of CP modelling features while
preserving the efficiency of specialized and well-
proven algorithms.

3.2 Search

Posting constraints alone does not reduce domains
enough to find a solution (at least in non-trivial prob-
lems or when the problem has several solutions) and
search has to be performed. Basically, a variable is
chosen as well as an instantiation value in its current
domain, then related constraints are waken and the
propagation process starts, reducing the domains to
prune the search tree as much as possible. There-
after another variable is chosen and instantiated un-
til all variables are bound to a value and a solution
is found or a failure occurs. In the latter case, the
search algorithm backtracks to reconsider the last
choice point. An optimization process can be el-
egantly integrated to this branching mechanism by
dynamically adding a constraint that enforces the
cost of the problem to be strictly less than the one
of the last solution found.

CP languages are very well suited to express
readily complex search strategies based on dynamic
ordering (i.e. which depends on the state of the sys-
tem) of variables and instantiation values. Such non-
deterministic search procedures are implemented

with Prolog-likegoals. E.g. one of the most pop-
ular strategy, called the “first fail principle”7, is to
choose the uninstantiated variable with the smallest
domain and/or involved in the greatest number of
constraints. Most constraint solvers provide built-in
goals to implement such heuristics.

The orthogonal strengths of a rich declarative
constraint language and ability to specify search
strategies with a high level of abstraction help to
separate the problem modelling from the search for
solutions. Hence they improve the correction of pro-
grams and allow fast prototyping, developpement
and alternatives testing.

3.3 Formal Description

A Constraint Satisfaction Problem (CSP) consists
of:

� A set ofvariables✌ ✍ ✎✁✏ ✑ ✝✝✝✑ ✁✒ ✓.

� For each variable✁✔, a finite set ✕ ✔8 of
possible values, called itsdomain; we note
✕ ✍ ✕ ✏ ✖ ✝✝✝ ✖ ✕ ✒ . An assignement✗ ✍✘✙✏ ✑ ✝✝✝✑ ✙✒ ✚ of ✌ is a valuation of each vari-
able of✌ from a value of its domain:✗ ✛ ✕ .

� A set of constraints✜ ✍ ✎✢✏ ✑ ✝✝✝✑ ✢✣ ✓.

� Each constraint✢✔ restricts the values that a
subset of variables✎✁ ✔✤ ✑ ✝✝✑ ✁ ✔✥ ✓ ✦ ✌ can si-
multaneously take. Therefore, constraint✢✔
can be represented as a subset✕ ✧★ of the
cartesian product✕ ✔✤ ✖ ✝✝✝ ✖ ✕ ✔✥ and a func-
tion:

✢✔ ✩ ✕ ✪✫ ✎true✑ false✓ such that✬ ✗ ✍ ✘✙✏ ✑ ✝✝✝✑ ✙✒ ✚ ✛ ✕ ✑✘✙✔✤ ✑ ✝✝✑ ✙ ✔✥ ✚ ✛ ✕ ✧★ ✭✮ ✢✔ ✘✗ ✚
A solution to a CSP is an assignment✗ of ✌ such
that every constraint is satisfied, i.e.✯✣✔✰ ✏ ✢✔ ✘✗ ✚.
Depending on the problem, to solve a CSP means to
find:

� a proof of failure, i.e. there is no solution;

� just one solution, with no preference as to
which one;

� all solutions;
6Like implication e.g.✱ ✲ ✳ ✴ ✳ ✵✶ ✷ or disjunction e.g.✱ ✸ ✹✺ ✻ ✳ ✼ ✳ ✸ ✹✽ ✻ ✱.
7“To succeed, try first where you are most likely to fail.”[Barták, 1998]
8As formerly said, CP main contribution field is combinatorial problems, most of the time expressed with variables ranging over

integer domains. However, some commercial and research solvers integrate efficient constraints over real, rational, finite set, boolean
and even tree variables. This paper and our constraints librairy FaCiLe only consider integer domains.

4



� an optimal, or at least a good solution, given
some objective function defined in terms of
some or all of the variables.

Actually, real-life problems (huge size and/or high
complexity) sometimes cannot yet be solved opti-
maly. In such cases, “good solutions” obtained with
a limited amount of optimization (e.g. with a com-
putation time bound) or satisfying a subset of the
constraints are searched for.

4 Three Models

In this section, we describe three models for the slot
allocation problem. These models are not equiva-
lent and differ according to the interpretation of the
sector load constraints.

The models are described with the following
data:

� ✾ : the set of sector-periods, each with a✿❀❁❂❀
and an❃❄❅;

� ❆ : the set of flights;

� ❀❇✔ : the time the flight❈ enters the sector✿ ac-
cording to the original timetable;

� ✢❁❉ ❁❇: the capacity of the sector-period✿
(flights/hour);

� ❊: time base for the capacity constraint (min-
utes).

All the models use the main decision variables

� ❋ ✔: departure delay for flight❈.
We first present theBasic model implemented

within SHAMAN in section 4.1 [Maugis, 1996,
Plusquellec and Manchon, 1998]. Then two novel
models are introduced in section 4.2.

4.1 Non Overlapping Windows

The SHAMAN model (refered afterward as theBa-
sic model) discretizes the sectors with❊ ✍ ●❍ min
periods to enforce the capacity constraints and at-
tempts to reduce the sum of all delays. Several un-
suitable side-effects arise from this model, leading
to irregular workload profiles.

4.1.1 The Basic model

We consider the load constraint in successive con-
tiguous periods, i.e. non overlapping time windows:

� ■ ❇ ✍ ✎❉ ❇❏ ✑❉ ❇✏ ✑ ✝✝✝✓: successive periods of
length ❊, each with a ✿❀❁❂❀ and a ❃❄❅.
The first period starts with the sector-period:
✿❀❁❂❀ ✘❉ ❇❏ ✚ ✍ ✿❀❁❂❀ ✘✿✚.

In an other way:

■ ❇ ✍ ✎☎✿❀❁❂❀ ✘✿✚ ✑ ✿❀❁❂❀ ✘✿✚ ❑ ❊ ☎✑
☎✿❀❁❂❀ ✘✿✚ ❑ ❊ ✑ ✿❀❁❂❀ ✘✿✚ ❑ ▲❊ ☎✑ ✝✝✝✓

TheBasic model is written with auxiliary boolean
variables:

� ▼ ✔ ◆❖ P◗ : flight ❈ enters the sector✿ during the
period❉ ❇❘ .

A first constraint relates the delay variables with the
boolean variables. A second one sets the sector load
capacity.

✬ ✿ ✛ ✾ ✬❉ ❇❘ ✛ ■ ❇:
� ▼ ✔ ◆❖ P◗ iff

✿❀❁❂❀ ✘❉ ❇❘ ✚ ❙ ❀❇✔ ❑ ❋ ✔ ✂ ✿❀❁❂❀ ✘❉ ❇❘ ✚ ❑ ❊

� ❚ ✔❯❱ ▼ ✔ ◆❖ P◗ ❙ ✢❁❉ ❁❇

This model needs a huge amount of boolean vari-
ables:

❲✎▼ ✔ ◆❖ P◗ ✓ ❲ ✍ ❲❆ ❲❳
❇❯❨

❃❄❅ ✘✿✚ ✪ ✿❀❁❂❀ ✘✿✚❊

4.1.2 Drawbacks

The Basic model suffers from strong discontinu-
ity. It only states that the sector load limit must be
respected at the beginning of each period, usually 48
times a day (for 30 min windows). Such that work-
load may climb much higher for time windows that
do not start at multiples of❊ min from the begin-
ning of the constraint, as illustrated in figure 1 (with❊ ✍ ●❍ min): here, for an overall amount of flights
that does not exceed the capacity either in the first
period or in the second one, an in-between period
of the same length may have almost twice as much
flights.

5



time

30 min

30 min30 min

Figure 1: Overloaded in-between period with the
Basic model.

Furthermore, the constraints of this model does
not prevent traffic peaks for time windows shorter
than the❊-length periods, as shown in figure 2: the
two workload profiles correspond (roughly) to the
same amount of flights (supposedly below the ca-
pacity for the duration of the period), though the first
one (allowed by theBasic model) is obviously not
well suited to ease the task of controllers.

capacity

time

time

capacity

10 min

30 min

30 min

10 min

Figure 2: TheBasic model does not prevent the
first workload profile: peaks may arise for short time
periods.

Because the main objective of the cost function
is to reduce the delays, the expected side-effect of
this model is a concentration of flights entering at
the beginning of the periods: postponed flights are
scheduled as early as possible in the next time win-
dow with theBasic model. Figure 3 illustrates this
behaviour: the dashed curve is the workload pro-

file before any regulation, then theBasic model
scheme tends to shift the traffic peak of the first time
window at the beginning of the second one. This
chronic side-effect is confirmed by the experiments
(see section 5.2.1).

time

capacity

30 min 30 min

Figure 3: Traffic peaks at the beginning of the period
with theBasic model.

4.2 Continuous Models

We propose two new formulations which attempt to
smooth the workload with a more constrained mod-
elling of capacity constraints. The first model is an
extension of theBasic one. The second one relies
on asortingglobal constraint.

4.2.1 Sliding Periods

Keeping the same idea of theBasic model, it is
possible to get a more continuous model with over-
lapping periods, illustrated in figure 4.

Basic

Sliding

❊

❩
Figure 4: Sliding windows

Here we use another parameter (❩ ) which is the
time step between periods:

■ ❇ ✍ ✎☎✿❀❁❂❀ ✘✿✚ ✑ ✿❀❁❂❀ ✘✿✚ ❑ ❊ ☎✑
☎✿❀❁❂❀ ✘✿✚ ❑ ❩ ✑ ✿❀❁❂❀ ✘✿✚ ❑ ❩ ❑ ❊ ☎✑ ✝✝✝✓

Of course this model supersedes theBasic one and
is equivalent for❩ ✍ ❊. It can be implemented with
the same kind of boolean variables.

The workload profile is expected to become
smoother as❩ decreases, such that more❊-length
time periods are taken into account.

6



4.2.2 The Sorting Model

The Sorting Constraint Let ❋ be a totally or-
dered set. The sort constraint is the relation associ-
ated with the standard sort function. A sort function
takes a sequence of length❄ containing elements in❋ and returns another sequence containing the same
elements ordered. The sort constraint “relates” two
sequences containing finite domain variables taking
values in❋ .

For example, let

❬ ✍ ✎☎❍ ✪ ✞●✠ ❭ ☎✟ ✪ ✞❍✠ ❭ ☎✞❍ ✪ ✞✞✠ ❭ ☎☛ ✪ ✞✟✠ ❭ ☎☛ ✪ ✟✠✓
and

❪ ✍ ✎ ☎✞ ✪ ●✠ ❭ ☎✡ ✪ ✞❍✠ ❭ ☎✟ ✪ ☞✠ ❭ ☎✞✞ ✪ ✞❫✠ ❭ ☎✞❍ ✪ ✞✡✠✓
be two sequences of interval variables. Posting the
constraint

✿❴❂❀ ✘❬ ✑ ❪ ✚
must lead to the following refinements:

❬ ✍ ✎☎✞ ✪ ●✠ ❭ ☎✟ ✪ ☞✠ ❭ ✞✞❭ ☎✞✞ ✪ ✞✡✠ ❭ ☎✡ ✪ ✟✠✓❪ ✍ ✎☎✞ ✪ ●✠ ❭ ☎✡ ✪ ✟✠ ❭ ☎✟ ✪ ☞✠ ❭ ✞✞❭ ☎✞✞ ✪ ✞✡✠✓
[Guernalec and Colmerauer, 1997] proposed an

efficient filtering algorithm for this constraint. Sur-
prisingly enough, the complexity of this complete
(i.e. the propagation refines the domains as much as
possible) narrowing algorithm has an optimal com-
plexity of ❵ ✘❄ ❛❜❝ ❄ ✚, the same than classic sort al-
gorithms. However, the narrowing is done only on
the bounds of the variables such that no propagation
is performed if “holes” appear in the domains.

A Dual Model For our problem, we use one sort-
ing constraint for each sector-period. The constraint
is set on auxiliary variables corresponding to the en-
try times and the sorted entry times of the flights:

� ❞ ❇✔ : actual entry time of flight❈ in sector-
period✿;

� ❡ ❇❘ : entry time of the❢ th flight entering the
sector-period✿.

The constraints relate the auxiliary variables to
the main delay variables and set the sector load limit
with adualmodel of the standard one. We no longer
count the number of flights within a given period,
but we rather consider the rank of the entry times
and specify that two flights must be separated by a
given duration whenever their ranks are too close.

Two flights with entry times❡✔ and ❡❘ in the
ordered sequence such that❈ ❑ ✢❁❉ ❁ ❙ ❢ must be

separated by at least❊ minutes from each other (c.f.
figure 5):

✬ ✿✬❈ ✛ ❆ ❞ ❇✔ ✍ ❀❇✔ ❑ ❋ ✔✬ ✿ ✿❴❂❀ ✘❞ ❇ ✑ ❡ ❇ ✚✬ ✿✬❢ ✛ ✎✞✑ ✝✝✑ ❲❆ ❲ ✪ ✢❁❉ ❁❇ ✓ ❡ ❇❘ ❑ ❊ ❙ ❡ ❇❘❣ ✧❤❖ ❤P

30th 31st10th 11th

✐❥❦ ❧ ♠♥ ♦ ✐♣❦

✐ ❥❥ ❧ ♠♥ ♦ ✐♣❥

Figure 5: Capacity constraint applied to sorted
flights (❊ ✍ ●❍, ✢❁❉ ❁ ✍ ▲❍).

The previous constraint for the load limit is not
totally correct because it is set even if one of the two
concerned flights enters the sector before or after the
corresponding period. A solution is to relax the con-
straint using auxiliary boolean variables:

✬ ✿ ✛ ✜ ✬❢ ▼ ❇❘ iff ✿❀❁❂❀ ✘✿✚ ❙ ❡ ❇❘ ✂ ❃❄❅ ✘✿✚✬ ✿ ✛ ✜ ✬❢ ✛ ✎✞✑ ✝✝✝✑ ❲❆ ❲ ✪ ✢❁❉ ❁❇ ✓▼ ❇❘ q ▼ ❇❘❣ ✧❤❖ ❤P ✍✮ ❡ ❇❘ ❑ ❊ ❙ ❡ ❇❘❣ ✧❤❖ ❤P
The boolean variable▼ ❇❘ states that the sector-period
✿ is concerned by the flight❢ . If one of the two
flights is out of the period, the constraint is not
posted.

The Sorting model states the capacity con-
straints continuously over a given sector and thus
is expected to maintain the workload constantly be-
low the fixed limit. TheSliding model should be
equivalent with❩ reduced down to the time unit, i.e.
all possible❊-length time windows are constrained.

5 Experiments

5.1 Implementation

The three models have been implemented with
FaCiLe, a finite domain library we have written us-
ing the Objective Caml system [Leroy, 2000]. This
strongly typed functional language provides well
documented libraries for various data-structures. A
fast compiler, ported on various OS and processors,
produces efficient native code.

Our constraint library includes standard inte-
ger finite domain variables, linear and non-linear

7



arithmetic constraints, reification, higher-oder con-
straints and some global constraints: difference, car-
dinality, sorting, etc. The search is controlled with
goals in a Prolog way.

5.2 Results

We give in this section some results obtained for the
different models applied on real data, for May 20th,
1999.

All the experiments are done with a precisionr
(time unit) of 5 min and a maximum delay of 60 min,
except where mentioned otherwise.

5.2.1 A Single Sector

In order to analyse the solutions of the different
models, we first looked at a very simplified problem
with a single sector and no variation of capacity. We
chose the sector (of May 20th, 1999) concerned by
the maximum number of flights (644). The hourly
capacity is

☛❍. The flights are expected to enter in
the sector between 0h52 and 23h39.

It was first possible to check the equivalence and
order between models (M1 ❙ M2means thatM2 is
more constrained thanM1, i.e. that a solution forM2
is a solution forM1):

Basic ❙ Sorting
Basic s Sliding with ❩ ✍ ❊

Sliding ❙ Sorting
Sliding with ❩ ✍ r s Sorting

Table 1 reveals the corresponding numerical re-
sults: a more constrained model gets a higher cost.
For various models and parameters settings are pre-
sented respectively in the last three rows the sum
of all delays, the number of on-time flights (no de-
lay) and the number of flights with delays less than
15 min. We see in this table that most of the flights
are not delayed flights or get a small delay (com-
pared to 644 concerned flights). Note that the av-
erage delay for all the solutions is smaller than the
time precision (5 min).

Model ❊ ❩ t ✉ ✈ ✇①✉ ✈ ② ③④ ✇ ✇①✉ ✈ ⑤ ⑥⑦④ ✇
Basic 60 690 602 624
Basic 30 1960 532 595
Sliding 60 30 1760 549 597
Sliding 60 15 2480 504 565
Sorting,
Sliding

60 r 3660 467 553

Table 1: Delays for different models and parameters

Numerical cost is a poor indicator about a so-
lution. The expected differences between the three
models are qualitative. In figures 6 and 7 is plotted
the instantaneous load of the sector, i.e. the number
of flights which will arrive during the next❊ period.
Dots correspond to the unregulated flow (the initial
data) while solid curves show the solutions.

At first glance theBasic model does not seem
to regulate much. Actually, it only insures that the
curve goes under the capacity bound every❊ min-
utes (every hour starting from 0).

The figure 7 corresponding to theSorting
model shows more interesting and expected results.
The solution gives an almost constant load from
5h00 to 20h00.

Figure 8 shows the influence of the❩ parameter
on theSliding model. With❩ ✍ ❊ ✍ ✟❍, we get
the solution of theBasic model. With a smaller❩ (15), we observe that the load goes under the ca-
pacity every❩ minutes but has still chances to go up
10% over the capacity in between.

Figure 9 shows the side-effects of theBasic
model. In this experiment, we reduced the capac-
ity (10%) and augmented the max delay (120 min)
to force more flights to be delayed. In figure 9 is
plotted the instant number of flights inside the sec-
tor (one can notice that a plane does not stay for a
long time in a sector). Peaks occur at the beginning
of this periods: a delayed flight has to be sched-
uled during the next non-full period; then a mini-
mum delay corresponds to the beginning of the pe-
riod. TheSorting model does not suffer from this
side-effect and ensures an even load.

Model Capacity Result
Basic 36 ⑧
Sliding r 36 ⑧
Sorting 36 Failure proved
Sorting 37 19775

Table 2: Proof of infeasibility

Table 2 gives some indication of the ability of
the models to prove that a problem has no solution.
With a reduced capacity of 36, the failure could not
be proved in a “finite time” (⑧ in the table) except
using theSorting model. Note the problem seems
to have a phase transition since a solution is easily
found with a slightly greater capacity (37).

8



0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400

Unregulated
Basic

Figure 6: Regulation with theBasic model (flights entering during the next❊ min). After regulation (solid
curve), the load falls below the capacity every❊ ✘✍ ✟❍✚ min.

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400

Sorting
Unregulated

Figure 7: Regulation with theSorting model (flights entering during the next❊ min). TheSorting
model ensures that the load remains constantly below the capacity.

9



30

35

40

45

300 400 500 600 700 800 900 1000 1100

Slide 60
Slide 15

Figure 8: Influence of❩ with theSliding model (flights entering during the next❊ min; zoom between
5h and 19h20). The curves fall below the capacity every❩ min (dashed curve:❩ ✍ ✟❍; solid curve❩ ✍ ✞✡

).

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Basic
Sorting

Figure 9: Instantaneous load (number of flights in the sector) for theBasic and theSorting models.
The Basic model tends to yield traffic peaks at the beginning of each period, whereas theSorting
model keeps a low average load.

10



Unregulated

Sorting model

Basic model

Figure 10: Brest Airspace Control Center; May 20th, 1999; sector J around noon. TheBasic model has
little effect on the load of crowded sector compared to theSorting model.

5.2.2 Full Problem

We were able to prove that there is no solution for
theSorting model with the given capacities. But
solutions can be obtained with allowing anoverload
of the capacity of each sector. We found a solution
with a capacity overload of 25%.

The regulation has no spectacular qualitative ef-
fect like in the simplified case; the whole problem is
too much complex to have simple local properties.
However, in figure 10 are compared the effects of
theBasic andSorting model on sector J around
noon. The solid curves correspond to the flights
entering the sector during the next 60 min and the
dotted ones to the instantaneous number of flights
present in the sector. This sector is very crowded
and the regulation produced by theBasic model
has little effect on the overload, whereas theSort-
ing model yields a load that levels out along the
capacity line. This confirms the expected regular be-
haviour of theSorting model.

6 Conclusion

Time slot allocation in ATFM is a hard combina-
torial problem yet hardly solved by current CFMU

systems. Capacity constraints are subject to inter-
pretations and Constraint Programming provides an
efficient and straightforward way to implement var-
ious models addressing control workload with dif-
ferent operational points of view. Non overlapping
windows hardly cope with a realistic semantics of
capacity constraints and would probably lead Con-
trol Centres to underestimate their capacities be-
cause of periodic traffic peaks whereasr-sliding
windows and sort models ensure an even regulation
inducing a much more constrained CSP with possi-
bly higher overall delay costs. The sort model how-
ever needs fewer control parameters than its time
windows counterpart. It is also far more efficient
on fail proofs because of very powerful constraint
propagation while offering similar computation time
performances.

Large size and high dimensionality of air traffic
input data make the slot allocation problem hard to
optimize with respect to the cumulated delays crite-
rion and future work should address this issue more
efficiently. But the integration in the objective func-
tion of other factors (which may also be stated at
the constraint modelling stage) like the regularity of
workload distribution seems to be an important op-
erational requirement and would penalize the basic

11



models.

Authors

Nicolas Barnier is a PhD student in Computer Science at the University of Toulouse and works at CENA’s
Global Optimization Laboratory. He is also a graduate assistant at the ENAC (the French Civil Aviation
University). He obtained his MSc in Computer Science from the University of Toulouse and graduated
ENAC in 1997. His research interests focus on Constraint Programming, Combinatorial Optimization and
Genetic Algorithms. He is involved in the design and implementation of FaCiLe, an open source Functional
Constraint Library.

Dr Pascal Brissetis a lecturer at ENAC and research assistant at CENA’s GlobalOptimization Laboratory
since 1994. His research interests focus on Constraint Programming, Combinatorial Optimization, Mod-
elling Languages and hybrid solvers applied to ATM problems. He is an alumnus of théEcole Normale
Supérieure and received a PhD in Computer Science from the University of Rennes. He was involved in
the design and implementation of the ECL✔PS⑨ constraint solver and is the main designer of Prolog-MALI
(a ⑩Prolog compiler) and the FaCiLe constraint solver.

Thomas Rivière is a MSc student in Computer Science at the University of Toulouse and student at ENAC.
His research interests focus on Constraint Programming, Scheduling and hybrid solvers.

References

[Barnier and Brisset, 2001] Barnier, N. and Brisset, P. (2001). FaCiLe : A Functional Constraint Library.
ENAC/CENA, (http://www.recherche.enac.fr/opti/facile ).

[Barták, 1998] Barták, R. (1998). On-line guide to constraint programming.
http://ktiml.mff.cuni.cz/˜bartak/constraints .

[Bertsimas and Stock, 1995] Bertsimas, D. and Stock, S. (1995). The air traffic flow management problem
with enroute capacities. Technical report, MIT.

[CFMU, 2000] CFMU (2000).Basic CFMU Handbook - General & CFMU Systems. Eurocontrol CFMU,
Brussels, 6.0 edition.

[Dincbas et al., 1988] Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun, A., and Graf, T. (1988).
The constraint logic programming language CHIP. InInt. Conf. Fifth Generation Computer Systems,
volume 1, pages 693–702, Tokyo, Japan.

[ECL, 2001] ECL (2001). ECL✔PS⑨ user manual (http://www.icparc.ic.ac.uk/eclipse ).

[Gotteland et al., 2000] Gotteland, J.-B., Kerlirzin, P., Manchon, S., and Plusquellec, C. (2000). Building
and evaluating a minimal regulation scheme. In3rd USA/Europe Air Traffic Management R&D Seminar,
Napoli.

[Guernalec and Colmerauer, 1997] Guernalec, N. B. and Colmerauer, A. (1997). Narrowing a 2❄-block
of sorting in❶ ✘❄ ❛❜❝ ❄ ✚. In Principles and Practice of Constraint Programming. Springer-Verlag.

[IP/99/924, 1999] IP/99/924 (1999). European commission:Fifteen countries, a single European sky,
(http://europa.eu.int/comm/pr en.htm ).

[Leroy, 2000] Leroy, X. (2000). The Objective Caml System: User’s and reference manual
(http://caml.inria.fr ).

[Maugis, 1996] Maugis, L. (1996). Mathematical programming for the air traffic flow management prob-
lem with en-route capacities. Inin Proceedings of the 14th Triennial World Conference of theInterna-
tional Federation of Operational Research Societies.

12



[Michel and Hentenryck, 1997] Michel, L. and Hentenryck, P.V. (1997). Localizer: A modeling language
for local search. InProceedings of the Third Conference on Principles and Practice of Constraint
Programming.

[Plusquellec and Manchon, 1998] Plusquellec, C. and Manchon, S. (1998). Description du module
d’allocation de crneaux utilisant la programmation par contraintes implant dans shaman. Technical
report, CENA/RFM/NT97.105.

[Rivière, 2001] Rivière, T. (2001). Allocation de créneaux à la SHAMAN avec FaCiLe. Technical report,
CENA.

[Solver, 1999] Solver (1999). ILOG Solver 4.4 user’s manual(http://www.ilog.fr ).

[Van Hentenryck, 1989] Van Hentenryck, P. (1989).Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA.

13


