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1 Introduction

The evolving world of telecommunications requires an in-
creasing reliability and speed in communications. Reliability
in information stocking and transmission is provided by cod-
ing techniques. Information is usually coded and stocked in
bit strings. The communication medium can generate errors
that have to be detected and corrected when decoding. There-
fore, more bits than required are transmitted in order to check
the errors due to the communication medium. The code rate
can be defined as the information bit string length divided by
the number of transmitted bits.

A simple way to code can be to assign to any incoming
word (or bit string) a longer fixed coded word; decoding can
then be very long as a transmitted coded word must be as-
sociated to the nearest (according to the Hamming distance)
existing coded word. This technique is called the maximum
likelihood technique. Consequently, the larger the Hamming
distance between any pair of coded words, the easier the de-
cision on a received coded word. For linear codes (gener-
ally used), the minimum Hamming distance between any pair
of coded words (also called theFree Distanceof a code) is
also the minimum Hamming distance between the zero coded
word (

�� ✁✁✁�
) and any non zero coded word.

One of the challenging problems today is to find a coding
technique that maximizes the Free Distance of a code. The
problem is very difficult as in real applications, the Free Dis-
tance of a code cannot be measured exactly. After introduc-
ing the coding techniques, a Genetic Algorithm is detailed in
order to optimize the interleaving matrix of a Parallelly Con-
catenated Recursive Convolutive Turbo Code (PCRCTC). Re-
sults on a problem of size✂�✄ are compared to existing inter-
leaving matrices.
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Figure 1 Sample of forward convolutive coder: first and
second step - input:✂ ☎ ✂ - output: ✆✂✂✝ ☎ ✆� ✂✝
2 Coding techniques
Coding techniques could be divided, until recently, into two
main classes: convolutive and block codes. The introduc-
tion of PCRCTC, (C.Berrou and Thitimajshima 1993) in 1993
erased this border by mixing the two methods and showing as-
tonishing performances. Sections (2.1) to (2.5) give the gen-
eral schemes of different coding techniques.

2.1 Forward Convolutive Coding
Figure (1) gives the general scheme of a simple forward con-
volutive coder.



At each clock tick, a bit enters the coder, additions on bits
are done according to figure (1). In this example, the rate of
the coder is✞✟ . Bits enter the coder one by one and are not
grouped.

2.2 Recursive Convolutive Coding
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Figure 2 Sample of recursive convolutive coder: input
string ( ✂ ☎ ✂ ☎ ✂ ☎ ✂) - output string ( ✂ ☎ � ☎ ✂ ☎ ✂)

Figure (2) gives the general scheme of a recursive convo-
lutive coder. The coded bits at time✠ depend on all former
information bits, whereas in section (2.1) they didn’t. This is
a very important property for the turbo decoding algorithm.

2.3 Systematic Recursive Convolutive Coding
Figure (3) gives an example of a systematic recursive convo-
lutive coder. A systematic coder also sends the uncoded bit
along with the coded bits. This is also a very important prop-
erty for the decoding algorithm.

2.4 Block Codes
Block codes are linear codes in which bits are grouped and a
linear transformation is applied to all the block. Block codes
can usually be described with a linear application (interleav-
ing matrix), but it is not necessary.
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Figure 3 Sample of systematic recursive convolutive
coder

2.5 Parallely Concatenated Systematic Recur-
sive Convolutive Coding

An example of parallely concatenated systematic recursive
convolutive coder is shown on figure (4).
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Figure 4 Sample of parallely concatenated systematic
recursive convolutive coder

An interleaving matrix has been added in between the two
coders. If the size of the interleaving matrix is✡ , then the
bits which enter the coder are grouped in blocks of size✡
and:☛ are directly transmitted (because of systematicity);☛ are coded with the first recursive convolutive coder and

are then transmitted ;☛ are scrambled by the interleaver (which is simply a per-
muter) and are then coded with the second recursive con-
volutive coder before being transmitted.

The interleaver matrix is one of the key pieces in this
scheme because it determines the Free Distance of the overall
code, and therefore the performances of the code. This is the



scheme used to code Parallely Concatenated Recursive Sys-
tematic Turbo Codes. Properties from convolutive coders (the
individual coders) and block coders (because of the interleav-
ing matrix) are mixed. The coding rate is✞☞ . The aim of this
article is to introduce a technique to optimize the interleaving
matrix in order to maximize the Free Distance of the code.

The following definitions will help the understanding of the
paper:

Worst Vector: aworst vectoris a vector that leads to the
minimum Free Distance or more precisely Parallel Con-
volutive Turbo Codes distance of a given matrix.

Self Terminating vector: a vector isself-terminatingif it al-
lows thefirst encoder (that is, with no interleaving) to
end in state zero.

2.6 Transmission Channel
Figure (5) gives a very simplified scheme of a general
transmission. In the following it was supposed that the
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Figure 5 Simplified scheme of a standard transmission

modulation-demodulation operation did not affect the trans-
mitted signal (a perfect synchronization and demodulationis
supposed) and the Additive White Gaussian Noise (AWGN)
channel was chosen. This channel adds noise over every
transmitted bit, and the noise is a centered gaussian random
variable whose variance depends upon the energy of the trans-
mitted bit.

2.7 The Turbo Decoding Principle
In this article, the Turbo Decoding principle will not be de-
tailed because of its complexity. People interested in decod-
ing will find a very detailed presentation in (Robertson 1994).
A decoding engine was built to show the benefit of improving
the Free Distance on the example detailed in part (4).

2.8 Why maximizing the Free Distance
The asymptotic performance for a Turbo Code ap-
proaches (Lance C. Perez and Jr. 1996):✌✍ ✎ ✡ ✏ ✑✒✒ ✓✔ ✏ ✑ ✒✒✡ ✕ ✖✗✘✏ ✑✒✒ ✙✚✛ ✜ ✍✡✢ ✣ (1)

where:☛ ✡ ✏ ✑✒✒ is the multiplicity of the codewords giving the
Free Distance of the code

☛ ✓✔ ✏ ✑ ✒✒ is the mean Hamming weight of the words giving
the Free Distance of the code☛ N is the interleaver size☛ Q equals

✕ ✆✤✝ ✥ ✞✦✟✧ ★ ✩✪✫ ✬✭ ✮✯✯ ✘✰☛ ✘✏ ✑✒✒ is the Free Distance of the code☛ ✚✛ is the rate of the code (✞☞ in our case)☛ ✜ ✍ is the bit energy☛ ✡✢ is the spectral power density for the white gaussian
noise
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Figure 6 Example of floor phenomenon

An example of asymptotic curve is shown on figure (6). In-
creasing the Free Distance of the code will improve its asymp-
totic performance beyond about a Bit Error Rate (BER) of✂�✭✱.
3 Maximizing the Free Distance using

GAs
In this paper, classical Genetic Algorithms and Evolution-
ary Computation principles such as described in the litera-
ture (Goldberg 1989, Michalewicz 1992) are used.

The algorithm is first described for an interleaving depth
of 105 bits; adaptations to higher interleaving depths are then
discussed.

A depth length of 105 bits was chosen because:

1. In (Maseng 1997), an impressive algorithm is detailed to
improve the Free Distance of a PCSRCC with a depth
length of 105 bits.

2. This same paper compares, in a very detailed manner, 5
algorithms to improve the Free Distance of PCSRCCs.

3. This small depth length allows to extensively test the
faithful of results.

Extensive results with size 105 are given in part (4), but the
algorithm can be used with larger depths.
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Figure 7 Partial weight of the coder

3.1 The Search Space
The search space is the space of all possible interleaving ma-
trices of depth 105. So, a population element is an interleav-
ing matrix. To generate them, we consider any permutation
matrix of depth N as the product of (N-1) transpositions.

3.2 The Test space
As stated in (Seghers 1995, Benedetto and Montorsi 1996b,
Maseng 1997, Lance C. Perez and Jr. 1996), the Free Distance
of a PCSRCC code is led by self-terminating vectors of low
weight. So, the test space is the space of the self-terminating
vectors of weight less than 6. We will first define thepartial
weightof a vector for a given coder.

Définition 3.1 (Partial Weight) The partial weight of a vec-
tor for a given coder, is the sum of the systematic part weight
and the weight obtained by coding the vector with the first
coder (equivalent to a✞✟ systematic recursive convolutional
encoder).

An example of ”partial weight” is given on figure (7). First
a list of self-terminating vectors of weight less than 6, having
a ”1” in first position is and a partial weight less than✆✲ ☎ ✙✝(where

✲
is an upper bound of the estimated achievable Free

Distance) is generated.
✲ ☎✙ is chosen because the minimum

weight led by a vector with weight different from zero to a
recursive convolutional coder is✔✳ ✴✵ ✥ ✙ (Benedetto and
Montorsi 1996a). In part (4),

✲ ✥ ✙✶; as a solution better
than✙✶ is never found, a larger value for

✲
is useless. Each

vector is translated for as many positions as possible to the
right, and the list is ordered according to the increasing partial
weight.

3.2.1 Crossover

It is difficult to find a good crossover operator with inter-
leaving matrices and it is also very time-consuming for the
computer. Moreover, results were not improved by the use of
crossover at the cost of a very larger complexity in the pro-
gram. Thus the crossover was not used (

✌✷ ✥ �
).

3.2.2 Mutation

A random position of a worst-vector is chosen, and this posi-
tion is changed with a random position in the matrix. This is
illustrated on figure (8). Mutation is applied to half the popu-
lation (

✌✳ ✥ � ✁✄
).

Random switch

Randomly chosen position corresponding
to a "1" in a randomly chosen worst vector

A A ... A =j ....A 
k N21

k21
A A ... A =t....A=j........A 

p N
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Figure 8 Mutation Principle
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Figure 9 Reliability table with ✸ ✥ � ✁✹✄
3.3 Evaluation Function
The most simple and logical way to associate a value to each
matrix, telling how ”good” the matrix is, seems to be to as-
sociate to it the worst distance it had led to until the current
generation. This criteria does not take into account the an-
cientness of a matrice, and maybe a very young population
element population would kick out an elder one which would
have been evaluated over almost all the search space. For in-
stance, a matrix with

✘✏ ✑✒✒ ✥ ✂✺ that has already been eval-
uated over 1.000.000 vectors can be better than a matrix with✘✏ ✑ ✒✒ ✥ ✂✹ but which has only been evaluated over 1.000
vectors. In order to consider this problem, the concept ofreli-
ability (as defined in (Alliot 1995) for optimizing an Othello
program) was used. In order to evaluate an Othello program,
the number of victories against a reference program is used.
The reliability of a program depends on this number, but also
on the number of games already played. A program that won
46 games out of 48 may be more reliable than one that won
6 games out of 6. If✸ is the probability to win a game, the
probability to win✻ games out of✼ is given by:✌ ✆✸ ✽ ✻ ✽ ✼ ✝ ✥ ✾ ✼✻ ✿ ✸✳ ✆✂ ☎ ✸ ✝❀✵✭✳ ❁ (2)

Let’s now find the value of✸ according to the number of
winning games✻ over the number of played games✼. A
confidence rate✸ ✏ ❂ ❃� ✽ ✂❄ is chosen. It can be then shown
that for✸ ✏ ❂ ❃� ✽ ✂❄, ✸ is higher than a certain value✸✳ ❅✵ ❅❆ ❇
with probability✸ ✏ , with the following implicit definition of✸✳ ❅✵ ❅❆ ❇ :
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❈ ✞❆❉ ❊❋ ❊● ❇ ✌ ✆✸ ✽✻ ✽ ✼ ✝✘✸ ✥ ✸ ✏✼ ❍ ✂ (3)

In part (4),✸ ✏ ✥ � ✁✹✄
, figure (9) gives the values of✸ ✵ ❅✵ ❅❆ ❇

for different values of✼.
The vocabulary used in (Alliot 1995) was adapted: a win-

ning game will correspond to X ”good” evaluations for a ma-
trix. This means that, for instance, if a matrix is evaluated
over Y vectors from the sample group during a generation
and, if its minimum distance is better than the current worst
one, this matrix will add■❏ more winning games at this gen-
eration. The winning games are added to the ”surviving” ma-
trices throughout the generations.

At each generation, a matrix is tested over 1000 (
✲ ✥✂���) vectors of the list and also over every vector that has de-

creased the Free Distance of an ”ancient” element (a matrice
which has been tested over 5000 times and led to a Free Dis-
tance greater than 19 before it was ”broken”). Actually, this
has been a great improvement: vectors that have ”broken” a
former good matrix are kept and first tested on new generated
matrices. Indeed, as new matrices are generated by mutation,
they have common characteristics and the same vector often
”breaks” lots of matrices. Consequently, the number of tests
operated on the matrices increases as generations go on: for
instance, in the following results, it starts at 1000 and ends at
about 10000.

The final fitness function is:❑ ✥ ✆▲ ✏ ❍ ✂✂ ❍ ✡▼ ✝ ◆ ✸ ✆✡ ❖ ✝
where▲✏ is the minimal distance found,✡▼ is the number

of worst vectors corresponding to the minimal distance and✡❖ is the number of games played.
This method is empirical, and the underlying idea is to al-

low the population to get old (in order to have strong matrices)
slowly (in order to allow new matrices, maybe better than the
elder ones, to arise).

3.4 General Remarks
In the results presented in part (4), an unpunctured code is
used (its rate is✞☞ ). Afterwards, as all the worst vectors are
kept for the final matrix, an adapted puncturing scheme can
be found in order to have the same Free Distance but a higher
coding rate. The program was stopped after 24 hours.

4 Results
4.1 105 bits sized problem
The coder described on figure (4) and the Forward-Backward
algorithm with no simplification for the Turbo Decoding al-
gorithm are used. Matrices with

✘✏ ✑ ✒✒ ✥19 are found in about
3 minutes (on a Pentium pro 300), with

✘✏ ✑ ✒✒ ✥20 in about 10
minutes, with

✘✏ ✑✒✒ ✥21 in about 20 minutes, with

✘✏ ✑✒✒ ✥22
in about 40 minutes and finally with

✘✏ ✑✒✒ ✥23 in 6 hours.

Our first remark is that in 40 minutes, a better result (because
of a lower number of worst vectors) than the best interleaving
matrices for PCSRCCs (Maseng 1997) (which was been ob-
tained in one week) is obtained. Second, the algorithm can be
applied to larger sizes of interleavers.

The efficiency (in terms of B.E.R.) of different matrices is
given on figure (10). The highest curve shows a randomly
chosen interleaving matrix. Its Free Distance is 14. The sec-
ond curve shows the performance of the best matrix found in
(Maseng 1997), which has a Free Distance of 22 and 8 worst
vectors. The third curve corresponds to one of the matrices
found with the genetic algorithm, with a Free Distance of 22
but only 1 worst vector. The influence of the number of worst
vectors for the same Free Distance can be seen: the less worst
vectors, the better the perfomance. The fourth curve of fig-
ure (10), shows the performance of a matrix leading to a Free
Distance of 23 with 29 worst vectors. This is the best matrix
obtained (see figure (11)). Indeed, it has the greater Free Dis-
tance, but also a good spectrum (at least until a weight of 29).
The last curve is Shannon’s asympotic limit.

Table (1) gives the spectrum of vectors for different Free
Distance optimization algorithm (Maseng 1997). The two
last lines correspond to the results obtained with genetic al-
gorithms.

Genetic algorithms can improve substantially the perfor-
mances compared to those of classical existing methods. Ex-
tension of the method to larger size problems is discussed in
the last part.

4.2 Extension to larger sizes
The method discribed in this article can be adapted to larger
problems. However, the set of self-terminating vectors in-
creases quickly. Indeed, a self-terminating vector can be a
combination of✙ self-terminating vectors of size✙ and✙, or ✙and✶, or ✶ and✙ or ✙ andP or P and✙ or ✶ and✶, or even of✶self-terminating vectors of size✙. For example, if the size of
the problem is✂�✄, there are✙✺✹✄✂ self-terminating vectors
with a ✂ at the first position and a partial cost lower than✙✂. If
we delete the combinations of✙ or more self-terminating vec-
tors, only◗◗✂✶ simpleself-terminationg vectors remain. For
a problem of size✙✄❘, the number of self-terminating vectors
increases to

❘❘�✹◗ whereas we still have◗◗✂✶ simple self-
terminating vectors. Consequently, for larger size problems,
self-terminating vectors can be built by dynamically combin-
ing self-terminating vectors. First trials are being performed
giving Free Distances of✙❘ for the✙✄❘ bits size problem de-
scribed earlier. Simulations are still being performed andthe
size of the problem will be increased to

✄✂✙, ✂�✙P and✙�P✺in a near future.

5 Conclusion
Improving theeffective Free Distanceto lower the error floor
as proposed by (Benedetto and Montorsi 1996a) does not
work, at least on our example. But, theFree Distanceand the
distances spectrum seems to be a good criteria to optimize. It



Hamming
distance 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1. Block
(5x21) 1 3 1 2 4 6 2 2 5 12 11 16 191 45 123 74 268 301 474 603
2. Pseudo rand
(105 bits) - 1 0 0 3 2 4 9 7 13 11 22 41 36 52 94 170 204 328 466
3. Non uniform
(10x10) - - - - 1 0 1 8 2 7 1 31 55 31 29 69 155 181 304 409
4. Block helical
simile (5x21) - - - - - - - - - 24 0 0 71 206 36 183 169 132 905 574
5. Hokfelt
& al. - - - - - - - - - - - - 8 20 36 87 122 177 241 286
6. Genetic
algorithm 1 - - - - - - - - - - - - 1 46 52 74 125 148 246 306
7. Genetic
algorithm 2 - - - - - - - - - - - - - 29 52 69 118 151 233 312

Table 1 Matrices spectrum for✡ ✥ ✂�✄
was observed that the higher the Free Distance, the better per-
formance and for equal Free Distances, the less worst vectors,
the better performances.

Applying genetic algorithms to difficult information the-
ory optimization problems seems to be a very promising di-
rection. In the case of our concern, genetic algorithms have
proved their efficiency by giving the best published resultson
an interleaving depth of 105 bits. Moreover, this algorithmis
not limited by the size and higher interleaver sizes are already
being tested.
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