Nicolas Durand 
email: durand@cenatls.cena.dgac.fr
  
Jean-Marc Alliot 
email: alliot@recherche.enac.fr
  
Genetic crossover operator for partially separable functions

Partial separation is a mathematical technique that has been used in optimization for the last 15 years. On the other hand, genetic algorithms are widely used as global optimizers. This paper investigates how partial separability can be used in conjunction with GA. In the first part of this paper, a crossover operator designed to solve partially separable global optimization problems involving many variables is introduced. Then, a theoretical analysis is presented on a test case, along with practical experiments on fixed size populations, with different kinds of selection methods.

Introduction

This paper deals with minimization problems for which the function to minimize is the sum of many positive terms, each term only involving a subset of variables. Griewank and Toint gave first definition of such functions (i.e partially separable functions) about 15 years ago [START_REF] Griewank | On the unconstrained optimization of partially separable functions[END_REF]. Properties of partial separability are commonly used to solve local optimization problems.

On the other hand, it is quite widely accepted that on real problems, when a crossover operator that makes sense can be defined, the efficiency of GA (compared to other stochastic optimization methods) is closely related to the use of the crossover operator: considering large size problems, the use of random crossover operator can penalize GAs performance. Classical crossover operators described in the literature [START_REF] Goldberg | Genetic Algorithms[END_REF][START_REF] Michalewicz | Genetic algorithms+data struc-tures=evolution programs[END_REF][START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF] create two children from two parents chosen in the population. Initial operators on bit strings simply cut the two parents strings in two parts. The main drawback of these operators is that short schemes have a greater probability to survive than long ones. Consequently the encoding problem becomes very important. Multi-points crossovers and Gray codes are introduced to solve this problem. When using real variable coding, programmers very often use arithmetic crossover. However, none of these methods recognizes and favors good schemes. Heuristics are sometimes used to favor "good" crossovers and "good" mutations [START_REF] Ravise | Optimisation guidée par l'induction[END_REF] or try to reduce disruption of superior building blocks [START_REF] Corcoran | Reducing disrupton of superior building blocks in genetic algorithms[END_REF].

We will show in this paper that taking advantage of the structure of partially separable functions to define a new crossover operator improves the converging speed and converging rate of a genetic algorithm.

1 Partial separability

Definition

Partially separable problems considered in this paper have the following characteristics: the function to minimize depends on ✁ variables ✂ ✄ , ✂ ☎ , .., ✂ ✆ (✁ large) and is a sum of ✝ positive functions ✞ involving only a subset of variables. Partially separable functions can be written:

✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✌ ✍ ✞ ✎ ✄ ✞ ✟ ✂ ✏ ✑ ✠ ✂ ✏ ✒ ✠ ✡ ✡ ✠ ✂ ✏ ✓ ✔ ☛

Adapted crossover principle

The crossover operator introduced in this article does not require any particular coding. The chromosome is directly coded with the variables of the problem (these variables may be real, integer,...). The intuitive idea is the following: for a completely separable problem, optimizing the global function can be done by optimizing each variable separately. This strategy is adapted to partially separable functions. When creating a child from two parents, the idea is to take for each variable the one that locally fits better (more or less ✕ , where ✕ controls the determinism of the operator). First, we define a local fitness

✖ ✗ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ for vari- able ✂ ✗ as follows: ✖ ✗ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✍ ✞ ✘ ✙ ✚ ✞ ✟ ✂ ✏ ✑ ✠ ✂ ✏ ✒ ✠ ✡ ✡ ✠ ✂ ✏ ✓ ✔ ☛ ✁ ✞
where ✛ ✗ is the set of ✜ such as ✂ ✗ is a a variable of ✞ and ✁ ✞ the number of variables of ✞ .

Intuitively, the local fitness associated to a variable isolates its contribution to the global fitness 1 . Furthermore, it has the following good property:

✆ ✍ ✗ ✎ ✄ ✖ ✗ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛
When minimizing , if:

✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ✄ ☛ ✧ ✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ☎ ☛ ★ ✕ then child ✩ will contain variable ✂ ✗ of parent ✩ . Else, if: ✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ✄ ☛ ✪ ✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ☎ ☛ ✫ ✕ then child ✩ will contain variable ✂ ✗ of parent ✬ . If: ✭ ✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ✄ ☛ ★ ✖ ✗ ✟ ✢ ✣ ✤ ✥ ✁ ✦ ☎ ☛ ✭ ✮ ✕
then variable ✂ ✗ of child ✩ will be randomly chosen, or can be a random linear combination of the ✯ ✰ ✱ variable of each parent when dealing with real variables. If the same strategy is applied to child ✩ and to child ✬ , children may be identical, especially if ✕ is small. This problem can be avoided by taking a new pair of parents for each child. Let's consider the following completely separable function:

✟ ✂ ✄ ✠ ✂ ☎ ✠ ✂ ✲ ☛ ☞ ✂ ✄ ✫ ✂ ☎ ✫ ✂ ✲ for ✂ ✄ , ✂ ☎ and ✂ ✲ integers include in ✳ ✴ ✠ ✬ ✵ . Variable ✯ 's local fitness is: ✖ ✗ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✂ ✲ ☛ ☞ ✂ ✗ . Let's cross parents ✟ ✩ ✠ ✴ ✠ ✬ ☛ and ✟ ✬ ✠ ✩ ✠ ✴ ☛ which have the same fitness ☞ ✶ . With ✕ ☞ ✴ , child ✩ will be ✟ ✩ ✠ ✴ ✠ ✴ ☛ : ☞ ✩ . With ✕ ☞ ✩ , child ✬ may be ✟ ✬ ✠ ✩ ✠ ✴ ☛ , ✟ ✬ ✠ ✴ ✠ ✴ ☛ , ✟ ✩ ✠ ✩ ✠ ✴ ☛ , or ✟ ✩ ✠ ✴ ✠ ✴ ☛ .
The children's fitness are always better than the parents fitness when ✕ ☞ ✴ which is not the case with a classical crossover operator.

As it is completely separable, this function is obviously too simple to show the interest of the adapted crossover operator. In the next paragraph, a simple partially separable function is introduced and the improvement achieved is theoretically measured.

Theoretical study

Let's define the following function:

✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✍ ✷ ✸ ✞ ✹ ✎ ✏ ✺ ✆ ✻ ✟ ✂ ✞ ✠ ✂ ✏ ☛ (1) ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✠ ✂ ✆ ☛ is a bit string and ✻ ✟ ✂ ✞ ✠ ✂ ✏ ☛ ☞ ✩ if ✂ ✞ ✼ ☞ ✂ ✏ and ✴ if ✂ ✞ ☞ ✂ ✏ .
It must be noticed that the function is only partially separable and has ✬ global minima,

✟ ✩ ✠ ✩ ✠ ✩ ✠ ✡ ✡ ✠ ✩ ☛ and ✟ ✴ ✠ ✴ ✠ ✴ ✠ ✡ ✡ ✠ ✴ ☛ .
1 There are often many different ways to define a local fitness that can favour more or less competing optima. Discussing this subject in the present paper would be too long.

For ✂ ☞ ✟ ✂ ✄ ✠ ✂ ☎ ✠ ✡ ✡ ✂ ✆ ☛ , we define the local fitness ✖ ✗ ✟ ✂ ☛ by: ✖ ✗ ✟ ✂ ☛ ☞ ✩ ✬ ✆ ✍ ✞ ✎ ✄ ✻ ✟ ✂ ✗ ✠ ✂ ✞ ☛
We define ✽ ✟ ✂ ☛ as the number of bits equal to 1 in ✂ . Then, it is easy to establish that:

✟ ✂ ☛ ☞ ✽ ✟ ✂ ☛ ✟ ✁ ★ ✽ ✟ ✂ ☛ ☛ ✖ ✗ ✟ ✂ ☛ ☞ ✽ ✟ ✂ ☛ ✬ ✜ ✾ ✂ ✗ ☞ ✴ ☞ ✁ ★ ✽ ✟ ✂ ☛ ✬ ✜ ✾ ✂ ✗ ☞ ✩
In the following paragraphs, we use a classical ✁ point crossover operator; ✿ ✄ and ✿ ☎ represent ✬ parents randomly chosen in a population and ❀ represents their child.

In paragraph 2.1, the probability of fitness increase when using the adapted or the classical crossover operator are compared. Then, the adapted crossover converging rate is computed in a simple genetic algorithm, with no selection and no mutation (paragraph 2.2). In paragraph 2.3, a GA with selection is used to compare the two crossovers

Probability of fitness increase

For function (1), the probability of fitness increase when using the classical or the adapted operator can be mathematically computed for every possible couple of parents.

Let's define ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ as the probability to find ✯ bits equal to ✩ at the same position in both parents ✿ ✄ and ✿ ☎ , with

✽ ✟ ✿ ✄ ☛ ☞ ✜ and ✽ ✟ ✿ ☎ ☛ ☞ ❃ . As ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❁ ✄ ❂ ✄ ✟ ❃ ✠ ✜ ✠ ✯ ☛
, we will suppose that ✜ ✮ ❃ in the following. It can be shown that:

❄ if ✯ ✪ ✜ , then: ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ✴ ❄ if ✯ ✮ ✜ , then: ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❀ ✗ ✞ ✗ ❂ ✄ ❅ ❆ ✎ ✷ ❃ ★ ❇ ✁ ★ ❇ ✞ ❂ ✄ ❅ ❆ ✎ ✗ ✟ ✁ ★ ❇ ☛ ★ ✟ ❃ ★ ✯ ☛ ✁ ★ ❇
The classical crossover used is the ✁ point crossover that randomly chooses bits from ✿ ✄ or ✿ ☎ (the order of the bit string has no influence on the fitness).

For the adapted crossover (respectively for the classical crossover), let's define

❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ (resp. ❁ ❉ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ) as the probability that if ✽ ✟ ✿ ✄ ☛ ☞ ✜ and ✽ ✟ ✿ ☎ ☛ ☞ ❃ then ✽ ✟ ❀ ☛ ☞ ✯ . As ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❁ ❈ ✟ ❃ ✠ ✜ ✠ ✯ ☛ and ❁ ❉ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❁ ❉ ✟ ❃ ✠ ✜ ✠ ✯ ☛
, we will suppose that ✜ ✮ ❃ in the following. Then, it can be shown that for the classical crossover: 

❁ ❉ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❊ ❋ • ❍ ✗ ■ ✞ ❏ ✏ ❂ ✗ ❑ ✍ ❆ ✎ ❊ ▲ ▼ ❍ ✷ ■ ✔ ◆ ❖ ◆ ✑ ✓ ✒ ❑ ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ❇ ☛ ❀ ✗ ❂ ❆ ✞ ❏ ✏ ❂ ☎ ❆ ✬ ✞ ❏ ✏ ❂ ☎ ❆
I(A1) > 0.0001 > 0.001 >0.01 >0.1 > 0.2 > 0.5 Figure 1 ❁ ✤ ◗ | ✟ ✟ ❀ ☛ ✪ ❙ ❚ ❯ ✳ ✟ ✿ ✄ ☛ ✠ ✟ ✿ ☎ ☛ ✵ ☛ function of ✳ ✽ ✟ ✿ ✄ ☛ ✠ ✽ ✟ ✿ ☎ ☛ ✵ classical crossover -✁ ☞ ❱ ✴ .
Figure 2 ❁ ✤ ◗ | ✟ ✟ ❀ ☛ ✪ ❙ ❚ ❯ ✳ ✟ ✿ ✄ ☛ ✠ ✟ ✿ ☎ ☛ ✵ ☛ function of ✳ ✽ ✟ ✿ ✄ ☛ ✠ ✽ ✟ ✿ ☎ ☛ ✵ -adapted crossover -✁ ☞ ❱ ✴ .
For the adapted crossover(with

✝ ☞ ❙ ❲ ❳ ✟ ✯ ✠ ✁ ★ ✯ ☛ ): ✜ ✫ ❃ ✧ ✁ ( ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ✜ ✫ ❃ ✪ ✁ ( ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ❁ ✄ ❂ ✄ ✟ ✁ ★ ✜ ✠ ✁ ★ ❃ ✠ ✁ ★ ✯ ☛ ✜ ✫ ❃ ☞ ✁ ( ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ✌ ✍ ❆ ✎ ✷ ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ❇ ☛ ❀ ✗ ❂ ❆ ✞ ❏ ✏ ❂ ☎ ❆ ✬ ✞ ❏ ✏ ❂ ☎ ❆ As ❁ ✄ ❂ ✄ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ✴ if ✯ ✪ ❙ ❲ ❳ ✟ ✜ ✠ ❃ ☛ , then: ❄ if ✜ ✫ ❃ ✧ ✁ and ✯ ✪ ❙ ❲ ❳ ✟ ✜ ✠ ❃ ☛ , then ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ✴ ❄ if ✜ ✫ ❃ ✪ ✁ and ✯ ✧ ❙ ❚ ❯ ✟ ✜ ✠ ❃ ☛ , then ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ☞ ✴
Consequently:

❄ if ✜ ✫ ❃ ✧ ✁ and ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ✪ ✴ , then ✯ ✧ ❙ ❲ ❳ ✟ ✜ ✠ ❃ ✠ ✁ ★ ✜ ✠ ✁ ★ ❃ ☛ ❄ if ✜ ✫ ❃ ✪ ✁ and ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ✪ ✴ , then ✯ ✪ ❙ ❚ ❯ ✟ ✜ ✠ ❃ ✠ ✁ ★ ✜ ✠ ✁ ★ ❃ ☛ Thus, if ✜ ✫ ❃ ✼ ☞ ✁ , then ✟ ❀ ☛ ) ❙ ❚ ❯ ✳ ✟ ✿ ✄ ☛ ✠ ✟ ✿ ☎ ☛ ✵ . If ✜ ✫ ❃ ☞ ✁ ,
local fitness of variables of each parent are equal and the adapted crossover behaves like a classical ✁ points crossover.

Figures 1 and2 give the probability for a child to have a better fitness than its parents (for all the possible combinations of parents). On this example, the adapted crossover widely improves crossover efficiency. The small square in the center of figure 1 represents a probability of improvement larger than ✴ ✡ ❱ . It becomes a very large square on figure 2.

Adapted crossover converging rate

As ❁ ❈ and ❁ ❉ are known, it is possible to evaluate the probability to find an optimal solution after ✝ generations. The GA only uses a crossover operator without any selection, or mutation operator. Let's define ❬ ❈ ✟ ✝ ✠ ✯ ☛ as the probability that

✽ ✟ ❀ ☛ ☞ ✯ if ❀ is a randomly chosen element at generation ✝ . At generation ✴ : ❬ ❈ ✟ ✴ ✠ ✯ ☛ ☞ ❀ ✗ ✆ ✬ ✆ At generation ✝ ✫ ✩ : ❬ ❈ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ☞ ✆ ✍ ✞ ✎ ✷ ✆ ✍ ✏ ✎ ✷ ❬ ❈ ✟ ✝ ✠ ✜ ☛ ❬ ❈ ✟ ✝ ✠ ❃ ☛ ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ Figure 3 gives the evolution of ❬ ❈ ✟ ✝ ✠ ✴ ☛ ☞ ❬ ❈ ✟ ✝ ✠ ✁ ☛ for different values of ✁ . It appears that the probability to find ✟ ✴ ✠ ✴ ✠ ✴ ✡ ✡ ✠ ✴ ☛ or ✟ ✩ ✠ ✩ ✠ ✩ ✡ ✡ ✠ ✩ ☛ stabilizes around ✄ ✲ after genera- tion ❭ .
It was decided that when local fitness are equal, the crossover used was the classical crossover. If it had been decided that each time local fitness are equal, the same parent would give its value to the child, then probabilities to find

✟ ✴ ✠ ✴ ✠ ✴ ✡ ✡ ✠ ✴ ☛ or ✟ ✩ ✠ ✩ ✠ ✩ ✡ ✡ ✠ ✩ ☛ would have stabilized around ✄ ☎ .
It is important to note that ✁ has little influence on the convergence speed.

It is obviously useless to expect that the same GA using the classical crossover converges. In fact, we have:

( ✝ ) ❴ ✠ ❬ ❉ ✟ ✝ ✠ ✯ ☛ ☞ ❀ ✗ ✆ ✬ ✆

Selection probability

As the fitness function takes its values in ✳ ✴ ✠ ✁ ☎ ❵ ❛ ✵ , we will select chromosomes proportionally to ✁ ☎ ❵ ❛ ★ ✟ ✿ ☛ . Let's study the simple GA that selects individuals according to the previous criteria and then uses the adapted or classical crossover. Therefore, let's define ✛ ❈ ✟ ✝ ✠ ✯ ☛ and ✛ ❉ ✟ ✝ ✠ ✯ ☛ as the probability that ✽ ✟ ❀ ☛ ☞ ✯ if ❀ is a randomly chosen element at generation ✝ , just after the selection operator.

Then, it is easy to prove that:

✛ ❈ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ☞ ❜ ❈ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ❝ ✆ ✗ ✎ ✷ ❜ ❈ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ✛ ❉ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ☞ ❜ ❉ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ❝ ✆ ✗ ✎ ✷ ❜ ❉ ✟ ✝ ✫ ✩ ✠ ✯ ☛ with ❞ ✟ ✯ ☛ ☞ ✁ ☎ ❛ ★ ✯ ✟ ✁ ★ ✯ ☛ ❜ ❈ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ☞ ✆ ✍ ✞ ✎ ✷ ✆ ✍ ✏ ✎ ✷ ❞ ✟ ✯ ☛ ✛ ❈ ✟ ✝ ✠ ✜ ☛ ✛ ❈ ✟ ✝ ✠ ❃ ☛ ❁ ❈ ✟ ✜ ✠ ❃ ✠ ✯ ☛ ❜ ❉ ✟ ✝ ✫ ✩ ✠ ✯ ☛ ☞ ✆ ✍ ✞ ✎ ✷ ✆ ✍ ✏ ✎ ✷ ❞ ✟ ✯ ☛ ✛ ❉ ✟ ✝ ✠ ✜ ☛ ✛ ❉ ✟ ✝ ✠ ❃ ☛ ❁ ❉ ✟ ✜ ✠ ❃ ✠ ✯ ☛
On figure 4, the four curves on the top represent ✛ ❈ ✟ ✝ ✠ ✴ ☛ for chromosomes of size ✬ ✴ , ❱ ✴ , ✩ ✴ ✴ and ✬ ✴ ✴ bits. The four curves on the bottom represent ✛ ❉ ✟ ✝ ✠ ✴ ☛ for chromosomes of sizes ✬ ✴ , ❱ ✴ , ✩ ✴ ✴ and ✬ ✴ ✴ .

The efficiency of the adapted crossover appears clearly, particularly for large sized chromosomes. The converging rate is not very dependent on the size of the chromosome with the adapted crossover, whereas it is very dependent on the size of the chromosome with the classical crossover.

Experimental tests

In the previous study, the size of the population was not limited. However, population size does have an influence on the converging rate. Moreover, the previous example has only ✬ global optima and we did not measure the ability of the GA to find every global optimum. We are going to tackle these two issues in this section.

Let's consider the same function as previously:

✟ ✂ ✄ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✍ ✄ ✺ ✞ ✹ ✎ ✏ ✺ ✆ ✻ ✟ ✂ ✞ ✠ ✂ ✏ ☛ (2) but with ✂ ✞ integer in ✳ ✴ ✠ ❛ ✵
. This function has ❱ optima defined by The number of optima found and the converging speeds are compared. In paragraph 3.2, a sharing operator is added to find as many optima as possible. The efficiency of classical and adapted crossover are also measured.

GA without sharing

Function ( 2) is optimized with a GA on ✬ ✴ ✴ runs (generations: ✩ ✴ ✴ ✴ , population size: ❱ ✴ ✴ , proportion crossed: ❱ ✴ %, selection: stochastic reminder without replacement, elitism: yes, sharing: no, mutation:no). The first ✩ ✴ ✴ tests are done with a classical ✁ point crossover 2 . The ✩ ✴ ✴ other tests are done with the adapted crossover previously described.

Figure 5 gives the number of runs for which 1, 2, 3 or 4 optima are found when using the adapted crossover. It is important to note that the 5 optima are never found. The figure also gives the number of runs for which 1 optimum is found when using the classical crossover. The GA with classical crossover never finds 2 optima.

GA with sharing

The GA is performed on the same function, but with a sharing process. Therefore, a distance between two chromosomes is defined. Let's define ❡ ✟ ❀ ✄ ✠ ❀ ☎ ☛ as the Hamming distance between chromosome ✩ and ✬ . If ✁ is the size of the chromosome, then let's define: before applying the selection process. Figure 6 gives the number of runs for which the 5 optima are found when using the adapted crossover and sharing. The figure also gives the number of runs for which 1 or 2 optima are found when using the classical crossover and sharing. The GA with classical crossover and sharing never finds more than 2 optima.

❢ ✜ ❜ ✦ ✟ ❀ ✄ ✠ ❀ ☎ ☛ ☞ ✩ ✠ if ❡ ✟ ❀ ✄ ✠ ❀ ☎ ☛ ✧ ✁ ✬ ✴ ✠

Influence of sharing

A "good" crossover can be defined as a crossover for which the fitness of the child is better than the fitness of both parents. In order to measure the influence of sharing on the crossover's efficiency, figures 7 (resp 8) give the percentage of "good" crossovers with the classical (resp adapted) operator without sharing and with sharing.

Figure 7 shows that the sharing process delays the convergence to the optimum. Comparing figures 5 and 6 shows that the converging rate is penalized by the sharing process. However, it is difficult to say if the sharing process has an influence on the efficiency of the crossover.

Figure 8 shows that the adapted operator is all the more efficient because population is diversified. Figure 6 shows that the 5 optima are always found before generation ✬ ✴ . Its seems that the sharing process has little influence on the converging rate.

Classical test functions

Corana's function

This function is presented in [START_REF] Corana | Minimizing multimodal unctions of continuous variables with the "simulated annealing" algorithm[END_REF]. We use here the restriction used by Ingber in its article [START_REF] Ingber | Genetic algorithm and very fast simulated reannealing: a comparison[END_REF]. The function must be optimized on 

✳ ★ ✩ ✴ ✴ ✴ ✴ ✠ ✩ ✴ ✴ ✴ ✴ ✵ ❤ . It is defined by : ✾ ✷ ✟ ✂ ☛ ☞ ❤ ✍ ✞ ✎ ✄ ✐ ✴ ✡ ✩ ❱ • ✞ ✟ ✴ ✡ ✴ ❱ ✛ ✟ ❦ ✞ ☛ ✫ ❦ ✞ ☛ ☎ for ✭ ✂ ✞ ★ ❦ ✞ ✭ ✧ ✴ ✡ ✴ ❱ • ✞ ✂ ☎ ✞ otherwise • ❦ ✞ ☞ ✴ ✡ ✬ ♠ ✭ ✂ ✞ ❵ ✴ ✡ ✬ ✭ ✫ ✴ ✡ ❛ ♥ ♥ ♥ ♥ ♦ ✛ ✟ ✂ ✞ ☛ ✛ ✟ ❦ ✞ ☛ ☞ ♣ q r ✩ if ❦ ✞ ✪ ✴ ✴ if ❦ ✞ ☞ ✴ ★ ✩ if ❦ ✞ ✧ ✴
✞ ❊ t ✉ ✈ ☞ ✇ ✩ ✡ ✴ ✠ ✩ ✴ ✴ ✴ ✡ ✴ ✠ ✩ ✴ ✡ ✴ ✠ ✩ ✴ ✴ ✡ ✴ ①
This function has ✩ ✴ ② ❤ local optima and all points of ✳ ★ ✴ ✡ ✴ ❱ ✠ ✴ ✡ ✴ ❱ ✵ ❤ are global optima. Ingber presents this function as an excellent test for all global optimization techniques, and it is interesting to compare GA with adapted crossover with VFSR, which is currently the best simulated annealing technique. It is easy to define a local fitness for adapted crossover as the function is completely separable.

✖ ✞ ✟ ✂ ✞ ☛ ☞ ✐ ✴ ✡ ✩ ❱ • ✞ ✟ ✴ ✡ ✴ ❱ ✛ ✟ ❦ ✞ ☛ ✫ ❦ ✞ ☛ ☎ ✠ ✭ ✂ ✞ ★ ❦ ✞ ✭ ✧ ✴ ✡ ✴ ❱ • ✞ ✂ ☎ ✞
otherwise As it could have been expected, the adapted crossover is of course very efficient: both classical GA and VFSR fail in finding an optimum for ❴ ✪ ✬ ❛ ; the GA with adapted crossover finds the optimum up to ❴ ☞ ✩ ✴ ✴ ✴ .

Griewank's function

This function is much more interesting than Corana's, as it is not completely separable. It is defined by:

✟ ✂ ✄ ✠ ✡ ✡ ✠ ✂ ✆ ☛ ☞ ✩ ❛ ✴ ✴ ✴ ✆ ✍ ✞ ✎ ✄ ✂ ☎ ✞ ★ ✆ ❅ ✞ ✎ ✄ ③ ④ ⑤ ✟ ✂ ✞ ⑥ ✜ ☛
We will use here ✁ ☞ ✩ ✴ . This function has only one global minimum, for ✂ ☞ ✟ ✴ ✠ ✡ ✡ ✡ ✠ ✴ ☛ . We define the local fitness by:

✖ ✞ ✟ ✂ ✄ ✠ ✡ ✡ ✠ ✂ ✄ ✷ ☛ ☞ ✩ ❛ ✴ ✴ ✴ ✂ ☎ ✞ ★ ✄ ✷ ❅ ✞ ✎ ✄ ③ ④ ⑤ ✟ ✂ ✞ ⑥ ✜ ☛
4 series of 100 tests were conducted: (classical crossover, no sharing), (classical crossover, sharing), (adapted crossover, no sharing), (adapted crossover, sharing). We say that the GA has found the optimal solution when a local optimization function applied to the best element finds the optimum. Results are presented on table 1. They give the min, max, mean and standard deviation number of generations to find the optimum. The adapted crossover is clearly much more efficient than the classical one.

Conclusion

The crossover operator introduced in this paper can be adapted to various global optimization problems, and specially difficult problems with many variables. The method was in fact developed during a work conducted jointly with the French Civil Aviation Administration. The goal was to build a system able to solve automatically air traffic conflict involving up to 30 planes with real traffic. The problem involves up to 90 variables. The GA with adapted crossover outperformed every other method tried (simulated annealing, ✿ ⑦ , B&B based on interval programming). It was able to tackle the problem while classical GA were limited to problems involving less than 10 planes (30 variables) [START_REF] Durand | Optimisation de Trajectoires pour la Résolution de Conflits en Route[END_REF][START_REF] Durand | Optimisation de Trajectoires pour la Résolution de Conflits en Route[END_REF].

In this paper, we hadn't the place to discuss the influence of parameter ✕ . It can be used to control the determinism of the adapted crossover. Too small values can push the GA into local minima, while too large ones slow down the convergence. It seems that it should decrease while the algorithm converges as, at the beginning, the space is explored randomly and at the end, the algorithm becomes more deterministic.

Figure 5

 5 Figure 3 ❬ ❈ ✟ ✝ ✠ ✴ ☛ as a function of the generation ✝ for different values of ✁ .

Figure 6

 6 Figure 6 Number of runs for which 5 optima are found with the adapted crossover, 1, or 2 optima are found with the classical crossover, as a function of the generation.

2

  Figure 7 percentage of improved chromosome with the classical crossover without and with sharing.

Table 1 Convergence for Griewank's function

 1 

		min max mean	s
	classical	76	294 179.44 178.47
	adapted	42	204	92.33	91.81
	classical / sharing 79	357 248.87 247.32
	adapted / sharing	42	186	96.57	95.95