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Optimization by hybridization of a genetic 

algorithm with constraint satisfaction techniques 
Nicolas Barnier, Pascal Brisset 

Abstract- We introduce a new optimization method based 
on a Genetic Algorithm (GA) mixed with Constraint Sat- 
isfaction Problem (CSP) techniques. The approach is de- 
signed for combinatorial problems whose search spaces are 

too large and/or objective functions too complex for usual 
CSP techniques and whose constraints are too complex for 

conventional genetic algorithm. The main idea is the han- 

dling of sub-domains of the CSP variables by the genetic 
algorithm. The population of the genetic algorithm is made 
up of strings of sub-domains whose fitness are computed 
through the resolution of the corresponding “sub-CSPs” 
which are somehow much easier than the original problem. 
We provide basic and dedicated recombination and mutation 
operators with various degrees of robustness. The first set of 
experimentations adresses a naive formulation of the Vehi- 
cle Routing Problem (VRP) and the Radio Link Frequency 
Assignement Problem (RLFAP). The results are quite en- 
couraging as we outperform CSP techniques and genetic al- 
gorithm alone. 

Kegwords- Optimization, Constraint Satisfaction, Hy- 
bridization 

I. INTRODUCTION 

Solving an optimization problem consists in exploring a 

search space to maximize a given objective function. The 

relative structural or size complexities of the search space 

and the objective function lead to use drastically differ- 

ent strategies. Roughly, we can assume that a determinist 

method is suited to a small and/or complex search space 

whereas a stochastic search strategy (simulated annealing, 

genetic algorithm ...) is fitted to a large one. 

In most cases, an optimization problem is naturally di- 

videdi into two phases: the search of feasible solutions and 

then the search of the solution with the lowest cost among 

them. This division is more or less obvious during the 

search according to the choice of the optimization method. 

Genetic algorithms [l] are well suited to the quick and 

globatl exploration of a large search space to optimize any 

objective function (even a “black box” one, ie. no hy- 

pothesis is required on the function) and are able to pro- 

vide several solutions of “good quality”. In the case the 

set of the feasible solutions is complex ( L e .  finding a fea- 

sible solution is difficult), the feasibility can be intrinsic to 

the chosen representation or integrated within the creation 

of the chromosomes (initialization, mutation and crossover) 

or within the objective function (an unfeasible solution will 

be given a low fitness). 

Constraints satisfaction techniques are fitted to highly 

constrained problems for which the exhaustive exploration 
of their search spaces are conceivable. Such a method pro- 
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vides naturally feasible solutions. By adding a dynamic 
constraint on the cost of’the currently found solution, the 

search can provide an optimal solution (cf. the maximize 

predicate of Constraint Logic Programming systems like 

CHIP[2]). This method ‘ensures optimality of the solution 

(possibly with a given percentage). 

However, there is no mch simple dichotomy among the 

set of optimization problems: many problems are higly con- 

strained and have large search spaces. These two features 

exclude the direct and naive use of a genetic algorithm or 

a CSP technique alone. 

We suggest to take advantage of the two approaches by 

hybridizing them: 

use of constraint satisfaction to compute feasible solu- 

tions on a subspace of the search space; 

0 use of a genetic algorithm to explore the space formed by 

the set of these subspaces and perform the optimization. 

The underlying idea is illustrated in figure 1 (in the par- 

ticular case of a problem with two variables X I  and X z  
constrained in interval dlomains): the dark areas are indi- 

viduals of the population of the genetic algorithm which 

correspond to subspaces of the search space; for each sub- 

space, a solution is coniputed with the associated “sub- 

CSP”. An individual does not necessarily correspond to a 

solution and two different individuals may correspond to 

the same solution. The ratio of the size of a subspace to 

the size of the whole search space (called p afterwards) is 

the essential parameter of the hybridization : one can con- 

tinuously pass from a pure CSP search (p = 1) to a pure 

stochastic search ( p  = 0, z.e a subspace is reduced to a 
single value). 

We introduce in this article a generic method to im- 

plement this hybridization for any CSP on finite domains 

with the help of Constraint Logic Programming CLP(FD), 

but its use may be widespread to any problem whose vari- 

ables belong to x, assuming that a CLP(X) framework is 

provided. First, we recall briefly what CSP and genetic 

algorithms are, then we describe the components of our 

hybrid genetic algorithm: initialization of the population, 

operators (mutation and crossover) and evaluation. We 
conclude with an encouraging example and compare our 

method with similar approaches. 

11. CONTEXT 

We present in this section the two optimization tech- 

niques for which we introduce hybridization in the next 
section. 
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Fig. 1. A two-dimensional search space. The grey rectangles (sub- 
domains) are the individuals of the GA. Solutions are searched 

inside these sub-domains by the CSP. 

A. Constraints satisfaction problems (CSP) 

We consider here a CSP formed by ( X ,  D ,  C), X being 

the set of the n problem variables ( X I ,  X2 ...), D the set 

of their respective finite domains ( D ( X 1 ) ,  D(X2) ...) and 

C a set of relations between these variables, Le. the prob- 

lem constraints. For an  associated optimization problem, 

we also consider an objective function (or cost function) f 

and the constraint f ( X 1 ,  X2 ,  ...) > c (for a maximization 

problem) where c is some constant which evolves according 

to the optimization strategy. 

The CSP is formulated through the Constraint Logic 

Programming (CLP) paradigm [3] and is implemented with 

the ECLiPSesystem [4] which provides all the “classic” con- 

straints needed for CSPs: linear ones (#= #>. . .) and many 

others (alldistinct, element...), and allows to  easily de- 

fine new ones (fine and direct handling of the domains, the 

coroutining.. .). The maximize predicate allows to optimize 

linear expressions by integrating the problem solving goal 

(most of the time the instantiation of the variables, i.e. the 

labeling) into a brunch & bound algorithm. 

Note that the choice of CLP is arbitrary and that any 

other CSP solver could be used instead. However, efficiency 
does not directly rely on this choice given the fact that 

CLP systems usually include high quality algorithms for 

constraint satisfaction. 

B. Genetic algorithms 

In our approach, we use a genetic algorithm as an op- 

timization process. For a given optimization problem, an 
individual stands for a point of the search space and is as- 

sociated with its fitness to  a particular environment, Le .  

the corresponding value of the (possibly scaled) objective 

function. 

Thus, the use of a genetic algorithm to solve an opti- 

mization problem requires a data encoding to build gene 

strings (Le. chromosomes), some mechanism to initialize 

the population (usually uniformly distributed throughout 

the search space) and operators allowing to diversify the 

population (consequently to explore the search space) and 

to focus on the fittest individuals. All these components 

are described in the next section. 

111. A MIXED APPROACH 

We present in this section the components of our hybrid 

genetic algorithm designed to CSPs on finite domains. 

A. Chromosome 

An individual of the genetic algorithm is formed by a 

gene strings G1G2 ... Gn, i.e. its chromosome. Each gene of 

the chromosome is associated with a variable of the CSP 
and an individual represents a sub-problem as well as a so- 

lution. The gene Gi corresponding to  the variable Xi is a 

sub-domain (or a subset) of D ( X ; )  and lG;l is its cardinal- 

ity. The essential parameter of the algorithm p (0 < p < 1) 

is defined by the ratio of G; to D ( X ; )  cardinals: 

The degree of hybridization can thus “continuously” vary 

from a pure genetic algorithm, assuming that p is chosen 

small enough for the sub-domains G; to contain only one 

value, to a pure CSP solving with p = 1, i.e. Gi = D(X;). 
It may however be useful to provide different p ratios for 

each of the variables if the sizes of the initial domains are 

very disparate. 

The individuals of the first generation are build during 

the initialization of the genetic algorithm: a sub-domain of 

the needed size computed by the following formula’ 

lG;l = max{l,round(p lD(X; ) l ) }  

is randomly generated for each gene of each individual. 

B. Valuation 

The fitness of an individual is computed during the 

solving of the CSP restricted to the corresponding sub- 

domains: for an individual defined by the chromosome 

GIG2 ... G, the constraints X; E G; are added; the sub- 

CSP is then solved in a standard way by the labeling of 
the variables. If a solution is found, the fitness is simply 

computed by applying the objective function to the values 

of the instantiated variables. Otherwise, i. e. the sub-space 

GI x GZ x ... x G,  does not contain any solution, the in- 
dividual can be rejected or given a low fitness (possibly 0). 

The same kind of penalty is applied when the CSP becomes 

inconsistent as the Xi E Gi constraints are added. 

However, to  prove that a sub-space cannot provide any 

solution might be very time consuming and the maximum 

‘One value is at  least provided to each gene with this formula. 
Empty sub-domains would be of little interest. 
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TABLE I 

CLASSIC MUTATION AND CROSSOVER 

Variables 

L1,5,7 I 1,4,8 1) 1,3,4 I Second child of PI and P2 

time taken by the evaluation of the fitness is a critical data 

for a genetic algorithm. So a mechanism is provided within 

our algorithm to stop the labeling of the variables after 

some given delay. 

In the case of a true hybridization ( p  < l) ,  it is not 

necessary to perform the optimization during the solving 

of the sub-CSPs as described in section 11-A because the 

genetic algorithm handles it. 

C. Classic operators 

Genetic algorithms have traditionally used domain in- 

dependent representation, namely bit strings, to encode 

individuals chromosomes. However, for practical reasons 

of efficiency, many different representations are used which 

provide much better results, like real strings for instance. 

But the classic operators designed for bit strings [l] can 

be used with very little changes to handle various data 

representations. We describe here the transposed classical 

operators implemented in our algorithm. 

C. 1 Crossover 

As described in table I, the classic slicing crossover (or 

n-point slicing crossover) can be directly used with our en- 

coding. Actually this operator is not related to the gene 

representation, i.e. boolean values are not required. 

C.2 Mutation 

Classic mutation performs local moves on the individu- 

als, and a similar process can be applied on our sub-domain 

strings. 
Our mutation operator alters a randomly chosen gene by 

chan.ging some values of its sub-domain or by replacing it 

by a randomly generated new one. A gene is then able to 

explore its search space, i.e. the parts of size lGil of D ( X i )  
(assuming that Gi is the mutated gene), and an individual 

is consequently able to explore all its search space, which 

is an essential property of mutation. 
However, classic mutation may be interpreted in a more 

semantic way by relating the alteration of a bit to the com- 

plementary of a sub-domain in its domain2. But such an 

2Assuming p = 112 and the variables are boolean, “complemen- 
tary” mutation is strictly identical to bit strings mutation. 

~ 
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TABLE I1 

SET OFlIENTED CROSSOVER 

Parent 

Parent 

Union 

First child 

Rest 

1,7,5 I 7,4,8 I 1,5,2 I Second child 

operator would not keep the size of the sub-domains con- 

stant, increasing the dii’ficulty of the analysis of the algo- 

rithm, and possibly produce mutants which could be very 

far from their parents if p is not close from l / 2 .  Neverthe- 

less, next section describes a “set oriented” operator which 

can outperform classic ones on some problems. 

D. Set oriented operators 

Classic operators translated from the bit strings ones are 

very robust but not always very efficient. It is therefore of 

interest to design more semantic ones which care about the 

set-like structure of our genes. Classic set operators like 

union, intersection and complementation may drastically 

change the size of the genes and are consequently hardly 

suitable for our algorithm. 

We introduce a new “set oriented” crossover3 operator 

(as described in table 11): 

for each locus i. the union of the fathers sub-domains is 
1 2 

computed Gi:d,,, = Gi.,,,,, u G i F a l b e r ;  

then a subset of the right size is randomly taken from 

Gi:a,hcr to build the first child Giihzrd; 
the rest of Gi:mlber, i.e. Giyalh,,- Gikhlld1 makes up the first 

part of the second child GiZk,ld; 
if the size of Gi$,,ld is too small, a subset of the comple- 

mentary size is randomly taken from Gi:,,rd to fill Gi2Ckrld. 
This recombination oplxator “shuffles” the genes of the 

parents in a way similar to the uniform crossover (n-point 

crossover with chromosomes of size n)  and provides chil- 

dren as different as possible, re-using all the parents genes 

data and keeping constant sub-domains sizes. 

E. Operators guided by valuation 

The previous recombination operator keeps the parents 

domain values within the offspring but “forgets” the actual 

solution computed by the solving of the CSP. Crossover ef- 

ficiency may be increased for some problems by keeping the 

values corresponding ta, the CSP solution within the chil- 

dren. This mechanism can also be applied to the mutation 

operator in the same way. 

F. Other operators 

Further refinements can be provided to the operator: 

3Recombination operator would be a more suitable terminology, as 
our operator is far from biological crossover. 



e heuristics can sometimes be deduced from the objective 

function, like a mutation which alters genes by substituting 

values for greater ones taken from their initial domains if 

the objective function increases with the problem variables; 

interval sub-domains and operators that keep their struc- 

tures can be used if the notion of interval has a meaning 

for the treated problem; 

e combination of all the previous techniques might be used 

with some problems. 

Performances can be increased with these kinds of mech- 

anisms but too specific operators lack robustness and may 

only be used on small classes of problems, and too deter- 

minist ones reduce the exploration of the search space. 

G. The gamaximize procedure 

The hybridization is generic: only a CSP formulation on 

finite domains of the problem is needed; no other assump- 

tion is required. Within the CLP framework, the optimiza- 

tion process can thus be provided to the user by a predicate 

analogous to the standard maximize predicate: 

ga-maximize(Goa1, Variables , Eval , Rho) 

where Goal stands for the CSP searching procedure, Vari- 

ables for the list of finite domain variables of the problem 

and Eval for the evaluation of the solution computed by 

Goal. As well as for the standard maximize predicate, Goal 
is simply the labeling of the variables. Rho stands for our 

hybrization parameter p. 

G.l  Implementation 

The novelty of the implementation of our hybrid genetic 

algorithm lies in the evaluation of the individuals: as an 

individual is made up of sub-domains, the domain of each 

variable is restricted by adding the constraint (Xi E Gi) 

before Goal is called. If Goal is successful, Eval is the evalu- 

ation of the individual by the objective function, otherwise, 

its fitness is penalized (see section 111-B). 

G.2 Parameters setting 

Beside the classic parameters of a GA (size of the pop- 

ulation] number of generations or termination criterion, 

crossover and mutation probabilities, ...), our algorithm is 

parametrized by the degree of hybridization p which speci- 

fies the relative size of the sub-domains. All these parame- 

ters have default values in our implementation and can be 

easily modified. 

IV. APPLICATION 

We haved tested out our algorithm on a VRP (Vehi- 

cle Routing Problem) problem. VRP is a concoction of 

TSP (Travelling Salesman Problem) and scheduling prob- 
lem: several tasks must be done at distinct locations and 

within given time windows; each task can be executed by 

some skilled engineers; some tasks must be performed be- 

fore or at the same time as others; the problem lies in the 

production of a timetable for each ingeneers minimizing the 

time spent in travelling and waiting. We have chosen this 

problem for its intrinsic complexity and the huge size of its 

search space. 

A. Formulation 

We have naively formulated this problem into a CSP in 

the following way: 

0 Two domain variables are associated to  each task (i), one 

for the engineer who executes the task (Ei) and the other 

for the date corresponding to  the beginning of the task (z); 
the domains of the variables are specified (skilled engineers 

and time windows). 

The precedence and synchronisation constraints are ex- 

pressed on the T ; s  (equality and inequality built-in con- 

straints). 
With this formulation, the fact that an engineer cannot 

execute two tasks at the same time is tricky to express. 
The following constraint is therefore added for each couple 
of tasks ( i l j ) :  

E, = E3 (1) 

& T z + d , + t < T 3  ( 2 )  

& T 3 + d 3 + t < T z  (3 )  

(4) 

where constraint 1 is true if both tasks are executed by the 

same engineer; di (resp. d j )  is the duration of task i (resp. 

j ) ;  t is the time spent in travelling between the locations of 

the tasks; Constraint 4 stipulates that either the two tasks 

are not performed by the same engineer, either only one of 

constraints 2 and 3 is true. 

B. Results 

(1) + ( ( 2 )  " ( 3 ) )  

1600 

Set olciented crossover - 
Classical CrOrrOVer ---- 

1400 - 

1200 - 

iooo - 

800 - 

b o o  . 

400 - 

Fig. 2. Influence of p on the quality of the solution 

Figure 2 illustrates the influence of the degree of hy- 
bridization p on a 10-engineer 30-task instance of the VRP 

for the classic crossover and the set oriented crossover with 
a population size of 60 evolved during 50 generations] and 

probability 0.4 and 0.2 for crossover and mutation respec- 

tively. The graph represents the cost of the best individual 

for this minimization problem. 

The infinite costs stand for the inability of the genetic 

algorithm to generate feasible individuals for low values of 
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Fig. 3. Influence of crossover and mutation probabilities 

p ( p  < 0.15) corresponding to single valued domains (GA 

alone). The best solutions are obtained for p around 0.2 

and .the algorithm has low efficiency for p > 0.4 because 

the solving of the CSP does not optimize its solutions and 

individuals are much more alike for high values of p. The 

graph shows that the set oriented crossover operator out- 

performs the classic one on most of p values. 

Figure 3 shows the influence of crossover and mutation 

probabilities (Pc and Pm respectively) for the same prob- 
lem with the two crossover operators and p = 0.2. The 

parts of the graphs corresponding to very low mutation 

probabilities are truncated because the population hardly 

evolves with crossover alone. The overall superiority of the 

set oriented crossover is noticeable as the corresponding 

graph is smoother than the other one (more independent 

of P,: and Pm) for the lowest areas: 0.2 5 Pm 0.6 and 

0.0 5 Pc 5 0.4. We can also notice that the best results 

are obtained for high values of P,,, and low values of P,, 
which is not conventional for genetic algorithms. 

Finally, we may also notice that the same CSP formu- 

lation of this VRP problem solved with a standard search 

and branch&bound strategy provides a solution with cost 

1300 in roughly the same time as our hybrid GA and its 

best solution for a 50 times greater duration is only 1177 
(versus 387, best solution for the hybrid GA with fine tuned 

parameters). 

V. SIMILAR APPROACHES 

Other GA/CSP hybridization approaches have been ex- 

perimented: [5] integrates CSP into the GA operators to 

generate only feasible solutions and reports good results 

for the TSP with a mutation operator performing local im- 

provement (with CSP) and a crossover operator generat- 

ing new individuals whenever the children are not feasible 

solutions. [6] solves timetabling problems with a similar 

method using very specific operators. 

Our approach is more analogous to [7] which hybridizes 

a CSP with a Simplex algorithm: the method is generic 

and problem independent. 

VI. CONCLUSION 

We have introduced a novel optimization method which 

hybridizes CLP techniques within a genetic algorithm. Our 

algorithm can be applied to any CSP on finite domains. 

The first results are given and are encouraging enough to 

validate the approach. 
This work will be followed by other experimentations on 

various combinatorial optimization problems and in par- 

ticular on airflow traffic related problems [8]. Other ap- 

proaches are also envisaged: 

for some problem with two distinct “dimensions”, one 

of them can be treated by a GA and the other by a CSP 

(timetabling problem for instance, dates with the GA and 

rooms with the CSP); 

integration of a “repairing” CSP method [9] into the GA 

operators to produce feasible individuals. 
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