
HAL Id: hal-00937716
https://enac.hal.science/hal-00937716v1

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization by hybridization of a genetic algorithm
with constraint satisfaction techniques

Nicolas Barnier, Pascal Brisset

To cite this version:
Nicolas Barnier, Pascal Brisset. Optimization by hybridization of a genetic algorithm with constraint
satisfaction techniques. IEEE 1998, World Congress on Computational Intelligence, May 1998, An-
chorage, United States. pp 645 - 649, �10.1109/ICEC.1998.700115�. �hal-00937716�

https://enac.hal.science/hal-00937716v1
https://hal.archives-ouvertes.fr

Optimization by hybridization of a genetic

algorithm with constraint satisfaction techniques
Nicolas Barnier, Pascal Brisset

Abstract- We introduce a new optimization method based
on a Genetic Algorithm (GA) mixed with Constraint Sat-
isfaction Problem (CSP) techniques. The approach is de-
signed for combinatorial problems whose search spaces are

too large and/or objective functions too complex for usual
CSP techniques and whose constraints are too complex for

conventional genetic algorithm. The main idea is the han-

dling of sub-domains of the CSP variables by the genetic
algorithm. The population of the genetic algorithm is made
up of strings of sub-domains whose fitness are computed
through the resolution of the corresponding “sub-CSPs”
which are somehow much easier than the original problem.
We provide basic and dedicated recombination and mutation
operators with various degrees of robustness. The first set of
experimentations adresses a naive formulation of the Vehi-
cle Routing Problem (VRP) and the Radio Link Frequency
Assignement Problem (RLFAP). The results are quite en-
couraging as we outperform CSP techniques and genetic al-
gorithm alone.

Kegwords- Optimization, Constraint Satisfaction, Hy-
bridization

I. INTRODUCTION

Solving an optimization problem consists in exploring a

search space to maximize a given objective function. The

relative structural or size complexities of the search space

and the objective function lead to use drastically differ-

ent strategies. Roughly, we can assume that a determinist

method is suited to a small and/or complex search space

whereas a stochastic search strategy (simulated annealing,

genetic algorithm ...) is fitted to a large one.

In most cases, an optimization problem is naturally di-

videdi into two phases: the search of feasible solutions and

then the search of the solution with the lowest cost among

them. This division is more or less obvious during the

search according to the choice of the optimization method.

Genetic algorithms [l] are well suited to the quick and

globatl exploration of a large search space to optimize any

objective function (even a “black box” one, ie. no hy-

pothesis is required on the function) and are able to pro-

vide several solutions of “good quality”. In the case the

set of the feasible solutions is complex (L e . finding a fea-

sible solution is difficult), the feasibility can be intrinsic to

the chosen representation or integrated within the creation

of the chromosomes (initialization, mutation and crossover)

or within the objective function (an unfeasible solution will

be given a low fitness).

Constraints satisfaction techniques are fitted to highly

constrained problems for which the exhaustive exploration
of their search spaces are conceivable. Such a method pro-

Nicolas Barnier, Pascal Brisset, Ecole Nationale de I’Aviation
Civile, 7 avenue Edouard Belin, B.P. 4005, F-31055 Toulouse Cedex
4, France, E-mail: {barnier,brisset}Orecherche.enac.fr

vides naturally feasible solutions. By adding a dynamic
constraint on the cost of’the currently found solution, the

search can provide an optimal solution (cf. the maximize

predicate of Constraint Logic Programming systems like

CHIP[2]). This method ‘ensures optimality of the solution

(possibly with a given percentage).

However, there is no mch simple dichotomy among the

set of optimization problems: many problems are higly con-

strained and have large search spaces. These two features

exclude the direct and naive use of a genetic algorithm or

a CSP technique alone.

We suggest to take advantage of the two approaches by

hybridizing them:

use of constraint satisfaction to compute feasible solu-

tions on a subspace of the search space;

0 use of a genetic algorithm to explore the space formed by

the set of these subspaces and perform the optimization.

The underlying idea is illustrated in figure 1 (in the par-

ticular case of a problem with two variables X I and X z
constrained in interval dlomains): the dark areas are indi-

viduals of the population of the genetic algorithm which

correspond to subspaces of the search space; for each sub-

space, a solution is coniputed with the associated “sub-

CSP”. An individual does not necessarily correspond to a

solution and two different individuals may correspond to

the same solution. The ratio of the size of a subspace to

the size of the whole search space (called p afterwards) is

the essential parameter of the hybridization : one can con-

tinuously pass from a pure CSP search (p = 1) to a pure

stochastic search (p = 0, z.e a subspace is reduced to a
single value).

We introduce in this article a generic method to im-

plement this hybridization for any CSP on finite domains

with the help of Constraint Logic Programming CLP(FD),

but its use may be widespread to any problem whose vari-

ables belong to x, assuming that a CLP(X) framework is

provided. First, we recall briefly what CSP and genetic

algorithms are, then we describe the components of our

hybrid genetic algorithm: initialization of the population,

operators (mutation and crossover) and evaluation. We
conclude with an encouraging example and compare our

method with similar approaches.

11. CONTEXT

We present in this section the two optimization tech-

niques for which we introduce hybridization in the next
section.

0-7803-4869-9/98 $10.0001998 JEEE 645

http://barnier,brisset}Orecherche.enac.fr

Subsp ce I individ a1

7 7

I \ m Sub-domainXl\

x1

Fig. 1. A two-dimensional search space. The grey rectangles (sub-
domains) are the individuals of the GA. Solutions are searched

inside these sub-domains by the CSP.

A. Constraints satisfaction problems (CSP)

We consider here a CSP formed by (X , D , C), X being

the set of the n problem variables (X I , X2 ...), D the set

of their respective finite domains (D (X 1) , D(X2) ...) and

C a set of relations between these variables, Le. the prob-

lem constraints. For an associated optimization problem,

we also consider an objective function (or cost function) f

and the constraint f (X 1 , X2 , ...) > c (for a maximization

problem) where c is some constant which evolves according

to the optimization strategy.

The CSP is formulated through the Constraint Logic

Programming (CLP) paradigm [3] and is implemented with

the ECLiPSesystem [4] which provides all the “classic” con-

straints needed for CSPs: linear ones (#= #>. . .) and many

others (alldistinct, element...), and allows to easily de-

fine new ones (fine and direct handling of the domains, the

coroutining.. .). The maximize predicate allows to optimize

linear expressions by integrating the problem solving goal

(most of the time the instantiation of the variables, i.e. the

labeling) into a brunch & bound algorithm.

Note that the choice of CLP is arbitrary and that any

other CSP solver could be used instead. However, efficiency
does not directly rely on this choice given the fact that

CLP systems usually include high quality algorithms for

constraint satisfaction.

B. Genetic algorithms

In our approach, we use a genetic algorithm as an op-

timization process. For a given optimization problem, an
individual stands for a point of the search space and is as-

sociated with its fitness to a particular environment, Le .

the corresponding value of the (possibly scaled) objective

function.

Thus, the use of a genetic algorithm to solve an opti-

mization problem requires a data encoding to build gene

strings (Le. chromosomes), some mechanism to initialize

the population (usually uniformly distributed throughout

the search space) and operators allowing to diversify the

population (consequently to explore the search space) and

to focus on the fittest individuals. All these components

are described in the next section.

111. A MIXED APPROACH

We present in this section the components of our hybrid

genetic algorithm designed to CSPs on finite domains.

A. Chromosome

An individual of the genetic algorithm is formed by a

gene strings G1G2 ... Gn, i.e. its chromosome. Each gene of

the chromosome is associated with a variable of the CSP
and an individual represents a sub-problem as well as a so-

lution. The gene Gi corresponding to the variable Xi is a

sub-domain (or a subset) of D (X ;) and lG;l is its cardinal-

ity. The essential parameter of the algorithm p (0 < p < 1)

is defined by the ratio of G; to D (X ;) cardinals:

The degree of hybridization can thus “continuously” vary

from a pure genetic algorithm, assuming that p is chosen

small enough for the sub-domains G; to contain only one

value, to a pure CSP solving with p = 1, i.e. Gi = D(X;).
It may however be useful to provide different p ratios for

each of the variables if the sizes of the initial domains are

very disparate.

The individuals of the first generation are build during

the initialization of the genetic algorithm: a sub-domain of

the needed size computed by the following formula’

lG;l = max{l,round(p lD(X;) l) }

is randomly generated for each gene of each individual.

B. Valuation

The fitness of an individual is computed during the

solving of the CSP restricted to the corresponding sub-

domains: for an individual defined by the chromosome

GIG2 ... G, the constraints X; E G; are added; the sub-

CSP is then solved in a standard way by the labeling of
the variables. If a solution is found, the fitness is simply

computed by applying the objective function to the values

of the instantiated variables. Otherwise, i. e. the sub-space

GI x GZ x ... x G, does not contain any solution, the in-
dividual can be rejected or given a low fitness (possibly 0).

The same kind of penalty is applied when the CSP becomes

inconsistent as the Xi E Gi constraints are added.

However, to prove that a sub-space cannot provide any

solution might be very time consuming and the maximum

‘One value is at least provided to each gene with this formula.
Empty sub-domains would be of little interest.

646

TABLE I

CLASSIC MUTATION AND CROSSOVER

Variables

L1,5,7 I 1,4,8 1) 1,3,4 I Second child of PI and P2

time taken by the evaluation of the fitness is a critical data

for a genetic algorithm. So a mechanism is provided within

our algorithm to stop the labeling of the variables after

some given delay.

In the case of a true hybridization (p < l) , it is not

necessary to perform the optimization during the solving

of the sub-CSPs as described in section 11-A because the

genetic algorithm handles it.

C. Classic operators

Genetic algorithms have traditionally used domain in-

dependent representation, namely bit strings, to encode

individuals chromosomes. However, for practical reasons

of efficiency, many different representations are used which

provide much better results, like real strings for instance.

But the classic operators designed for bit strings [l] can

be used with very little changes to handle various data

representations. We describe here the transposed classical

operators implemented in our algorithm.

C. 1 Crossover

As described in table I, the classic slicing crossover (or

n-point slicing crossover) can be directly used with our en-

coding. Actually this operator is not related to the gene

representation, i.e. boolean values are not required.

C.2 Mutation

Classic mutation performs local moves on the individu-

als, and a similar process can be applied on our sub-domain

strings.
Our mutation operator alters a randomly chosen gene by

chan.ging some values of its sub-domain or by replacing it

by a randomly generated new one. A gene is then able to

explore its search space, i.e. the parts of size lGil of D (X i)
(assuming that Gi is the mutated gene), and an individual

is consequently able to explore all its search space, which

is an essential property of mutation.
However, classic mutation may be interpreted in a more

semantic way by relating the alteration of a bit to the com-

plementary of a sub-domain in its domain2. But such an

2Assuming p = 112 and the variables are boolean, “complemen-
tary” mutation is strictly identical to bit strings mutation.

~

647

TABLE I1

SET OFlIENTED CROSSOVER

Parent

Parent

Union

First child

Rest

1,7,5 I 7,4,8 I 1,5,2 I Second child

operator would not keep the size of the sub-domains con-

stant, increasing the dii’ficulty of the analysis of the algo-

rithm, and possibly produce mutants which could be very

far from their parents if p is not close from l / 2 . Neverthe-

less, next section describes a “set oriented” operator which

can outperform classic ones on some problems.

D. Set oriented operators

Classic operators translated from the bit strings ones are

very robust but not always very efficient. It is therefore of

interest to design more semantic ones which care about the

set-like structure of our genes. Classic set operators like

union, intersection and complementation may drastically

change the size of the genes and are consequently hardly

suitable for our algorithm.

We introduce a new “set oriented” crossover3 operator

(as described in table 11):

for each locus i. the union of the fathers sub-domains is
1 2

computed Gi:d,,, = Gi.,,,,, u G i F a l b e r ;

then a subset of the right size is randomly taken from

Gi:a,hcr to build the first child Giihzrd;
the rest of Gi:mlber, i.e. Giyalh,,- Gikhlld1 makes up the first

part of the second child GiZk,ld;
if the size of Gi$,,ld is too small, a subset of the comple-

mentary size is randomly taken from Gi:,,rd to fill Gi2Ckrld.
This recombination oplxator “shuffles” the genes of the

parents in a way similar to the uniform crossover (n-point

crossover with chromosomes of size n) and provides chil-

dren as different as possible, re-using all the parents genes

data and keeping constant sub-domains sizes.

E. Operators guided by valuation

The previous recombination operator keeps the parents

domain values within the offspring but “forgets” the actual

solution computed by the solving of the CSP. Crossover ef-

ficiency may be increased for some problems by keeping the

values corresponding ta, the CSP solution within the chil-

dren. This mechanism can also be applied to the mutation

operator in the same way.

F. Other operators

Further refinements can be provided to the operator:

3Recombination operator would be a more suitable terminology, as
our operator is far from biological crossover.

e heuristics can sometimes be deduced from the objective

function, like a mutation which alters genes by substituting

values for greater ones taken from their initial domains if

the objective function increases with the problem variables;

interval sub-domains and operators that keep their struc-

tures can be used if the notion of interval has a meaning

for the treated problem;

e combination of all the previous techniques might be used

with some problems.

Performances can be increased with these kinds of mech-

anisms but too specific operators lack robustness and may

only be used on small classes of problems, and too deter-

minist ones reduce the exploration of the search space.

G. The gamaximize procedure

The hybridization is generic: only a CSP formulation on

finite domains of the problem is needed; no other assump-

tion is required. Within the CLP framework, the optimiza-

tion process can thus be provided to the user by a predicate

analogous to the standard maximize predicate:

ga-maximize(Goa1, Variables , Eval , Rho)

where Goal stands for the CSP searching procedure, Vari-

ables for the list of finite domain variables of the problem

and Eval for the evaluation of the solution computed by

Goal. As well as for the standard maximize predicate, Goal
is simply the labeling of the variables. Rho stands for our

hybrization parameter p.

G.l Implementation

The novelty of the implementation of our hybrid genetic

algorithm lies in the evaluation of the individuals: as an

individual is made up of sub-domains, the domain of each

variable is restricted by adding the constraint (Xi E Gi)

before Goal is called. If Goal is successful, Eval is the evalu-

ation of the individual by the objective function, otherwise,

its fitness is penalized (see section 111-B).

G.2 Parameters setting

Beside the classic parameters of a GA (size of the pop-

ulation] number of generations or termination criterion,

crossover and mutation probabilities, ...), our algorithm is

parametrized by the degree of hybridization p which speci-

fies the relative size of the sub-domains. All these parame-

ters have default values in our implementation and can be

easily modified.

IV. APPLICATION

We haved tested out our algorithm on a VRP (Vehi-

cle Routing Problem) problem. VRP is a concoction of

TSP (Travelling Salesman Problem) and scheduling prob-
lem: several tasks must be done at distinct locations and

within given time windows; each task can be executed by

some skilled engineers; some tasks must be performed be-

fore or at the same time as others; the problem lies in the

production of a timetable for each ingeneers minimizing the

time spent in travelling and waiting. We have chosen this

problem for its intrinsic complexity and the huge size of its

search space.

A. Formulation

We have naively formulated this problem into a CSP in

the following way:

0 Two domain variables are associated to each task (i), one

for the engineer who executes the task (Ei) and the other

for the date corresponding to the beginning of the task (z);
the domains of the variables are specified (skilled engineers

and time windows).

The precedence and synchronisation constraints are ex-

pressed on the T ; s (equality and inequality built-in con-

straints).
With this formulation, the fact that an engineer cannot

execute two tasks at the same time is tricky to express.
The following constraint is therefore added for each couple
of tasks (i l j) :

E, = E3 (1)

& T z + d , + t < T 3 (2)

& T 3 + d 3 + t < T z (3)

(4)

where constraint 1 is true if both tasks are executed by the

same engineer; di (resp. d j) is the duration of task i (resp.

j) ; t is the time spent in travelling between the locations of

the tasks; Constraint 4 stipulates that either the two tasks

are not performed by the same engineer, either only one of

constraints 2 and 3 is true.

B. Results

(1) + ((2) " (3))

1600

Set olciented crossover -
Classical CrOrrOVer ----

1400 -

1200 -

iooo -

800 -

b o o .

400 -

Fig. 2. Influence of p on the quality of the solution

Figure 2 illustrates the influence of the degree of hy-
bridization p on a 10-engineer 30-task instance of the VRP

for the classic crossover and the set oriented crossover with
a population size of 60 evolved during 50 generations] and

probability 0.4 and 0.2 for crossover and mutation respec-

tively. The graph represents the cost of the best individual

for this minimization problem.

The infinite costs stand for the inability of the genetic

algorithm to generate feasible individuals for low values of

648

r Influence of Pm and Pc / Classic crossover

600

550

500

PlCYesr

450

400

-
Influence of Fm and Pc / Set oriented crossover

-

Fig. 3. Influence of crossover and mutation probabilities

p (p < 0.15) corresponding to single valued domains (GA

alone). The best solutions are obtained for p around 0.2

and .the algorithm has low efficiency for p > 0.4 because

the solving of the CSP does not optimize its solutions and

individuals are much more alike for high values of p. The

graph shows that the set oriented crossover operator out-

performs the classic one on most of p values.

Figure 3 shows the influence of crossover and mutation

probabilities (Pc and Pm respectively) for the same prob-
lem with the two crossover operators and p = 0.2. The

parts of the graphs corresponding to very low mutation

probabilities are truncated because the population hardly

evolves with crossover alone. The overall superiority of the

set oriented crossover is noticeable as the corresponding

graph is smoother than the other one (more independent

of P,: and Pm) for the lowest areas: 0.2 5 Pm 0.6 and

0.0 5 Pc 5 0.4. We can also notice that the best results

are obtained for high values of P,,, and low values of P,,
which is not conventional for genetic algorithms.

Finally, we may also notice that the same CSP formu-

lation of this VRP problem solved with a standard search

and branch&bound strategy provides a solution with cost

1300 in roughly the same time as our hybrid GA and its

best solution for a 50 times greater duration is only 1177
(versus 387, best solution for the hybrid GA with fine tuned

parameters).

V. SIMILAR APPROACHES

Other GA/CSP hybridization approaches have been ex-

perimented: [5] integrates CSP into the GA operators to

generate only feasible solutions and reports good results

for the TSP with a mutation operator performing local im-

provement (with CSP) and a crossover operator generat-

ing new individuals whenever the children are not feasible

solutions. [6] solves timetabling problems with a similar

method using very specific operators.

Our approach is more analogous to [7] which hybridizes

a CSP with a Simplex algorithm: the method is generic

and problem independent.

VI. CONCLUSION

We have introduced a novel optimization method which

hybridizes CLP techniques within a genetic algorithm. Our

algorithm can be applied to any CSP on finite domains.

The first results are given and are encouraging enough to

validate the approach.
This work will be followed by other experimentations on

various combinatorial optimization problems and in par-

ticular on airflow traffic related problems [8]. Other ap-

proaches are also envisaged:

for some problem with two distinct “dimensions”, one

of them can be treated by a GA and the other by a CSP

(timetabling problem for instance, dates with the GA and

rooms with the CSP);

integration of a “repairing” CSP method [9] into the GA

operators to produce feasible individuals.

REFERENCES

[l] David Goldberg, Genetrc Algorathms, Addison Wesley, 1989.
[2] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, and

T. Graf, “The constraint logic programming language CHIP,” in
Int. Conf. Fifth Generation Computer Systems, Tokyo, Japan,

[3] P. Van Hentenryck, Constraint Satisfaction zn Logic Program-
mzng, MIT Press, Cambridge, MA, 1989.

[4] “ECL’PSe user manual (ECRC Common Logic Programming
System),” 1992.

[5] Volker Kuchenhoff, “l\iovel search and constraints - an in-
tegration,” Technical Report ECRC-CORE-93-9, European
Computer-Industry Research Centre, 1993.

[6] Edmund K. Burke, Daw G. Elliman, and Rupert F. Weare, “A
hybrid genetic algorithm for highly constrained timetabling prob-
lems,” Tech. Rep., University of Nottingham, 1995, Technical
Report NOTTCS-TR-95 -8.

[7] Hajian M T, El-Sakkout H H, Wallace M G, Richards E B, and
Lever J MI “Towards a icloser integration of finite domain propa-
gation and simplex-based algorithms,” 1995, AI Maths 96 Florida

Atlantic University.
[8] Jean-Marc Alliot, “Techniques d’optimisation stochastique ap-

pliqukes aux problkmes du contr6le akrien,” Thkse d’habilitation,

[9] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip
Laird, “Minimizing conflicts: a heurlstic repair method for con-
straint satisfaction and scheduling problems,” in Constraint-based
Reasonzng, Eugene C. Freuderand Alan K. Mackworth, Eds. MIT
Press, 1994.

1988, VOI. 1, pp. 693-702.

Universith de Toulouse Paul Sabatier, 1996.

649

