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Abstract

Multi-sensor information fusion for state estimation is
a well studied problem in robotics, with many applica-
tions and well known benefits. While classical methods
for information fusion, based on information theoretic
frameworks, provide good performance in optimal op-
eration context, they show a deficiency in their ability
to evaluate and take into account sensor measurements
validity. As a consequence, these approaches may use
erroneous information from a sensor and ruin the ben-
efits of sensor redundancy.

This work begins to address this problem by learn-
ing context-dependant knowledge about sensor relia-
bility. This knowledge is later used as a decision rule
in the fusion task in order to dynamically select the
most appropriate subset of sensors. For this purpose we
consider the use of the Mixture of Experts framework
(ME), traditionally applied to regression and classifica-
tion problems. In our context each expert is a Kalman
filter fed by a subset of sensors, and a gating network
serves as a mediator between individual filters, basing
its decision on sensor inputs and additional information
needed for reasoning about the operation context. The
performance of this model is evaluated in the context
of UAV take-off/landing task for altitude estimation.

Keywords: Sensor selection, Mixture of Experts
Framework, Learning, UAV.

1 Introduction

State estimation is one of the main challenges in
robotics. For many systems, it relies on multiple sen-
sors, each one exhibiting an inherent observation un-
certainty, operating range, and context dependent per-

formance. Uncertainty due to the observation noise
received considerable attention over past decades and
is commonly handled using Bayesian filtering [TBF05].
It is also well known that the use of redundant sensors
significantly improves estimation accuracy and reliabil-
ity. However, such methods do not provide any satisfy-
ing way to assess the validity of sensor measurements.

In the context of multi-sensor state estimation, most
attempts to deal with this issue lead to self-contained
systems, relying on information theoretic framework
[SBP+07] or rejection schemes designed after experi-
ence on the system behaviour [TSL+12]. Only little
work has been done in view of introducing knowledge
about the contextual information in a generic frame-
work for sensor reliability assessment. This work is mo-
tivated by the fact that an intelligent system should not
only be able to select the sensor -or subset of sensor-
based on an online performance measure, but should
also encode knowledge about the reliability of a percep-
tion modality according to the current specific context.

This implies the ability for the system to discover
the implicit operation contexts the robot is likely to en-
counter, based on the a priori unknown performances of
each sensor in these contexts. Attributing belief about
the reliability of a sensor in these contexts then require
a complex reasoning on information acquired about the
environment. Except for simple cases (reduced set of
sensors, known environment) we can not easily imple-
ment these decision rules by hand. Addressing this
problem introduces the need for such a system to be
able to learn by itself how to achieve the sensor selec-
tion task. For this purpose, we propose to make use
of a supervised learning algorithm, in order to learn a
mapping from sensors measurements input space (and
any other relevant information) to sensors reliability
probabilities.
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Figure 1: The basic mixture of experts framework

A well-designed robotic platform should exhibit vari-
ous perception modalities relying on different but com-
plementary physical principles. Consequently the set
of perception modalities embedded on a robot does not
provide direct commensurate measurements, and it is
often easier and more modular to fuse information at
a state vector level [HL97]. Furthermore, binding dif-
ferent subsets of sensors to different estimation filters
allows us to map the sensor selection problem to the
bank of Kalman filter approach. This method assumes
that optimal filtering can be expressed by dynamically
selecting the most suitable filter among a bank of fil-
ters. This approach emerged with the Magill’s filter
bank [Mag65], and has been subsequently improved
leading to general pseudo Bayes (GPB) methods and
interacting multiple models (IMM) [BBS88]. The IMM
received a lot of attention as it provides computational
efficiency compared to GPB methods. Although some
authors decided to augment the IMM with context-
dependent information [SW09], this algorithm funda-
mentally relies on the exploitation of internal estimates
and a known transition probability matrix between dif-
ferent filter models. Thus introduction of a knowl-
edge about context dependent model reliability is not
straightforward, especially if the user wants the system
to learn this information.

Aiming at learning how to combine some comple-
mentary experts, the ME framework lends itself very
well to the problem as it basically computes an optimal
output through a weighted sum of individual experts.
To achieve this mediation task, the ME relies on a gat-
ing network in charge of providing gating probabilities,
equivalent to reliability coefficients over the set of ex-
perts (See Fig. 1). An important feature of the stan-
dard ME framework is its ability to learn the gating
framework parameters as well as the expert models pa-
rameters through the use of simple learning methods.

This approach is known to be an efficient alternative
to the filter bank approach [CBG98] [CBG97].
Based on the two following contributions :

• Application of the localized gating network to the
mixture of kalman filters

• Application of the bank of kalman filter approach
for implicit sensor selection

this article aim at showing how the mixture of kalman
filter for implicit sensor selection can be applied to the
altitude estimation task for a UAV.
The remainder of the paper is organized as follows.

Section 2 introduces ME framework and concept of
adaptive kalman filtering for sensor selection. Section
3 describes motivations for using the ME model in our
test case scenario. It then focuses on gating model and
training phase. Section 4 conveys the experimental re-
sults obtained for both simulation and real data sce-
nario. Concluding remarks are finally made on section
5.

2 Theoretical Background

2.1 The mixture of experts framework

The mixture of experts approach basically consists in
decomposing a complex problem into subtasks, each of
which being handled by an appropriate expert. Tradi-
tionally used for regression or classification problems,
the model learns to split the input space into overlap-
ping regions within which assigned experts are active.
The standard ME framework [JJNH91] consists in a

set of K experts modules and a gating network (See
Fig. 1). Each expert k = 1...K associated with param-
eters λk looks at input vector y and compute a local
output xk through independent function fk(λk, y). In
a probabilistic interpretation the output of an expert k
can be viewed as the mean of a probability distribution
P (x|y, λk) with x the desired target value associated
to sample y. Making the assumption that the different
experts may be more competent in different regions
of the input space (i.e. they have higher probability
to produce the desired target x), the gating network
mediates the outputs of the bank of experts. For this
purpose the gating network produces for each expert k,
a probability of its output xk to be equal to the desired
output x. This results in a set of gating probabilities
gk weighting the output of all experts while satisfying
constraints gk ≥ 0, k = 1...K, and

∑K
k=1 gk = 1.

Given an input vector y and a target vector x, the
probability of observing x is consequently written in
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terms of gating probabilities and experts outputs (us-
ing product rule) as

P (x|y,Θ,Λ) =

K∑
k=1

P (x, k|y,Θ,Λ)

=
K∑

k=1

P (k|y,Θ)P (x|k, y,Λ)

=
K∑

k=1

gk(y, θk)P (x|y, λk) (1)

where {Θ,Λ} denotes the set of all parameters, with
Θ = {θk, k = 1...K} the set of gating parameters and
Λ = {λk, k = 1...K} the set of experts parameters.
ME implementations then differ in 3 main points:

the experts model, the gating model, and the infer-
ence method. More information about the different
implementations can be found in [YWG12]. Our model
for the gating framework will be justified in section 2,
and expert models are set as Kalman filter in our case.
In this paper we will make use of a common learning
method based on the maximum likelihood principle.
This method is quickly described hereafter.
Given a training set {x,y} we try to maximize the

likelihood L of the data set with respect to the model
parameters. If samples are considered identically inde-
pendently distributed, this is equivalent to maximize:

L =
∏
n

p(xn, yn)

We then define the usual cost function C as the negative
log of the likelihood function, such that maximizing
likelihood is now equivalent to minimize C:

C = −
∑
n

ln(p(xn|yn))

Different methods for determining max likelihood
have been developed. The standard gradient descent
methods can be applied. More recently, sampling,
variational inference and several Expectation Maxi-
mization (EM) algorithms have emerged [YWG12] and
shave shown good performances.

2.2 Adaptive Kalman filtering for sen-
sor selection

We implicitly solve the sensor selection problem
through the filter bank approach. In classical imple-
mentations, the bank is composed of a finite number
of filters differing in transition model, transition noise

and observation noise. A weighting function then as-
signs weight factors to the output of each individual
filter, giving highest weight value to the best perform-
ing filter. In our case, models differ only in observa-
tion matrices, acting as a selector on the sensors, each
of which being associated with the corresponding ob-
servation noise matrix (See Fig. 2). By this mean we
implicitly select the most appropriate subset of sensors
through the filter selection process.

Figure 2: Mixture of experts framework for sensor se-
lection. Each expert (filter) can be wired to one or a
subset of sensors. The gating network can either share
experts inputs, or use any useful additional information
for context assessment.

It is also important to emphasize that, as opposed to
classical bank of filters techniques, the ME approach
does not assume that the optimal estimator can be
obtained by switching between models according to a
known transition matrix. From a practical point of
view, the ME approach is also computationally faster.

3 ME framework for sensor se-
lection

3.1 Motivations

A micro-UAV is often brought to deal with changing
environment. The simple take-off and landing phase of
a micro-UAV already reveals many different regimes in
term of sensor performance for estimating altitude. Ul-
trasonic sensors are for example quite reliable and ac-
curate until they reach a given maximum range. They
also easily provide outliers measurements due to wrong
reflection or when emitted signal is lost. Vision may
start to provide information after reaching an unknown
altitude, depending on the camera characteristics like
the angle of view, and on the ground texture. Baro-
metric pressure sensors provide wide measuring range
with quite constant accuracy but also require to esti-
mate a bias due to changing atmospheric conditions,
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while GPS provide signal dependant precision, and is
more likely to be reliable for high altitudes, also de-
pending on environment characteristics (if navigation
occurs in urban environment or open environment for
example). These specificities raise the need to create
decision rules for selecting an active sensor subset given
a specific context.
In [TSL+12] the authors report that environment

transition results in outliers the classical methods can
not reject. Therefore, a mechanism for sensor selection
is proposed, giving ability to the system to switch to
the sensor that works well in the current environment.
This selection mechanism relies on the strong assump-
tion that the sensor with the smallest measurement
variance is the more reliable in the current environ-
ment. Even if this selection method turns to be effi-
cient enough in the specific context of outdoor/indoor
transition with a particular sensor setup, we can un-
derstand that this self-contained decision system is not
reliable for different types of environment transitions,
or for different sensors. In the case of altitude estima-
tion, it would inevitably favour ultra-sonic sensor when
maximum range is reached, the sensor providing con-
stant but erroneous altitude value with small variance.
The motivation for this work is to benefit from the

ME gating network ability either to share the experts
inputs, or to wire additional connections (See Fig.
2). This easily allows us to base decision on context-
dependent information of any kind. Under the assump-
tion that our training set contains enough samples, the
learned gating network then ensures adaptation to the
different environments, providing a partial assessment
of sensor performances.
The learning step also provides modularity in terms

of sensor configuration as the model automatically
learns adapted decision boundaries when sensors are
added or removed, hence decreasing the engineering
needs of hardware configuration modification.

3.2 Using Localized gating network to
encode context-dependent decision
rules

Besides adapting the perception modalities, we also
aim at switching smoothly between experts. This
requirement especially makes sense in flight context,
where hard transitions between sensors (consequently
between estimates) are not admissible, as it directly im-
pacts the flight stability as well as the robot safety in
cluttered environment. In the standard model, the gat-
ing network is a single layer linear network, hence the
decision boundaries consist of ’soft’ hyperplanes and

inevitably creates overlapping regions [RG98], within
which only one expert may be needed (i.e. only one
sensor subset is effective).
Consequently we adopt a specific model for the gat-

ing network, known as localized ME [XJH95]. This
modified gating network consists of normalized Gaus-
sian kernels (or any density function from the exponen-
tial family) :

gk(y, θk) = P (k|y) = αkP (y|θk)∑K
j=1 αjP (y|θj)

(2)

with

P (y|θk) =
1

(2π)d/2| Σk |1/2
exp

(
−
(y −mk)

TΣ−1
k (y −mk)

2

)

where θk = {mk,Σk} the mean and variance of the
Gaussian kernel distribution.
The Gaussian kernels now allow us to divide the

input space into soft hyper-ellipsoids. These ellip-
soids can overlap, or create localized regions of exper-
tise where a single sensor subset is trustworthy. The
choice of Gaussian kernels also have consequences on
the learning step, as it conducts to a one-pass maxi-
mization step when using the EM algorithm. The con-
vergence rate of EM algorithm is also empirically and
theoretically proven to be faster than gradient ascent
methods [JX93]. Associated to the Gaussian kernels,
it provides guaranteed convergence due to the single
loop maximization step (as opposed to the method de-
veloped in [Jor93] which consists in a double-loop EM).
For this reason we decide to learn the gating param-

eters with EM algorithm.

3.3 Learning the mixture parameters

The basic idea of the EM algorithm is to make the as-
sumption that some variables are hidden, in our case
the probability that the nth target sample xn was gen-
erated by expert k. Hence we introduce an indicator
variable z :

znj =

{
1 if target sample xn is generated by expert j

0 otherwise

This hidden variable induces mutual competition
among experts. It also models the existence of un-
known operating contexts which for different subsets of
experts are reliable. We complete maximum likelihood
estimation on the joint density p(x, y). Rewriting equa-
tion (1) with the new gating function and noting the
kth expert output conditional density function φk(x|y):

p(x|y,Θ,Λ) =
K∑

k=1

αkP (y|θk)∑K
j=1 αjP (y|θj)

φk(x|y) (3)
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we obtain joint density

p(x, y) =

K∑
k=1

αkP (y|θk)φk(x|y) (4)

by making use of Baye’s rule on equation (2) to obtain

p(y) =
∑K

j=1 αjP (y|θj).
Finally, introducing the indicator variable z to me-

diate mutual exclusive experts, the joint distribution
over hidden and observed variables take the form

p(x, y, z) =

K∏
k=1

(αkP (y|θk)φk(x|y))zk (5)

which, by maximum likelihood, leads to the cost
function:

C = −
∑
n

K∑
k=1

znk ln(αkP (y|θk)φk(x|y)) (6)

Now the specificity of EM algorithm enters. In the
first step we replace the hidden variable z by its ex-
pected value. This is the Expectation step:

E(znk ) := p(znk = 1|xn, yn)

=
p(xn|znk = 1, yn)p(znk = 1|yn)

p(xn|yn)

=
αkP (yn|θk)φk(x

n|yn)∑K
j=1 αjP (yn|θj)φj(xn|yn)

= hk(x
n, yn)

(7)

Then we maximize the expectation of the cost func-
tion by substituting zk by its expectation hk(x, y).
This is the Maximization step:

E(C) = −
∑
n

K∑
k=1

hk(x
n, yn)ln(αkP (yn|θk)φk(x

n|yn))

= −
∑
n

K∑
k=1

hk(x
n, yn)ln(αkP (yn|θk))

−
∑
n

K∑
k=1

hk(x
n, yn)ln(φk(x

n|yn)) (8)

These two terms can be minimized separately. The
first one corresponds to minimizing the cost function
relative to gating parameters and the last term corre-
sponds to the expert network parameters.

3.4 Achieving mixture of kalman filters

In our context each expert is a particular Kalman fil-
ter providing its own estimation based on observation

input ynk and parameters λk describing specific sen-
sor observation noise and observation selection matrix.
Hence φk(x

n|yn) is obtained by evaluating the output
distribution of the kth Kalman filter at point xn. The
maximization step then consists only in minimizing the
first term of result (8). Setting partial derivatives rel-
ative to αk (and using Lagrangian multiplier to intro-
duce constraint

∑
k αk = 1), mk and Σk to zero, we

obtain new estimates [RG98]:

αk =
1

N

∑
n

hk(x
n, yn) (9)

mk =

∑
n hk(x

n, yn)yn∑
n hk(xn, yn)

(10)

Σk =
1

d

∑
n hk(x

n, yn)‖ yn −mk ‖2∑
n h(x

n, yn)
(11)

Using these new parameters, we then repeat the ex-
pectation and maximization step until convergence, i.e.
change in the parameter values becomes insignificant.
As we can see, introducing the hidden variable z

has two benefits. It models the existence of different
regimes our system is likely to encounter, and at the
same time it fosters competition among experts, based
on the assumption that only one expert is responsible
for a sample {xn, yn}.

One common problem with mixture of Kalman fil-
ters is that the exact belief state grows exponentially
in time. If we consider a set of K filters and an ob-
servation length T , then the exact distribution of the
state is a mixture of KT Gaussian distributions. To
deal with this exponential growth we use the GPB col-
lapsing method of order 1 (GPB1), and approximate
the mixture of filters output distribution with a single
Gaussian distribution. At step n, if each filter k pro-
vides an output distribution of mean µk and variance
σk we obtain the mixture distribution mean µmix and
variance σmix [BSLK01]:

µmix =

K∑
k=1

gkµk

σmix =
K∑

k=1

gk[σk + (µk − µmix)(µk − µmix)
T ]

The next transition step is then based on this mixture
output, hence accumulating the error introduced by
the approximation at each time step. However, it has
been shown in [BK98] that the process error remains
bounded indefinitely, avoiding the mixture output to
become irrelevant.
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At runtime, for each time step, we first compute the
shared transition step and evaluate weights gk. As ob-
served in section 4 the weights locally converge to bi-
nary values, giving us the opportunity to save compu-
tation time by evaluating the update steps for activated
experts only. Finally, as usually a single expert is acti-
vated, the computation time required by this approach
is similar to a basic Kalman filter, with extra computa-
tions due to gating weights and collapsing evaluation.
Some drawbacks of the approach are now discussed.

First of all, we saw that the gating network inputs are
directly wired to the sensor network. For many sen-
sors, including vision and laser scan, the dimension of
raw data (for example the number of pixels for a cam-
era) would require high dimension Gaussian kernels,
conducing to infeasible gating weights computations.
In this case, information should be resumed in pre-
extracted features. These features can be specifically
extracted for the gating function, or the features al-
ready required by the filtering layer.
An other constraint, directly imposed by the nature

of the Gaussian kernels, is the unimodal distribution
of the regions of expertise. However, some specific sen-
sors may need to be active in separate regions of input
space. This would require to model gating probabili-
ties with more complex models, like Gaussian mixture
models or Gaussian processes [YWG12]. In the case
of altitude estimation, we will however notice that the
localized Gaussian kernels provide sufficient clustering
capabilities.
In its original implementation the ME framework in-

puts are synchronized, and the gating network bases
its decision on a joint set of observations. Some in-
vestigation on the ability for our approach to handle
asynchronous data will be led in future work. Mean-
while, for experiments, we simulated synchronous ob-
servations by forcing sensors to provide measures at a
defined frequency. For the slowest sensors that means
we feed the framework with the last measure several
times. As we will see this approach doesn’t affect the
framework ability to make decisions, mainly because
difference between inputs frequencies stays low. How-
ever, if the difference in frequencies become too impor-
tant, the system wouldn’t provide relevant decisional
capabilities.

4 Experiments

4.1 Simulation

This first test case scenario illustrates the system abil-
ity to learn decision rules according to sensors charac-

Figure 3: Altitude measures (in meters). Sensor 1 re-
produces typical ultrasonic measures, low observation
noise, strong outliers occurrences and maximum range
threshold. Sensor 2 permanently provides measures
with high observation noise. Sensor 3 does not pro-
vide relevant measures before reaching 2 meters.
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Figure 4: Estimated altitude and uncertainty bound-
aries on validation dataset. Uncertainty magnitude
evolves according to selected sensor.

teristics. This simple example reproduces the take-off
and landing phases of a quadrotor UAV. Three sen-
sors are providing direct measures of the altitude with
different characteristics, such as observation noise, out-
liers occurrences and measurement range thresholds
(Fig. 3). Each sensor feeds one filter, and all filters
share a common transition model (constant velocity).
These filters do not implement any rejection method,
and provide altitude estimation based on raw data.
We train the gating network on a dataset of 12000
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Figure 5: Gating weights history on validation dataset
(Expert i is connected to sensor i).

samples reproducing two subsequent take-off/landing
sequences. The EM algorithm takes 58 iterations to
converge with a convergence threshold of 10−6.
The final estimate and associated uncertainty

boundaries for the validation set is shown in Fig. 4.
As we can see, the gating network learned to reject
outliers and to take into consideration each sensor mea-
surement range. By switching smoothly between sen-
sors, the framework then manages to provide a cleaned
estimation output. We note that, as expected from
mutual competition between experts introduced during
the learning step, the gating network tends to assign
binary weights. Hence, mixing only operates during
transition periods. As a consequence, the system pro-
vides consistent estimation but does not benefit from
uncertainty reduction that direct measure fusion would
provide (i.e. by feeding a filter with multiple sensors).

4.2 Real Data

We now use datasets acquired on a Paparazzi quadro-
tor UAV [BDG+06]. Datasets consists of 50Hz syn-
chronized altitude measures provided by an ultrasonic
sensor and a barometer as well as accelerations on 3
axis provided by the embedded IMU. Altitude truth is
given by a motion capture system. As we can see in
Fig. 6, ultrasonic sensor presents strong and frequent
outliers we know to be related to thrust level. We also
suppose that an external filter gives us an estimation
of the barometer offset.
Without additional understanding of the perturba-

tions generated on ultrasonic sensor measures, we ap-
ply the mixture of experts framework to show its abil-
ity to learn to filter these outliers, and improve the
estimation accuracy. For this application we use 3 dif-
ferent experts: one expert based on ultrasonic mea-
sures, an other based on barometer measures, and a
last one based on both ultrasonic and barometer mea-
sures. As we know the presence of outliers in ultrasonic
observations is correlated to the thrust, we provide 3
inputs to the gating network: both sensor measures

Figure 6: Gating network inputs and altitude truth for
validation dataset.
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Figure 7: Altitude estimation and uncertainty bound-
aries using mixture of Kalman filters on validation set.

and the current thrust command. We compare this
method to a naive Kalman filter implementation using
both barometer and ultrasonic sensor, and a similar fil-
ter using 3sigma rejection scheme on ultrasonic mea-
sures (Hence using only barometer information for the
update when an ultrasonic measure is rejected) . All
these filters share the same constant velocity transition
model and observation noise. We train the system on
a dataset of 5000 samples. After 50 iterations the EM
algorithm reaches the convergence threshold of 10−6.

Experience shows that the learned parameters gener-
alize well on different validation sets, always providing
similar performances. As we can see on Fig. 7, some
outliers are not perfectly filtered. These outliers pre-
sumably present unknown characteristics for the gat-
ing network, implying that rejection capability could
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Figure 8: Estimation error relative to altitude truth
for mixture of Kalman filter (in red) and Kalman filter
with 3-sigma rejection (in blue).
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Figure 9: Weights history for expert 1 (ultrasonic sen-
sor + barometer), expert 2 (ultrasonic sensor) and ex-
pert 3 (barometer).

be improved by using a larger training set. For all
validation sets, the mixture of filter still provides the
best RMS estimation error. On the validation set cor-
responding to figure 6 it provides on RMS estimation
error value of 0.142. Naive Kalman filter provides an
RMS error of 0.221, and the filter with rejection pro-
vides better performance with an RMS error of 0.185.
With a gating framework basing its decision on sensor
measures only, we found an RMS error of 0.170. This
result attests of thrust impact on ultrasonic measures,
and of the ability for the framework to take it into
consideration as well.

The estimation error improvement provided by the
mixture approach (shown in Fig. 8) can be explained
by the sensor selection process. We notice that the
change in the air flow creates a strong disturbance on
barometer measures when we turn motors on and off
(between samples 0 and 1000 or after sample 6000).

At this point, and for low altitudes in general, our
model learned to promote the ultrasonic sensor, where
the Kalman filter can’t incorporate this specific knowl-
edge, unless we implement a decision rule by hand.
Meanwhile, due to associated offset and its estima-
tion latency, barometer measures are more relevant for
higher altitudes and low velocity. Once again, because
the ME chooses ultrasonic measures in priority when
the UAV is close to the ground it reduces overestima-
tion of the altitude during the fast transition phase be-
tween sample 3000 and 4000. The ME approach also
decreases underestimation of altitude in this case as
it filters ultrasonic outliers based on the strong thrust
command value. In comparison, the Kalman filter re-
jection scheme suffers from barometer latency, punc-
tually becoming coherent with low outliers measures.
This corresponds to the highest peak in Fig. 8

This experiment demonstrates the ability of our
method to learn an outlier rejection scheme and to
learn the different contexts our robot encounters. In
this scenario, a context intuitively corresponds to an
altitude range and to a thrust command level, i.e. the
current dynamic of the UAV. The proposed approach
outperforms classical filtering methods and, from a
practical point of view, appears to be more robust to-
ward filter parameters imprecision.

5 Conclusion

We demonstrated that the mixture of expert frame-
work can be applied to the sensor selection problem.
The gating network discovers the different operating
contexts and encodes knowledge about sensor reliabil-
ity through the gating probability distributions param-
eters. This feature enables the system to automatically
select the best suited estimation output, improving ro-
bustness regarding filter parameters inaccuracies and
inherent sensor characteristics. The modular nature of
the system shows it can be extended to more complex
configurations by increasing the gating network input
space and sensor network as well.

An interesting direction for future work would con-
sist in using more complex models for decision bound-
aries and extending the method to richer information
sources like laser scan and image features. In cur-
rent implementation the mixture process ignores pre-
vious values of the gating parameters. We believe that,
through the application of switching state space model,
extending the mixture method to its dynamical version
would also improve capabilities of the approach.
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