
HAL Id: hal-00935464
https://enac.hal.science/hal-00935464

Submitted on 8 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On feasibility based bounds tightening
Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti

To cite this version:
Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti. On feasibility based bounds tightening. 2012.
�hal-00935464�

https://enac.hal.science/hal-00935464
https://hal.archives-ouvertes.fr

On feasibility based bounds tightening0

Pietro Belotti1, Sonia Cafieri2, Jon Lee3, Leo Liberti4

1 Dept. of Mathematical Sciences, Clemson University, Clemson SC

Email: pbelott@clemson.edu
2 Laboratoire MAIAA, École Nationale de l’Aviation Civile, 7 Ave. E. Belin, 31055 Toulouse, France

Email: sonia.cafieri@enac.fr
3 Ind. and Op. Eng. Dept., University of Michigan, Ann Arbor MI, USA

Email: jonxlee@umich.edu
4 LIX, École Polytechnique, F-91128 Palaiseau, France

Email: liberti@lix.polytechnique.fr

January 24, 2012

Abstract

Mathematical programming problems involving nonconvexities are usually solved to optimality
using a (spatial) Branch-and-Bound algorithm. Algorithmic efficiency depends on many factors,
among which the widths of the bounding box for the problem variables at each Branch-and-Bound
node naturally plays a critical role. The practically fastest box-tightening algorithm is known as
FBBT (Feasibility-Based Bounds Tightening): an iterative procedure to tighten the variable ranges.
Depending on the instance, FBBT may not converge finitely to its limit ranges, even in the case of
linear constraints. Tolerance-based termination criteria yield finite termination, but not in worst-
case polynomial-time. We model FBBT by using fixed-point equations in terms of the variable
bounding box, and we treat these equations as constraints of an auxiliary mathematical program.
We demonstrate that the auxiliary mathematical problem is a linear program, which can of course be
solved in polynomial time. We demonstrate the usefulness of our approach by improving an existing
Branch-and-Bound implementation. global optimization, MINLP, spatial Branch-and-Bound, range
reduction.

1 Introduction

MINLP (Mixed-Integer Nonlinear Programming) is the class of all MP (Mathematical Programming)
problems that might involve integrality constraints on some of the decision variables and nonlinear terms
in the objective function and/or constraints. This is a very large class of MPs, which also includes
MILP (Mixed-Integer Linear Programming) and NLP (Nonlinear Programming) as subclasses. For our
purposes, MINLPs are cast in the form minx∈X f(x), where X includes range constraints x ∈ X0 ∈ I n

(with I being the real interval lattice) as well as equality, inequality and integrality constraints.

FBBT (Feasibility-based bounds tightening) is an iterative range-reduction technique that is com-
monly employed at each node of a sBB (spatial Branch-and-Bound) algorithm for MINLP (see Sect. 1.2
below). FBBT is also known as bounds propagation in the CP (Constraint Programming) community. It
involves tightening the variable ranges using all of the constraint restrictions; the procedure is iterated as
long as the variable ranges keep changing. Because FBBT might fail to converge finitely, in practice one
stops iterating when the improvement after one or several iterations is small, say within a given toler-
ance ε > 0. However, because the improvements are not guaranteed to be monotonically non-increasing,
terminating the procedure after one or perhaps several small improvements might in principle overlook
the possibility of a larger improvement later on. Furthermore, even when an instance leads to monotonic

0This paper extends [7].

1 INTRODUCTION 2

improvement, the running time might be exponential in the encoding size. In what follows, we provide a
method for modeling FBBT by means of fixed-point equations

F(X) = X , (1)

where F represents the action of the bounds propagation up and down the expression trees (see Sect. 2.2
below), and X ∈ I n. We show that the limit point of FBBT is the largest solution X∗ of Eq. (1) in
the set-inclusion partial order of the complete lattice I n. We then write Eq. (1) as a set of constraints
derived from the LP (Linear Program) that represents a convex relaxation of the original MINLP, with
the objective of minimizing the sum of the variable-range widths. This yields a new method for tightening
variable ranges, and also shows that the problem of determining the limit point of FBBT (with ε = 0)
acting on continuous intervals and linear constraints can be solved in polynomial time. We also give a
sufficient condition for the non-convergence of FBBT (Sect. 3.4). This condition helps identify instances
where solving the LP might be more efficient than running FBBT. Lastly, we exploit our theoretical
findings to devise a more efficient FBBT-like approach to solving MINLPs (and MILPs) using sBB. Our
methodologies allowed us to significantly improve the CPU time taken to find global optima of many
publically available MINLP and MILP instances.

1.1 Literature review

FBBT and its relatives have been rediscovered many times from the ’70s onwards: within the AI (Artificial
Intelligence) community first, and later within the CP, MILP and GO (Global Optimization) communities,
more or less at the same time.

1.1.1 Concepts from AI and CP

FBBT is a specialization of a broad concept known in AI and CP as constraint propagation, which
aims at removing sets of infeasible solutions iteratively until no more change occurs. The ancestor of
such techniques is the Waltz algorithm [47], cited in [16] as a propagation operator in a constraint
network, applied until stability is reached. Constraint propagation techniques akin to FBBT, also known
under the names “domain filtering”, “domain reduction”, “bound reduction”, “range reduction” and
“constraint propagation” are widely used in AI and CP, mostly in connection with integer variables [21],
but sometimes in connection with continuous variables too [9].

1.1.2 Range reduction in optimization

FBBT was discussed in the context of MILP presolving in [40] as a bounds improvement technique, and
in [4] in order to detect whether the original range of a variable appearing in only one constraint is as
tight as possible with respect to the constraints. Limited to linear constraints only, FBBT was adopted
as a GO technique in [43] (Sect. 9.6.1 — also see [44]) and [42] (also see [38]) under the name of “poor
man’s LP”. General FBBT, incorporating nonlinear functions, was introduced to the GO community in
F. Messine’s Ph.D. thesis (see [31] and also [32]) in 1997, and recently discussed in more depth in [41, 46].
To the best of our knowledge, the earliest mention in the CP literature of a backward interval propagation
on expression trees including nonlinear functions seems to be [9]. See also Sect. 3.3.2 in [21].

1.1.3 Nonconvergence

Because range reduction methods might fail to converge (with ε = 0) in a finite number of steps, the
detection of instances where this happens is interesting. Because such methods have a unique greatest
fixed point (see Sect. 3), we shall henceforth refer to the lack of finite convergence as nonconvergence.

1 INTRODUCTION 3

A formal necessary condition for nonconvergence, cited time and again, is that there exist cycles in the
variable/constraint incidence graph [20, 18]. We have found no mention of sufficient conditions in the
literature; we propose one for FBBT in Sect. 3.4, though we emphasize that it may not be practical to
exploit it, and it is far from being necessary.

1.1.4 Worst-case complexity

As concerns the worst-case theoretical complexity of range reduction methods, it is interesting to note that
Sect. 3.2.2 in [22] shows that essentially nothing was known in 1992 aside from the empirical observation
that such methods were fast in practice. We quote “Problem formulation 1.2” in [22] as the first formal
statement of a problem relating to range reduction methods:

ICSP (Interval Constraint Satisfaction Problem). “Given a set E of equations relat-
ing a set of variables associated with interval domains. Refine the domains as far as possible
without losing possible exact solutions of E, i.e., determine for each variable the minimal
consistent subinterval within its domain.”

When E consists of linear equations, linear inequalities and range constraints, then a new polynomial-time
algorithm for solving the ICSP is briefly discussed in Sect. 2.1 (see Lemma 2.1).

The ICSP only concerns a consistency property. In [11], three formal problem statements are made
with respect to convergence properties: the computation of a non-empty interval fixed point (Problem 1,
[11]), the computation of a non-empty greatest interval fixed point (Problem 2, [11]), and the existence
of a non-empty interval fixed point (Problem 3, [11]). These three problems are analyzed from the
point of view of theoretical complexity and found to be NP-hard (NP-complete in the case of Problem
3) under the assumption that all variables are constrained to be integer. Again, under the integrality
assumption, a very general range-reduction method is shown in [11] to run in pseudo-polynomial time
whenever E contains strict linear inequalities involving two variables, quadratic equations of the form
xi = x2

j for some i, j ≤ n, and linear equations involving two variables. Naturally, when all variables are
constrained to be integer, convergence of range-reduction methods is always attained in a finite number
of steps. In this paper, we show that if E consists of linear equations and/or inequalities and there are
no integrality restrictions on the variables, the computation of a fixed point for the FBBT can be carried
out in polynomial time by simply solving an LP (nonconvergence of FBBT notwithstanding).

1.2 Motivation and sBB

Our motivation for studying the FBBT algorithm is that it is a crucial step of the sBB algorithm for GO,
which solves MPs of the form:

minx xn

g0L ≤ g(x) ≤ g0U

x0L ≤ x ≤ x0U

∀i ∈ Z xi ∈ Z,















(2)

where x = (x1, . . . , xn) ∈ Rn, X0 = [x0L, x0U], G0 = [g0L, g0U], g : Rn → Rm are continuous functions,
and Z ⊆ N = {1, . . . , n}. We remark that a MINLP having an arbitrary objective function f(x) can
be easily reformulated to have the form (2), simply by adjoining a constraint xn ≥ f(x). sBB is a
Branch-and-Bound variant that performs a recursive search for a global optimum of (2) over the variable
bounding box X0, splitting the current box along a branching variable at a certain branching point. This
search generates a tree, the nodes of which represent the original problem limited to the current box. An
upper bound to the objective function value is computed at each node by solving (2) locally [14, 28]. A
lower bound to the objective function value is computed at each node by solving a convex relaxation of (2)
globally. If the bounds are sufficiently close (say to within a given δ), a global optimum was found in the

2 THE FBBT ALGORITHM 4

current box: it is stored if it improves the incumbent (i.e. the currently best known solution). Otherwise
the box is split in two or more sub-boxes. Should a bound be worse than the current incumbent during
the search, the domain is discarded (or pruned by bound) without branching. It can be shown that if
gi are continuous and δ > 0, then the recursion terminates (exploiting particular problem structure, it
is sometimes possible to show termination even with δ = 0, see e.g. [3]). Branch-and-Bound has been
used on combinatorial-optimization problems since the 1960s (see [24]); its first application to nonconvex
NLPs is [17]. Some MINLP-specific sBB approaches are [37, 5, 1, 2, 44, 45, 26, 8]. The motivation for the
present work is that sBB performance is greatly improved if the boxes at each node are reduced; FBBT
and other range reduction strategies are discussed in [8].

1.3 Contents

The rest of this paper is organized as follows. We describe some bounds-reduction techniques and the
FBBT in detail in Sect. 2. We define an interval MP whose solution is the limit point of FBBT in Sect. 3,
giving also a sufficient condition for nonfinite convergence of FBBT in Sect. 3.4. In Sect. 4 we reformulate
the interval MP into an LP. We discuss computational results in Sect. 5. Sect. 6 concludes the paper.

2 The FBBT algorithm

In this section, we describe the main bounds tightening techniques, focusing on FBBT. Notationwise, we
denote vectors and arrays of real intervals (also called boxes) by the roman capital letters X,Y , indexed
and emphasized in various ways. For a vector X = [xL, xU], the i-th component of X is Xi = [xL

i , x
U
i].

Occasionally, roman capital letters may also denote single intervals instead of vectors/arrays thereof.

2.1 Bounds tightening

During the sBB execution, the initial variable ranges X0 are restricted to smaller ranges X = [xL, xU] ∈
I n ⊆ X0 depending on the current sBB node. Moreover, it often happens that X are not as tight as
possible, in the sense that the feasible set given by g(x) ∈ G0 might be contained in an interval vector
much smaller than X. Let X be the feasible region of (2). The tightest variable bounds X∗ = [x∗L, x∗U]
to (2) are defined as follows:

∀i ≤ n x∗L
i = min

x∈X

xi (3)

∀i ≤ n x∗U
i = max

x∈X

xi. (4)

However, solving (3) and (4) globally is as difficult as solving the original problem (2). There are two
common and well established heuristic techniques for tightening the original bounds X: feasibility-based
bounds tightening (FBBT), and optimality-based bounds tightening (OBBT) [26]. FBBT tightens the
bounds by interval arithmetic [35] on each of the functions gi(x) (i ≤ m) and by exploiting the restriction
g(x) ∈ G0. It propagates bounds on the expression trees used to represent the functional forms in the
problem constraints (see subsection 2.2). The leaf nodes of expression trees represent problem variables
and constants, and their non-leaf nodes represent the operators appearing in the function expressions
[26]. FBBT propagates bounds from lower to upper nodes; the interval thus obtained for the root node is
intersected with the constraint range [gL, gU]; the tightened root node interval is then propagated down
to the leaf nodes, tightening the intervals associated to the nodes and repeating this propagation until
convergence to a limit interval vector.

2 THE FBBT ALGORITHM 5

In OBBT, one employs a convex or linear relaxation R of X to solve

∀i ≤ n min
x∈R

xi (5)

∀i ≤ n max
x∈R

xi (6)

in order to tighten the variable bounds. The worst-case complexity of OBBT is polynomial, since it needs
to solve 2n LPs. One might also consider recomputing R based on the tightened bounds then re-running
OBBT: we shall call this two-step procedure OBBT∗. Since X (and R) may vary after tightening a
variable bound, FBBT and OBBT∗ can be applied in an iterative way until no more tightening occurs;
in this sense, both techniques can be seen as heuristic searches to find good solutions to (3) and (4).
Because FBBT is much faster than OBBT∗, the former is applied at each sBB node, whilst the latter is
usually applied only at the root node or rarely [8]. Both FBBT and OBBT∗ may fail to converge to the
respective limit points: in practice, termination is enforced by stopping the procedures when progress is
too slow.

We remark that the box XOBBT obtained by OBBT might be strictly contained in the limit point X∗

of FBBT, as examples 3f on p. 23 in [42] and (3.11) on p. 125 in [21] show. We observe that if R is defined
by linear constraints, XOBBT can also be obtained by performing Fourier-Motzkin [48] elimination on R

to project R on each variable in turn. This shows that OBBT yields a bound-consistent interval vector,
as Lemma 2.1 shows, thus providing a polynomial-time algorithm to solve the ICSP.

2.1 Lemma
Let X̄ be the vector of ranges obtained by performing Fourier-Motzkin elimination on R for each variable

xi in turn (i ≤ n). We have X̄ = XOBBT.

Proof. Consider x̄ ∈ X̄; then by definition of Fourier-Motzkin reduction, for all i ≤ n each x̄i can be
lifted to a x̂ ∈ R. Thus minx∈R xi ≤ x̄i ≤ maxx∈R xi as claimed. Now take a point xi ∈ XOBBT

i and
suppose xi 6∈ X̄i = [x̄L

i , x̄
U
i] for some i ≤ n. Either xi < x̄L

i or xi > x̄U
i . In the former case, by definition

of projection, there is no x′ ∈ R such that x′
i = xi, but this contradicts (5); therefore xi ∈ X̄i as claimed.

The other case is symmetric. ✷ ✷

2.2 Expression trees

Given a constraint g(x) ∈ G0, where g : Rn → R and G0 ∈ I , we associate to the function g its expression
tree (G,λ), defined as follows:

1. G is a directed tree (V,A) rooted at a distinguished vertex denoted by root(g)

2. λ is a mapping V → L , where L = O∪V ∪R, O is a finite set of operator symbols (for example let
O = {+,−,×,÷, ∧, exp, log, sin, cos}) and V a set of n variable symbols (for example {x1, . . . , xn})

3. the following graph properties hold:

∀ v ∈ V (λv 6∈ O → δ+(v) = ∅) (7)

∀ v ∈ V (λv ∈ O → δ+(v) = arity(v)), (8)

where δ+ : V → P(V), with P(V) the power set of V , denotes forward vertex stars and arity(v) is
the number of arguments of the operator λv;

4. letting η : V × Rn → R be the evaluation function, defined recursively as follows:

∀v ∈ V (λv ∈ R → ηv(x
∗) = λv) (9)

∀v ∈ V (λv ∈ V → ηv(x
∗) = val(λv, x

∗)) (10)

∀v ∈ V (λv ∈ O → ηv(x
∗) = λv(ηu(x

∗) | u ∈ δ+(v))), (11)

2 THE FBBT ALGORITHM 6

where val : V × Rn → R is such that val(xi, x
∗) = x∗

i for all i ≤ n, the following property holds:

∀x∗ ∈ Rn ηroot(g)(x
∗) = g(x∗). (12)

Since G is an arborescence by definition, for each v ∈ V r {root(g)} there is a unique element u ∈ V such
that (u, v) ∈ A. We denote u by parent(v).

2.3 Interval arithmetics

We recall some very basic interval arithmetics notions [35]. Let I be the set of all intervals with endpoints
in R ∪ {−∞,∞}. For two intervals Y ′ = [a, b], Y ′′ = [c, d] ∈ I , where a ≤ b and c ≤ d, and for some
α ≥ 0 and q ∈ N, the following operations are defined on I :

Y ′ + Y ′′ = [a+ c, b+ d]

αY ′ = [αa, αb]

−Y ′ = [−b,−a]

Y ′ − Y ′′ = Y ′ + (−Y ′′)

Y ′ × Y ′′ = [min(ac, bc, ad, bd),max(ac, bc, ad, bd)]

1/Y ′′ =











[1/d, 1/c] 0 < c ≤ d ∨ c ≤ d < 0
[−∞,∞] c < 0 < d
[−∞, 1/c] c < 0, d = 0
[1/d,∞] c = 0, d > 0

Y ′/Y ′′ = Y ′ × (1/Y ′′)

(Y ′)q =











[1, 1] q = 0
[aq, bq] (a ≥ 0) ∨ (a ≤ 0 ≤ b ∧ 2 6 | q)
[bq, aq] b ≤ 0
[0,max(a, b)q] (a ≤ 0 ≤ b) ∧ 2|q.

2.4 Propagation operators

Whenever λv ∈ O, we write λv(Y1, . . . , Yp) to mean the application of interval arithmetic rules to the
intervals Y1, . . . , Yp. For all v ∈ V such that λv = xj for some j ≤ n, we let index(v) = j (below, when we
generalize to sequences of expression trees indexed by i, we denote this by index(i, v) = j). We associate
an interval Yv = [xL

v , x
U
v] to each node v ∈ V of an expression tree. Initially, the ranges of the interval

vector Y = (Yv | v ∈ V) are set in function of the value of the original ranges X as follows:

∀v ∈ V (λv ∈ R → Yv = [λv, λv]) (13)

∀v ∈ V (λv ∈ V → Yv = Xindex(v)) (14)

∀v ∈ V (λv ∈ O → Yv = [−∞,∞]). (15)

We write (13)-(15) by Y = varliftV (X), and the initial interval vector varliftV (X
0) by Y 0. We now define

the up, down : V ×I |V | → I propagation operators. Informally, the up operator computes the interval
of an operator given the intervals of its arguments; more precisely, it is a recursive application of interval
analysis to each operator node in O of the expression tree using the intervals of the subnodes (i.e. nodes
in the forward star):

∀v ∈ V (λv 6∈ O → up(v, Y) = Yv) (16)

∀v ∈ V (λv ∈ O → up(v, Y) = Yv ∩ λv(Yu | u ∈ δ+(v))) (17)

The function down is more involved and only modifies the bounding box of operators having a well-
defined inverse. It takes each subnode in turn and attempts to tighten its interval by considering interval

2 THE FBBT ALGORITHM 7

arithmetic rules on the inverse operator applied to the other subnodes and the node itself. For all
v ∈ V r {root(g)}, let siblings(v) = δ+(parent(v))r {v} and family(v) = {parent(v)} ∪ siblings(v).

down(root(g), Y) = Yroot(g) ∩ range(g) (18)

∀v ∈ V r {root(g)} (down(v, Y) = Yv ∩ λ−1
parent(v)(Yu | u ∈ family(v))), (19)

where λ−1
parent(v) denotes the inverse operator of λparent(v) if it exists and is well defined, and the constant

operator mapping each interval vector to [−∞,∞] otherwise. For example, the scalar interval multipli-
cation by α 6= 0 is inverse to scalar interval multiplication by 1

α
. The operators × and ÷ are not always

inverse (this depends nontrivially on the signs of the interval bounds).

Finally, we define the function varproj : I |V | → I n as varproj(Y) = (Yv | λv ∈ V) as the tool to map
the bounding box Y w.r.t. all tree nodes to the bounding box X of the variable nodes. To this aim, we
also assume varproj(Y) to have the same ordering as V = (x1, . . . , xn). The action of varproj is inverse
with respect to that of varliftV .

2.2 Example (Inverse of a sum)
For a linear form x1 + x2 + x3, represented by the tree

+
ւ↓ց

x1 x2 x3

we have Yx1
= Y+ − Yx2

− Yx3
, Yx2

= Y+ − Yx1
− Yx3

, Yx3
= Y+ − Yx1

− Yx2
. Supposing Y+ = [0, 0],

Yxi
= [0, 1] for all i ≤ 3, we obtain down(xi, Y) = Yx1

∩ ([0, 0]− [0, 1]− [0, 1]) = [0, 1] ∩ [−2, 0] = [0, 0] for
all i ≤ 3. ✷

2.3 Example (Inverse of a difference)
For a linear form x1 − x2, represented by the tree

−
ւ ց

x1 x2

we have Yx1
= Y− + Yx2

and Yx2
= Yx1

− Y−. Supposing Y− = [1, 1] and Yxi
= [0, 2] for i ≤ 2, we obtain

down(x1, Y) = Yx1
∩ ([1, 1] + [0, 2]) = [0, 2] ∩ [1, 3] = [1, 2] and down(x2, Y) = Yx2

∩ ([0, 2] − [1, 1]) =
[0, 2] ∩ [−1, 1] = [0, 1]. ✷

2.5 Iterating up and down the tree

Each iteration of FBBT alternately applies the up function and the down function. In theory, FBBT
should repeat this iteration until no further change to X occurs. This, however, as Ex. 2.4 shows, could
result in an infinitely convergent process, an occurrence that is far from rare. In practice, FBBT repeats
the iteration until the change to X is “small enough”, i.e. until the change in the width sum over all
intervals in X falls under a given ε > 0 threshold.

FBBT can be applied in the same way to propagate the effect of sets of constraints: let g : Rn → Rm

as in (2) such that g = (gi | i ≤ m); let Gi = (Vi, Ai) be the expression tree for gi, and assume without
loss of generality that all variables of V occur in each gi. For all i ≤ m let mi = |Vi|, m̄ =

∑

i≤m mi

and Y ∈ I m̄ be the vector of intervals whose component Yiv is the range of node v ∈ Vi (Y
0 is trivially

extended to all operators nodes in
⋃

i≤m Vi). Then FBBT can be applied to each constraint gi of the
sequence g in turn, as shown formally in Alg. 1. We remark that changing X at Line 6 has an effect on
the next iteration of the loop at Lines 4-7 in particular at Line 5, since varproj(Yi) = X for all i ≤ m.

Because the definition of up and down in Eqs. (17) and (19) involves intersecting the interval operator
with the original interval, Alg. 1 at Line 6 always replaces X with an interval which is (not necessarily

2 THE FBBT ALGORITHM 8

Algorithm 1 The FBBT algorithm.

Require: X
1: Y ← Y 0

2: repeat
3: Z ← X
4: for all i ≤ m do
5: Yi ← down(root(gi), up(root(gi), Yi))
6: X ← varproj(Yi)
7: end for
8: until X = Z
9: return X

strictly) contained in X. For the same reason, the test at Line 8 can be replaced by X (Z. Let Xk

denote the vector X of variable ranges at the k-th iteration (Lines 3-7) of Alg. 1. Correctness of FBBT
follows because for all k ∈ N, we have Xk ⊇ X∗.

2.6 Running time

Since the test X = Z in Line 8 of Alg. 1 involves verifying whether two real intervals are equal, the worst-
case time complexity of FBBT is ill-defined with respect to the complexity classes P and NP-complete.
Furthermore, FBBT is not an exact algorithm, in the sense that, in general, it does not converge to its
limit point in finite time (as shown in Example 2.4 below).

Even replacing the test in Line 8 with µ(X△Z) ≤ ε, where µ is the Lebesgue measure in the real line,
yields an algorithm whose worst-case time complexity is not polynomial (see Example 2.4): given ε > 0
and an iteration bound k∗, there always exists an instance (a set of constraints gi, initial ranges X

0) for
which FBBT takes a time larger than k∗ to converge to within ε.

2.4 Example (Nonconvergence of FBBT)
Consider the following example:

g1 ≡ ax1 − x2 = 0

g2 ≡ x1 − ax2 = 0

x1 ∈ [0, 1]

x2 ∈ [0, 1],

where a > 1, represented by the two arborescences below. To each node v of gi we associate the interval
Yiv (for i ≤ 2).

g1 = 0 g2 = 0

−−

××

aa

x1

x1
x2

x2

[a, a][a, a]

[0, 0]

[0, 1]

[0, 1]

[0, 0]

The first step is to apply up to the leaves of the expression tree encoding g1: Y1,× = [a, a]× [0, 1] = [0, a],
Y1,− = [0, a] − [0, 1] = [−1, a]. We then intersect the root node interval [−1, a] with [0, 0] (the bounds

2 THE FBBT ALGORITHM 9

associated to the constraint g1), then apply down: Y1× = [0, 0]+ [0, 1] = [0, 1], and since a > 1 we tighten
to [0, 1] ∩ [0, a] = [0, 1]; Y1,x2

= [0, 0] + [0, 1] = [0, 1]; Y1,x1
= 1

a
[0, 1] = [0, 1

a
], which, again since a > 1,

results in a tightening [0, 1
a
] ∪ [0, 1] = [0, 1

a
].

g1 = 0 g2 = 0

−−

××

aa

x1

x1
x2

x2

[a, a][a, a]

(∩[0, 0]) = [0, 0]

[0, 1] ↑
[0, 1

a
] ↓

[0, 1] ↑
[0, 1] ↓

[0, a] ↑
[0, 1] ↓

[−1, a] ↑ [0, 0]

We now project the tightened Y1 onto the variable intervals X and copy these to the variable nodes of
the arborescence of g2.

g1 = 0 g2 = 0

−−

××

aa

x1

x1
x2

x2

[a, a][a, a]

[0, 0]

[0, 1] ↑
[0, 1

a
] ↓

[0, 1] ↑
[0, 1] ↓

[0, a] ↑
[0, 1] ↓

[0, 0]

[0, 1]

[0, 1
a
]

We apply up to g2 and tighten the root node range from [−a, 1
a
] to [0, 0] by intersection with the bounds

of g2. Finally, we apply the down operator to g2. Because X1 is now [0, 1
a
] instead of [0, 1] as in the case

of g1 above, the down application yields a different output, i.e. the range for X2 becomes [0, 1
a2].

g1 = 0 g2 = 0

−−

××

aa

x1

x1
x2

x2

[a, a][a, a]

[0, 0]

[0, 1] ↑
[0, 1

a
] ↓

[0, 1] ↑
[0, 1] ↓

[0, a] ↑
[0, 1] ↓

(∩[0, 0]) = [0, 0]

[0, 1] ↑
[0, 1

a2] ↓

[0, 1
a
] ↑

[0, 1
a
] ↓

[0, a] ↑
[0, 1

a
] ↓

[−a, 1
a
] ↑

Continuing in this fashion, it is easy to see that at iteration k we have X1 = [0, 1
a2k−1] and X2 = [0, 1

a2k].
It is evident that the limit point [0, 0] of FBBT applied to this example is reached in infinite number of

3 SEMANTICS OF FBBT 10

iterations. Supposing now we terminate FBBT when the width sum of Xk differs from that of Xk−1 by
less than a given ε > 0 threshold, we have | 1

a2k −
1

a2k−2 | < ε, which yields k > 1
2 (loga(a

2 − 1) − loga ε),
i.e. for each a > 1 there is a ε > 0 that makes the expression on the right hand side an increasing lower
bound on k (e.g. take ε < (a2 − 1)h with h > 1 constant). ✷

3 Semantics of FBBT

3.1 Operators on lattices

A lattice is a set Λ partially ordered by the relation ⊑ endowed with two operations ⊔ (join), ⊓ (meet)
such that x ⊑ x⊔ y, y ⊑ x⊔ y and x⊓ y ⊑ x, x⊓ y ⊑ y. A lattice is complete if for all L ⊆ Λ both ⊔x∈Lx
and ⊓x∈Lx are in Λ (for the interval lattice used in this paper, it suffices to include ⊥,⊤ elements in Λ
such that ⊥ ⊑ x ⊑ ⊤ for all x ∈ Λ). An operator f : Λ → Λ is monotone if x ⊑ y implies f(x) ⊑ f(y).
An operator f : Λ→ Λ is deflationary if f(x) ⊑ x for all x ∈ Λ. A fixed point (fp) of f is an x ∈ Λ such
that x = f(x). A fixed point x is greatest (denoted gfp(f)) if for all other fixed points x′ of f we have
x′ ⊑ x.

3.1 Theorem (Thm. 12.9 in [36] and 8.22 in [15])
Let Λ be a complete partial order and f : Λ → Λ a monotone deflationary operator. The sequence

{fk(⊤) | k ∈ N} converges to gfp(f).

We now frame FBBT as a monotone deflationary operator in a lattice of interval vectors, and its limit
point as its greatest fixed point. This is in accordance with the definition of X∗ given in Eq. (3)-(4) as
the largest box [x∗L, x∗U] such that for all j ≤ n there is at least one feasible point x ∈X with xj = xL

j

or xj = xU
j , as well as with the general discussion of Sect. 2.2 in [25].

3.2 The Smith standard form

We reformulate (2) to its Smith standard form [44, 8, 27]: for all i ≤ m, v ∈ Vi such that λiv ∈ R we
replace v by the added variable wiv and adjoin the constraint wiv = λiv; for all i ≤ m, v ∈ Vi such that
λiv ∈ V we replace v by the added variable wiv and adjoin the constraint wiv = xindex(i,v); for all i ≤ m,
v ∈ Vi such that λiv ∈ O we (recursively and depth-first) replace the subtree rooted at v by an added
variable wiv; we then adjoin a defining constraint wiv = λv(δ

+(v)) to the formulation.

Observe that different w variables might refer to the same term or original variable appearing in
different constraints (see the occurrence of x1, x2 in the two trees of Ex. 2.4). We therefore define an
equivalence relation on the vector of w variables by which wiv ∼ wℓt if and only if the two variables
replace the same term or correspond to the same original variable; we constrain the two variables to
have the same value with the first constraint set in (20). This partitions the set of w variables into
distinct equivalence classes; we denote the class corresponding to (i, v) by E(i, v). This yields an exact
reformulation of (2) as follows:

minx xn

∀(i, v) ∼ (ℓ, t) wiv = wℓt

∀i ≤ m, v ∈ Vi : λiv ∈ R wiv = λiv

∀i ≤ m, v ∈ Vi : λiv ∈ V wiv = xindex(i,v)

∀i ≤ m, v ∈ Vi : λiv ∈ O wiv = λiv(wiu | u ∈ δ+(v))
w ∈ W 0

∀i ∈ Z xi ∈ Z,







































(20)

where ∀i ≤ m (W 0
i,root(gi)

= G0
i) and varproj(W 0) = X0.

3 SEMANTICS OF FBBT 11

3.3 The FBBT limit point as an interval MP

This reformulation allows us to dispense with multiple expression tree levels: we can therefore re-define
up : I m̄ → I m̄ with respect to (20) as up(W) = (αiv | i ≤ m ∧ v ∈ Vi) where W = [wL, wU] and, for all
i ≤ m and v ∈ Vi,

αiv =







Wiv ∩ λiv(Wiu | u ∈ δ+(v)) if λiv ∈ O

[λiv, λiv] if λiv ∈ R

Wiv otherwise.
(21)

Similarly, we re-define the down : I m̄ → I m̄ operator with respect to (20) as down(W) = (βiv | i ≤
m ∧ v ∈ Vi) where, for all i ≤ m and v ∈ Vi,

βiv =











Wiv ∩
⋂

(ℓ,t)∈E(i,v)

λ−1
ℓ,parent(t)(Wℓu | u ∈ family(t)) if v 6= root(gi) ∧ λi,parent(v) ∈ O

[λiv, λiv] if λiv ∈ R

Wiv otherwise.

(22)

Finally, we can define the fbbt operator on the interval lattice I m̄ as:

fbbt(W) = down(up(W ∩W 0) ∩W 0). (23)

We remark that the projection on the X-coordinates of the fixed point of the fbbt operator as defined
in (23) is the same as the limit point of the FBBT Alg. 1. This follows by the definition of the Smith
reformulation (20).

3.2 Example (The linear case)
In the case where g(x) ∈ G0 only involves linear constraints, written as Ax ∈ G0 where A = (aij) is an
m × n matrix, the notation can be simplified considerably: we dispense with the auxiliary variables w
and only work in the original x-space. In this case we can define up as an operator I n → I m by:

up(X) = (Gi ∩
∑

j≤n

aijXj | i ≤ m), (24)

and down : I m → I n by:

down(G) = (Xj ∩
⋂

ℓ≤m

aℓj 6=0

1

aℓj
(Gℓ −

∑

k 6=j

aℓkXk) | j ≤ n). (25)

The corresponding fbbt operator is defined as follows:

fbbt(X) = down(up(X ∩X0) ∩G0). (26)

As shown in Sect. 4, its fixed point can be computed in polynomial time at the cost of solving an LP. ✷

The following facts are well-known or easy to establish:

1. Virtually all interval arithmetic operators are monotone [34, 33, 35] — certainly all those in O are.

2. The composition of monotone operators is monotone [36].

3. The up and down operators are deflationary because each of their interval components is an inter-
section with the original interval (see (21)-(22)).

4. The composition of deflationary operators is deflationary [36].

5. The interval width sum function |W | =
∑

i≤m

v∈Vi

(wU
iv − wL

iv) is monotonic with the lattice order.

3 SEMANTICS OF FBBT 12

From Facts 1-4 above and Thm. 3.1 we conclude that the limit point of FBBT 1 is the same as the
greatest fixed point of the fbbt operator. In other words,

gfp(fbbt) = sup⊆{W |W = fbbt(W)}. (27)

By Tarski’s Fixed Point Theorem, we can replace = with ⊆. By Fact 5, (27) is equivalent to:

max{|W | |W ⊆W 0 ∧W ⊆ up(W) ∧W ⊆ down(W)}. (28)

Problem (28) is an interval MP, i.e. an MP where the decision variables are intervals. Although there are
no standard methods to directly solve such problems in full generality, we give in Sect. 4 an LP reformu-
lation of (28) for problems involving linear constraints only. This gives a polynomial time algorithm for
finding the FBBT limit point.

3.4 A sufficient condition for nonconvergence

As was mentioned above, several early AI and CP sources cite the presence of “cycles in the constraint
network” as a necessary (but not sufficient) condition for slow convergence of constraint propagation
operators. Translated to FBBT terminology, this condition requires the presence of cycles in the graph Ḡ
obtained by the union of all expression trees, followed by contracting each set of leaf nodes representing
the same variable, and finally by replacing each arc with an (undirected) edge. In this section we provide
a sufficient (albeit not necessary) condition for infinite convergence of the FBBT iteration. Specifically,
we show that an FBBT iteration cannot reduce the dimension of the affine hull of a bounding box (under
mild conditions); thus, if the affine hull of the FBBT limit point has dimension strictly less than the
dimension of the bounding box, then FBBT cannot converge to its limit point in finite time.

Let W ∗ = gfp(fbbt).

3.3 Theorem
Let d = dim aff(W 0) > dim aff(W ∗) = d′ and assume that: (a) without loss of generality all the intervals
in W 0 have positive width; (b) the relative interior of W 0 contains a point x′ feasible in (20); (c) all the
operators in O are C∞. Then there is no k ∈ N such that fbbtk(W 0) = W ∗.

Proof. Suppose the contrary; then there is a smallest iteration index h ∈ {1, . . . , k} when the dimension
dim aff(fbbth(W 0)) decreases. Hence, there is i ≤ m and v ∈ Vi with λv 6∈ R such that Wiv has positive
width but either αiv or βiv (defined in (21) and (22)) contain a single real. If λiv ∈ V then this is
impossible by hypothesis (a), as αiv = Wiv and βiv = Wiv. Therefore, λiv ∈ O. Suppose αiv = {a}, i.e.
the intersection of the intervals Wiv and λiv(Wiu | u ∈ δ+(v)) only contains a. This can only happen for
the following reasons: (i) a is a common bound of the intervals Wiv and λiv(Wiu | u ∈ δ+(v)) (a lower
bound for one and an upper bound for the other); (ii) Wiv = {a}; (iii) λiv(Wiu | u ∈ δ+(v)) = {a}. Case
(ii) cannot occur because of hypothesis (a); case (iii) cannot occur because λiv is C∞; case (i) implies
that all feasible points of (20) are contained within the hyperplane wiv = a, which, because of (a), goes
against the hypothesis (b). The argument for βiv = {a} is similar, remarking that by definition of down
when λ−1

iv is not naturally defined, then it is considered by to map every interval argument to [−∞,∞].
We conclude the proof by noticing that since there is no k ∈ N that causes d to decrease, the hypothesis
holds whenever W 0 is replaced by fbbtk(W 0). ✷ ✷

Theorem 3.3 generalizes the nonconvergence result of Example 2.4. Unfortunately, it does not by itself
provide a detection device for nonconvergent cases (since it assumes prior knowledge of the dimension of
the affine hull of the fixed point W ∗).

4 FBBT ON THE LINEAR MINLP RELAXATION 13

4 FBBT on the linear MINLP relaxation

The Smith reformulation described in Sect. 3.2 is commonly used to derive a convex or linear relaxation
of the original MINLP (2): each of the defining constraints is replaced by a system of convex or linear
inequalities approximating the convex hull of X . Optimizing on this relaxation yields a lower bound on
the optimal objective function value of (2), as described in Sect. 1.2. We assume in the following that a
linear relaxation is available, formulated as the following LP:

min zp
Az ∈ B0

z ∈ Z0,







(29)

where z ∈ Rp, A is q × p, B0 ∈ I q and Z0 ∈ I p. We remark that the z variables in (29) include all
problem variables of (20).

Since (29) is an LP, the FBBT definition given in Example 3.2 applies. It yields an interval LP as
follows:

max{|Z| | Z ⊆ Z0 ∧B ⊆ B0 ∧B ⊆ up(Z) ∧ Z ⊆ down(B)}, (30)

where Z = [zL, zU] ∈ I p and B = [bL, bU] ∈ I q are interval decision variables. Problem 30 can be
reformulated as a standard LP as detailed below. We define S+

i = {j ≤ p | aij > 0} and S−
i = {j ≤

p | aij < 0} for all i ≤ q.

max
∑

j≤p

(zUj − zLj) (31)

∀j ≤ p zLj ≤ zUj (32)

∀i ≤ q bLi ≤ bUi (33)

∀j ≤ p zLj ≥ z0Lj (34)

∀j ≤ p zUj ≤ z0Uj (35)

∀i ≤ q bLi ≥ b0Li (36)

∀i ≤ q bUi ≤ b0Ui (37)

∀i ≤ q bLi ≥
∑

j∈S
+

i

yLij +
∑

j∈S
−
i

aijz
U
ij (38)

∀i ≤ q bUi ≤
∑

j∈S
+

i

yUij +
∑

j∈S
−
i

aijz
L
ij (39)

∀i ≤ q, j ∈ S+
i zLj ≥

1

aij
(bLi −

∑

ℓ∈S
+

i
r{j}

aiℓz
U
ℓ −

∑

ℓ∈S
−
i
r{j}

aiℓz
L
ℓ) (40)

∀i ≤ q, j ∈ S+
i zUj ≤

1

aij
(bUi −

∑

ℓ∈S
+

i
r{j}

aiℓz
L
ℓ −

∑

ℓ∈S
−
i
r{j}

aiℓz
U
ℓ) (41)

∀i ≤ q, j ∈ S−
i zLj ≥

1

aij
(bLi −

∑

ℓ∈S
+

i
r{j}

aiℓz
L
ℓ −

∑

ℓ∈S
−
i
r{j}

aiℓz
U
ℓ (42)

∀i ≤ q, j ∈ S−
i zUj ≤

1

aij
(bUi −

∑

ℓ∈S
+

i
r{j}

aiℓz
U
ℓ −

∑

ℓ∈S
−
i
r{j}

aiℓz
L
ℓ . (43)

The objective function (31) maximizes the interval width sum. Constraints (32)-(33) provide the definition
of an interval decision variable; Constraints (34)-(35) model Z ⊆ Z0; similarly, Constraints (36)-(37)
model B ⊆ B0; Constraints (38)-(39) model B ⊆ up(Z) and Constraints (40)-(43) model Z ⊆ down(B).
We call the formulation (31)-(43) “FBBT-LP”.

The above discussion can be summarised in the following theorem.

4 FBBT ON THE LINEAR MINLP RELAXATION 14

4.1 Theorem
If the limit point of FBBT is not the empty interval, then the solution of FBBT-LP provides the limit
point of FBBT acting on (29) in polynomial time.

4.1 Infeasibility

It might sometimes happen that at a given iteration of FBBT, one of the interval components [zLi , z
U
i]

of the interval vector Z might be updated in such a way that zLi > zUi . In such cases we can establish
that Z = ∅ and hence that (29) is infeasible. The converse does not hold in general: there are infeasible
problems (29) for which FBBT does not converge to an empty interval vector. The former case is
beneficial in sBB, because it allows us to prune the node without further work. A similar mechanism is
found in the FBBT-LP, which includes constraints (32) that explicitly make empty intervals infeasible.
Since infeasibility is easy to detect in LPs, we exploit this fact to detect infeasibility in (29).

4.2 Proposition
If the FBBT-LP is infeasible, (29) is infeasible.

Proof. Assume (29) is feasible, then it has an optimal solution z∗, which must be contained in some
ranges Z ′. Thus, the limit point of FBBT must contain Z ′, which implies that Z∗ = gfp(fbbt) ⊇ Z ′,
where Z∗ is the optimal solution to the FBBT-LP, which is therefore feasible. ✷

We remark that we are not stating that every time FBBT has zLi > zUi at some iteration for some
component i, then the FBBT-LP is infeasible. Although in our computational experiments we found that
this statement holds in most cases, we also found one case where this does not hold. Accordingly, Thm. 4.1
only holds when the limit point of FBBT is not empty. Conceiving an LP that also caters explicitly for
empty intervals seems a difficult task, and might require the introduction of binary variables, as was done
in [29].

4.2 Reducing the formulation size

The size of the FBBT-LP is dependent on the number of variables p of the reformulation (i.e., original
and auxiliaries) and on the number of inequalities q of the linearization. Given that several MINLP
approaches [8] are of a Branch-and-Cut variety, i.e., sBB amended with a cutting-plane algorithm at each
sBB node, q can grow very large. The purpose of this section is to demonstrate that a more compact LP
formulation can be used to obtain the same result. Specifically, we eliminate the 2q variables bL, bU .

To ease notation, we rewrite (29) as follows:

min zp
s.t. b0Li ≤ aiz ≤ b0Ui i = 1, 2 . . . ,m,

(44)

with ai = (aij | j ≤ n). For the sake of clarity and conciseness, we introduce the following notation:
ai+ is the vector whose j-th component is max{0, aij}, for j ≤ p. Analogously, ai− is defined as the
vector whose j-th component is min{0, aij}, for j ≤ p (thus aiz = ai+z + ai−z). Also, for each j such
that aij > 0 we define aj,i+ = ai+ − aije

j , where ej is the p-vector whose j-th component is one and all
remaining components are zero, and similarly, for each j such that aij < 0, we define aj,i− = ai−− aije

j .
In other words, aj,i+ (resp. aj,i−) is equal to ai+ (resp. ai−) except for the j-th element, which is set to
0.

Let us use two vectors zL and zU to represent the 2p variables zLj and zUj , for each j ≤ p, with the

same meaning as in the FBBT-LP: lower and upper bounds of the fixed point. Then, if zLj is a lower

4 FBBT ON THE LINEAR MINLP RELAXATION 15

bound to (3) and zLj is an upper bound to (4), the following inequalities are valid (they are simple implied
bounds inequalities):

∀i ≤ m, ∀j ≤ n : aij > 0 aijz
L
j ≥ b0Li − (aj,i+zU + ai−zL) (45)

∀i ≤ m, ∀j ≤ n : aij > 0 aijz
U
j ≤ b0Ui − (aj,i+zL + ai−zU) (46)

∀i ≤ m, ∀j ≤ n : aij < 0 −aijz
L
j ≥ −b0Ui + (ai+zL + aj,i−zU) (47)

∀i ≤ m, ∀j ≤ n : aij < 0 −aijz
U
j ≤ −b0Li + (ai+zU + aj,i−zL). (48)

Note that these inequalities do not involve variables bLi or bUi from FBBT-LP. A new, more compact LP
formulation can then be defined as follows:

min{(31) : (32), (34), (35), (45)− (48)}. (49)

It is worth noting that (45)-(48) are equivalent to (40)-(43) except for variables bLi and bUi being replaced
by b0Li and b0Ui , respectively. We call (49) “FBBT-LPC”.

4.3 Proposition
The feasible set of the FBBT-LPC is a projection on the (zL, zU)-space of the feasible set of the FBBT-LP.

Proof. We apply the Fourier-Motzkin procedure to project out variables bLi and bUi for all i ≤ q: we first
isolate all inequalities containing bL, then analyze and rearrange the term of this subsystem, and finally
do the same for bU .

The inequalities of the FBBT-LP involving bLi variables are as follows:

bLi ≥ b0Li from (36)
bLi ≥ ai+zL + ai−zU from (38)

bLi ≤ bUi from (33)
bLi ≤ aj,i+zU + ai−zL + aijz

L
j ∀j ≤ n : aij > 0 from (40)

bLi ≤ ai+zU + aj,i−zL + aijz
U
j ∀j ≤ n : aij < 0 from (43).

The variables bLi (for i ≤ q) are eliminated by combining the lower and upper bounding expressions for
bLi :

bUi ≥ b0Li (50)

∀j ∈ S+
i aj,i+zU + ai−zL + aijz

L
j ≥ b0Li (51)

∀j ∈ S−
i ai+zU + aj,i−zL + aijz

U
j ≥ b0Li (52)

bUi ≥ ai+zL + ai−zU (53)

∀j ∈ S+
i aj,i+zU + ai−zL + aijz

L
j ≥ ai+zL + ai−zU (54)

∀j ∈ S−
i ai+zU + aj,i−zL + aijz

U
j ≥ ai+zL + ai−zU . (55)

Inequalities (54) and (55) are always satisfied when (32) holds. We show this for (54) only (the case of
(55) is similar): eq. (54) is equivalent to

aj,i+zU + aijz
L
j + ai−zL ≥ aj,i+zL + aijz

L
j + ai−zU ∀j ≤ n : aij > 0;

the above always holds because aj,i+zU ≥ aj,i+zL, aijz
L
j cancels out and ai−zL ≥ ai−zU by definition of

ai− and (32).

Moreover, (51) and (52) are rearrangements of (45) and (48), which in turn are simply (40) and (43).

5 COMPUTATIONAL RESULTS 16

In order to eliminate the variables bUi (for i ≤ q), we list the inequalities involving them:

bUi ≥ b0Li
bUi ≥ ai+zL + ai−zU

bUi ≤ b0Ui
bUi ≤ ai+zU + ai−zL

∀j ∈ S+
i bUi ≤ aj,i+zU + ai−zL + aijz

L
j

∀j ∈ S−
i bUi ≤ ai+zU + aj,i−zL + aijz

U
j ,

and apply the same procedure as above:

b0Ui ≥ b0Li (56)

∀j ∈ S+
i aj,i+zU + ai−zL + aijz

L
j ≥ b0Li (57)

∀j ∈ S−
i ai+zU + aj,i−zL + aijz

U
j ≥ b0Li (58)

ai+zU + ai−zL ≥ b0Li (59)

b0Ui ≥ ai+zL + ai−zU (60)

∀j ∈ S+
i aj,i+zU + ai−zL + aijz

L
j ≥ ai+zL + ai−zU (61)

∀j ∈ S+
i ai+zU + aj,i−zL + aijz

U
j ≥ ai+zL + ai−zU (62)

ai+zU + ai−zL ≤ ai+zL + ai−zU . (63)

Inequality (56) is trivial, while inequalities (61)-(62) and (63) are again satisfied when (32) holds. In-
equalities (57) and (58) are rearrangements of (46) and (47) respectively. Inequalities(59)-(60) say that
the upper and lower interval bounds to the linear form az contain the constraint RHS interval B0

i , and
are therefore satisfied as long as (44) is feasible.

Hence, for a feasible (44) the only irredundant constraints are (32), (34), (35), (45)-(48), which
completes the proof. ✷ ✷

4.4 Corollary
The set of optimal solutions of the FBBT-LPC is a projection on the (zL, zU)-space of the set of optimal
solutions of the FBBT-LP.

Proof. Notice that (31) is a function of zL, zU only. ✷ ✷

5 Computational results

We provide two types of tests: consistency tests, and field tests. Our consistency tests aim to support the
theory by showing that its predictions are verified in computational experiments. Specifically, we show
that the FBBT-LPC formulation given in Sect. 4.2 yields interval vectors that are always contained in
those obtained by direct application of FBBT. In our field tests we experiment with two strategies using
direct FBBT and solution of the FBBT-LPC in Couenne [8], and show how they compare to a pure
FBBT application.

All tests were carried out using the trunk version of Couenne. Apart from the parameters discussed
below that are used to enable FBBT or FBBT-LPC, standard parameter values were used: reliability
branching, standard heuristics for finding feasible solutions, and convexification cuts for creating a linear
relaxation of the MINLP were applied. All tests have been conducted on the Palmetto cluster at Clem-
son University, which employs several computers equipped with different processors and RAM memory.

5 COMPUTATIONAL RESULTS 17

The field tests consist of comparing the different variants of Couenne mentioned above applied to the
same MINLP or MILP instance: in this case, although two instances may have been solved on different
machines, all variants of Couenne used the same machine for each instance.

5.1 Consistency tests

For these tests, we devised a very special class of LP instances, designed on the basis of Thm. 3.3 in order
to prevent finite convergence of FBBT. The formulation of these instances, which we call nonconvergent,
is:

min
∑

j≤n

xj

Ax ≤ b
Cx = d

−M ≤ x ≤ M,



















(64)

where A is a randomly generated m × n matrix, C has shape (0|C ′) with C ′ a random invertible p × p
matrix, b, d are randomly generated vectors in Rm and Rp respectively. M is a given real value (set to
10 in our experiments) and each random coefficient is chosen in [−M,M].

Since C ′ is nonsingular, x′ = (xn−p+1, . . . , xn) is determined by the equality constraints C ′x′ =
d. This makes it more likely to actually find a FBBT limit point X∗ such that δ′ = dim aff(X∗) <
dim aff([−M,M]) = δ, as required by Thm. 3.3.

We generated 190 nonconvergent instances using values ofm in {10, 20, 30}, values of n in {2, 4, . . . ,m}
and values of p in {2, 4, . . . , n}. Of these instances, 36 turned out to have the required property δ′ < δ;
and of these, 20 were found to be feasible and 16 to be infeasible (this suited our purposes as it allowed
us to verify Prop. 4.2).

In Fig. 1, we show the CPU time difference and the final interval vector width difference, defined
as the sum of the interval width differences over each component, between FBBT terminated when the
discrepancy between one iteration and the next decreased to less than 10−4 and the FBBT limit point
found using the FBBT-LPC formulation (on the feasible instances only). The results are consistent

0.01 0.1 1 10
0.01

0.1

1

10

log cpu of FBBT

lo
g

 c
p

u
 o

f
F

B
B

T
−

L
P

Figure 1: CPU time difference between FBBT and FBBT-LPC. Points under the diagonal denote in-
stances where FBBT-LPC is more performant.

with the theoretical predictions: the output interval width difference between FBBT and the FBBT-
LPC is always positive. The values are very small because of the FBBT termination condition. As for
the infeasible instances, FBBT was able to identify 6 instances out of 16; the corresponding score for
FBBT-LPC was 5 out of 16.

5 COMPUTATIONAL RESULTS 18

5.2 Field tests

We ran extensive tests with a modified version of the Couenne [8] solver. Our test set includes the
GlobalLib [12], a set of pooling and blending problems from [19], the MINLPLib [13], and the union of
MIPLib3 [10] and MIPLib2003 [30] (denoted as MIPLib in the following), for a total of 706 instances.

5.2.1 Tested versions of the Couenne solver

We benchmark two modified versions of Couenne with the standard version. Each version is described
by a pair of integers (f, ℓ): f gives the maximum number of iterations that FBBT is permitted to take
at each sBB node; ℓ can be either 0 (the FBBT-LPC is disabled), 1 (the FBBT-LPC is solved at each
node) or a negative integer (the FBBT-LPC is solved every ℓ-th node if successful at the root node,
otherwise never). The standard Couenne version is (5, 0). The other versions we use are a (0, 1), a pure
FBBT-LPC where FBBT is disabled, and a hybrid approach (3,−5).

5.2.2 CPU time

The first performance measure is the user CPU time (in seconds) taken to solve an instance (or deem it
infeasible). We only compare this measure over a subset of 415 instances for which all tested versions
of Couenne terminate before the 2h time limit. The aggregated statistics are reported in Table 1. We

Library Standard (5, 0) FBBT-LPC (0, 1) Hybrid (3,−5)
GlobalLib 22551 11891 9847
Pooling problems 5133 13329 46
MINLPLib 27395 11668 9395
MIPLib 17016 13186 25592
Total 72095 50074 44880

Table 1: CPU time comparison of Couenne (5, 0), (0, 1) and (3,−5).

remark that the hybrid Couenne is more effective for nonlinear problems, whereas the pure FBBT-LPC
version is more effective for linear ones. It is interesting to remark that the standard FBBT approach,
which is what is currently implemented in most solvers (Couenne, BARON [39], CPLEX [23] as part of
the presolver), seems to be at a loss overall.

We also compare the FBBT-LPC and hybrid Couenne versions against the standard one using scatter
plots (Fig. 2-4) where the x-axis is log log CPU of the standard version and the y-axis is log log CPU of the
FBBT-LPC and hybrid versions. Points under the diagonal denote instances for which the FBBT-LPC
and hybrid versions are faster. The hybrid Couenne definitely has a CPU time advantage with respect
to the standard one.

5.2.3 Optimality gap closed

The second performance measure is the optimality gap closed at termination on the 60 instances where
all Couenne versions terminate because of a reached user CPU time limit of 2h. The closed gap is
measured as:

LB at termination− LB at root node

smallest UB over Couenne versions− LB at root node
,

as detailed in [8]. The aggregated statistics are reported in Table 2. It turns out that the standard
Couenne closes slightly more gap on nonterminating instances. The standard deviation of the aggregated

5 COMPUTATIONAL RESULTS 19

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

F
B

B
T

−
L

P
 C

o
u

e
n

n
e

GlobalLib

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

h
y
b

ri
d

 C
o

u
e

n
n

e

GlobalLib

0.01 0.1 1 10
0.01

0.1

1

10

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

F
B

B
T

−
L

P
 C

o
u

e
n

n
e

Pooling problems

0.01 0.1 1 10
0.01

0.1

1

10

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

h
y
b

ri
d

 C
o

u
e

n
n

e

Pooling problems

Figure 2: User CPU time scatter plots of FBBT-LPC (left) and hybrid (right) versus standard Couenne
versions on continuous NLP instances from GlobalLib (top) and the pooling problems (bottom).

Library Standard (5, 0) FBBT-LPC (0, 1) Hybrid (3,−5)
GlobalLib 6.01 5.43 5.85
Pooling problems 0.84 0.45 0.86
MINLPLib 0.40 0.37 0.20
MIPLib2003 5.15 5.54 5.21
Total 12.41 11.80 12.12

Table 2: Closed optimality gap comparison of Couenne (5, 0), (0, 1) and (3,−5).

statistic over all Couenne versions is very low, however. It is worth mentioning that, on MILPs, the
FBBT-LPC version fares better than the others.

5.2.4 Categorical comparison

In this section, we draw a comparison on the set of 202 instances on which the Couenne versions are
discordant as regards the natural or artificial (CPU time limit) termination. Table 3 reports the number
of discordant instances on which the different versions of Couenne terminated naturally. It appears
clear that the hybrid version of Couenne is able to solve more instances within the 2h CPU time limit.

6 CONCLUSION 20

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

F
B

B
T

−
L

P
 C

o
u

e
n

n
e

MINLPLib

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

h
y
b

ri
d

 C
o

u
e

n
n

e

MINLPLib

miplib

0.01 0.1 1 10
0.1

1

10

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

F
B

B
T

−
L

P
 C

o
u

e
n

n
e

miplib

0.01 0.1 1 10
0.01

0.1

1

10

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

h
y
b

ri
d

 C
o

u
e

n
n

e

Figure 3: User CPU time scatter plots of FBBT-LPC (left) and hybrid (right) versus standard Couenne
versions on integer instances from MINLPLib (top) and MIPLib (bottom).

−

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g

 l
o

g
 c

p
u

 o
f

F
B

B
T

−
L

P
 C

o
u

e
n

n
e

−

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

log log cpu of standard Couenne

lo
g
 l
o
g
 c

p
u
 o

f
h
y
b
ri
d
 C

o
u
e
n
n
e

Figure 4: User CPU time scatter plots of FBBT-LPC (left) and hybrid (right) versus standard Couenne
versions on the whole test set.

6 Conclusion

Range reduction techniques have paramount importance in sBB solvers both for linear and nonlinear
programming. We provide an in-depth study of the FBBT operator (over continuous variables), showing

REFERENCES 21

Library Standard (5, 0) FBBT-LPC (0, 1) Hybrid (3,−5)
GlobalLib 34 69 78
Pooling problems 2 0 2
MINLPLib 10 48 54
MIPLib 4 12 9
Total 50 129 143

Table 3: Couenne performance on discordant instances.

that its limit point can be determined in polynomial time by solving a linear program. We apply this
theoretical result to the sBB algorithm by replacing FBBT with its limit-finding FBBT-LPC formulation.
Lastly, we test a hybrid sBB approach where FBBT is run for a short time at each node, while the
linear program for finding the limit point is run every five nodes: this approach turns out to improve
performance with respect to the standard sBB. Interestingly, the FBBT-LPC makes a definite impact in
MILP instances from MIPLib3 and MIPLib2003.

Acknowledgments

The last author (LL) is partly supported by grants Digiteo Chair 2009-14D “RMNCCO”, Digiteo 2009-
55D “ARM” and the Microsoft-CNRS “OSD” Chair.

References

[1] Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization method, αBB, for general
twice-differentiable constrained NLPs: I. Theoretical advances. Computers & Chemical Engineering
22(9), 1137–1158 (1998)

[2] Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general
twice-differentiable constrained NLPs: II. Implementation and computational results. Computers &
Chemical Engineering 22(9), 1159–1179 (1998)

[3] Al-Khayyal, F., Sherali, H.: On finitely terminating branch-and-bound algorithms for some global
optimization problems. SIAM Journal of Optimization 10(4), 1049–1057 (2000)

[4] Andersen, D., Andersen, K.: Presolving in linear programming. Mathematical Programming 71,
221–245 (1995)

[5] Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general
constrained nonconvex problems. Journal of Global Optimization 7(4), 337–363 (1995)

[6] Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)

[7] Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points.
In: D.Z. Du, P. Pardalos, B. Thuraisingham (eds.) Combinatorial Optimization, Constraints and
Applications (COCOA10), LNCS, vol. 6508, pp. 65–76. Springer, New York (2010)

[8] Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques
for non-convex MINLP. Optimization Methods and Software 24(4), 597–634 (2009)

[9] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In:
Proceedings of the 1999 international conference on Logic programming, pp. 230–244. Massachusetts
Institute of Technology, Cambridge (1999)

REFERENCES 22

[10] Bixby, R., Ceria, S., McZeal, C., Savelsbergh, M.: An updated mixed integer programming library:
Miplib 3. Tech. Rep. TR98-03, Rice University (1998)

[11] Bordeaux, L., Hamadi, Y., Vardi, M.: An analysis of slow convergence in interval propagation. In:
C. Bessière (ed.) Principles and Practice of Constraint Programming, LNCS, vol. 4741, pp. 790–797.
Springer (2007)

[12] Bussieck, M.: Globallib — a collection of nonlinear programming problems (2004).
(http://www.gamsworld.org/global/globallib.htm)

[13] Bussieck, M., Drud, A., Meeraus, A.: MINLPLib — A collection of test models for mixed-integer
nonlinear programming. INFORMS Journal on Computing 15(1) (2003)

[14] D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a feasibility pump approach
for nonconvex MINLPs. In: P. Festa (ed.) Symposium on Experimental Algorithms, LNCS, vol.
6049. Springer, Heidelberg (2010)

[15] Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press,
Cambridge (2002)

[16] Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32, 281–331 (1987)

[17] Falk, J., Soland, R.: An algorithm for separable nonconvex programming problems. Management
Science 15, 550–569 (1969)

[18] Faltings, B.: Arc-consistency for continuous variables. Artificial Intelligence 65, 363–376 (1994)

[19] Foulds, L., Haughland, D., Jornsten, K.: A bilinear approach to the pooling problem. Optimization
24, 165–180 (1992)

[20] Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1), 24–32 (1982)

[21] Hooker, J.: Integrated methods for optimization. Springer, New York (2007)

[22] Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach.
Artificial Intelligence 58, 71–112 (1992)

[23] IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)

[24] Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econometrica
28(3), 497–520 (1960)

[25] Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric CSPs. Artificial Intelligence
139, 109–132 (2002)

[26] Liberti, L.: Writing global optimization software. In: L. Liberti, N. Maculan (eds.) Global Opti-
mization: from Theory to Implementation, pp. 211–262. Springer, Berlin (2006)

[27] Liberti, L.: Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO
43(1), 55–86 (2009)

[28] Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. In: V. Maniezzo,
T. Stützle, S. Voß (eds.) Hybridizing metaheuristics and mathematical programming, Annals of

Information Systems, vol. 10, pp. 231–244. Springer, New York (2009)

[29] Liberti, L., Roux, S.L., Leconte, J., Marinelli, F.: Mathematical programming based debugging.
In: R. Mahjoub (ed.) Proceedings of the International Symposium on Combinatorial Optimization,
Electronic Notes in Discrete Mathematics, vol. 36, pp. 1311–1318. Elsevier, Amsterdam (2010)

[30] Martin, A., Achterberg, T., Koch, T.: Miplib 2003. Tech. Rep. 05-28, ZIB (2005)

REFERENCES 23

[31] Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution de
problèmes avec contraintes (in French). Ph.D. thesis, Institut National Polytechnique de Toulouse
(1997)

[32] Messine, F.: Deterministic global optimization using interval constraint propagation techniques.
RAIRO-RO 38(4), 277–294 (2004)

[33] Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

[34] Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

[35] Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

[36] Roman, S.: Lattices and Ordered Sets. Springer, New York (2008)

[37] Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs with applications in
process design. Computers & Chemical Engineering 19(5), 551–566 (1995)

[38] Sahinidis, N.: Global optimization and constraint satisfaction: the Branch-and-Reduce approach. In:
C. Bliek, C. Jermann, A. Neumaier (eds.) Global Optimization and Constraint Satisfaction, LNCS,
vol. 2861, pp. 1–16. Springer (2003)

[39] Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual (2005)

[40] Savelsbergh, M.: Preprocessing and probing techniques for mixed integer programming problems.
INFORMS Journal on Computing 6(4), 445–454 (1994)

[41] Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization.
Journal of Global Optimization 33(4), 541–562 (2005)

[42] Shectman, J., Sahinidis, N.: A finite algorithm for global minimization of separable concave pro-
grams. Journal of Global Optimization 12, 1–36 (1998)

[43] Smith, E.: On the optimal design of continuous processes. Ph.D. thesis, Imperial College of Science,
Technology and Medicine, University of London (1996)

[44] Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Computers & Chemical Engineering 23, 457–478 (1999)

[45] Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs: A theo-
retical and computational study. Mathematical Programming 99, 563–591 (2004)

[46] Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs
for numerical constraint solving. Journal of Global Optimization 45, 499–531 (2009)

[47] Waltz, D.: Understanding the line drawings of scenes with shadows. In: P. Winston (ed.) The
Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)

[48] Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1995)

