Sonia Cafieri
email: sonia.cafieri@enac.fr

Pierre Hansen
email: pierre.hansen@gerad.ca

Leo Liberti
email: liberti@lix.polytechnique.fr

Improving heuristics for network modularity maximization using an exact algorithm

Keywords: clustering, bipartition, network, graph, community, modularity, heuristic, exact algorithm, matheuristic

Heuristics are widely applied to modularity maximization models for the identification of communities in complex networks. We present an approach to be applied as a post-processing to heuristic methods in order to improve their performances. Starting from a given partition, we test with an exact algorithm for bipartitioning if it is worthwhile to split some communities or to merge two of them. A combination of merge and split actions is also performed. Computational experiments show that the proposed approach is effective in improving heuristic results.

Introduction

The identification of communities in complex networks has become in recent years a very active research domain [START_REF] Newman | Networks: an introduction[END_REF][START_REF] Fortunato | Community detection in graphs[END_REF] because of the common representation of complex real-world systems arising in a variety of fields as networks. One then aims to find communities, or clusters, of entities grouped on the basis of some relationship holding among them. Telecommunication networks such as the World Wide Web, biological networks representing interactions between proteins and social networks representing collaborations or conflicts between people or countries are some examples of real-life applications (see [START_REF] Newman | Networks: an introduction[END_REF] for a detailed introduction).

Intuitively, one would say that a set of vertices of a network form a community if edges joining two vertices of that set are frequent and edges joining a vertex of that set to a vertex outside are not. This concept has been refined in many ways, leading to the introduction of concepts of modularity [START_REF] Newman | Finding and evaluating community structure in networks[END_REF], modularity density [START_REF] Li | Quantitative function for community detection[END_REF], min-max cut [START_REF] Ding | A min-max cut algorithm for graph partitioning and data clustering[END_REF], normalized cut [START_REF] Shi | Normalized cuts and image segmentation[END_REF] and others. Among these concepts, modularity is by far the most popular.

Modularity of a community is defined in [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] as the difference between the fraction of edges it contains and the expected fraction of edges it would contain if they were placed at random, keeping the same degree distribution. Then, modularity of a partition of a network into communities is defined as the sum of the modularities of these communities. Modularity expresses not only that a community contains a large fraction of the edges, but also that it contains a larger fraction of the edges than would be expected. It can be viewed as a measure of the extent to which the classes of a partition of a graph can be considered to be communities. Alternatively, modularity can be maximized to find an optimal partition of a network.

Modularity maximization has spawned in recent years numerous methods for cluster identification in networks. Despite its popularity, the accuracy and the significance of modularity maximizing modules are not well understood for real-world networks [START_REF] Good | The performance of modularity maximization in practical contexts[END_REF]. Furthermore, some criticism have been raised in recent literature, see, e.g., [START_REF] Good | The performance of modularity maximization in practical contexts[END_REF][START_REF] Fortunato | Resolution limit in community detection[END_REF][START_REF] Cafieri | Loops and multiple edges in modularity maximization of networks[END_REF][START_REF] Massen | Identifying communities within energy landscapes[END_REF][START_REF] Lancichinetti | Limits of modularity maximization in community detection[END_REF]. The two main concerns are the existence of a resolution limit and the fact that modularity function exhibits a degeneracy. The resolution limit, identified by Fortunato and Barthelemy [START_REF] Fortunato | Resolution limit in community detection[END_REF], implies that, in the presence of large clusters, some clusters smaller than a certain size which depends on the number of edges of the network can be undetectable. As a consequence, modular structures like small cliques can be hidden in larger clusters. This effect appears to be driven primarly by the assumption that inter-module connectivity follows a random graph model [START_REF] Good | The performance of modularity maximization in practical contexts[END_REF]. Degeneracy (see [START_REF] Good | The performance of modularity maximization in practical contexts[END_REF]) implies that there can be a large number of partitions, even very different from each other, having high modularity values. This makes it easy to find high-scoring partitions but difficult to identify the global optimum. To address these criticisms a few approaches have been proposed. Sales-Pardo et al. [START_REF] Sales-Pardo | Extracting the hierarchical organization of complex systems[END_REF] address the problem of degenearcy combining information from many distinct partitions with high modularity. Multires-olution methods [START_REF] Kumpula | Limited resolution and multiresolution methods in complex network community detection[END_REF][START_REF] Arenas | Analysis of the structure of complex networks at different resolution levels[END_REF][START_REF] Reichardt | Statistical mechanics of community detection[END_REF] allow to specify a target resolution limit and identify clusters on such given scale, though they do not solve the problem in a fully satisfactory manner. Despite these criticisms, modularity maximization still appears to be a very popular technique for network clustering. It exhibits, in fact, some clear advantages: modularity function has a clear and simple mathematical description and does not depend on parameters being decided arbitrarily (as an example, maximizing the number of intracluster edges requires some other parameter, e.g. the minimum cluster size); modularity maximization gives an optimal partition together with the number of clusters not to be specified in advance. Interestingly, one can use mathematical programming to model the community detection problem and, using modularity maximization, the splitting of a cluster into two can be expressed as a quadratic programming problem. This paper discusses such a formulations and exploits it within a procedure used as a refinement of previously computed partitions.

Numerous heuristics and a few algorithms have been proposed to find near optimal or optimal partitions respectively for the maximum modularity criterion. Heuristics are either partitioning methods or hierarchical divisive or agglomerative ones. Partitioning heuristics are based on simulated annealing [START_REF] Guimerà | Functional cartography of complex metabolic networks[END_REF][START_REF] Massen | Identifying communities within energy landscapes[END_REF][START_REF] Medus | Detection of community structures in networks via global optimization[END_REF], mean field annealing [START_REF] Lehmann | Deterministic modularity optimization[END_REF], genetic search [START_REF] Tasgin | Community detection in complex networks using genetic algorithms[END_REF], extremal optimization [START_REF] Duch | Community identification using extremal optimization[END_REF], spectral clustering [START_REF] Newman | Modularity and community structure in networks[END_REF], linear programming followed by randomized rounding [START_REF] Agarwal | Modularity-maximizing graph communities via mathematical programming[END_REF], dynamical clustering [START_REF] Boccaletti | Detecting complex network modularity by dynamical clustering[END_REF], multilevel partitioning [START_REF] Djidjev | A scalable multilevel algorithm for graph clustering and community structure detection[END_REF], contraction-dilation [START_REF] Mei | Revealing network communities through modularity maximization by a contraction-dilation method[END_REF], quantum mechanics [START_REF] Niu | Detecting the community structure in complex networks based on quantum mechanics[END_REF] and several other approaches [27, 28? , 29, 30, 13]. Agglomerative hierarchical clustering [START_REF] Newman | Fast algorithm for detecting community structure in networks[END_REF][START_REF] Clauset | Finding community structure in very large networks[END_REF][START_REF] Danon | The effect of size heterogeneity on community identification in complex networks[END_REF][START_REF] Wakita | Finding community structure in mega-scale social networks[END_REF][START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] proceeds from an initial partitions into communities each containing a single vertex to merging sequentially vertices or sets of vertices corresponding to communities. In [START_REF] Schuetz | Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[END_REF] this approach is combined with a vertex mover routine which improves the partitions by changing the community of a vertex to that of one of its adjacent vertices. Divisive hierarchical clustering proceeds from an initial trivial partition in one community containing all vertices and sequentially selects a community and proceeds to its bipartitioning. Divisive heuristics are much less frequent than agglomerative ones. The best known of them is Newman's spectral heuristic [START_REF] Newman | Modularity and community structure in networks[END_REF], which uses the signs of the first eigenvector of the modularity matrix to perform successive bipartitions. In a companion paper [START_REF] Cafieri | Locally optimal heuristic for modularity maximization of networks[END_REF], we propose a hierarchical divisive heuristic which is locally optimal, i.e., in which all successive bipartitions are done in an optimal way.

These heuristics are able to solve large instances with up to thousand or tens of thousands of vertices (and sometimes over a million) and therefore are often preferred to exact algorithms, even though they do not have a guarantee of optimality. Only a few papers propose exact algorithms for maximizing modularity. The first one, due to Xu et al. [START_REF] Xu | Finding community structures in complex networks using mixed integer optimization[END_REF], uses quadratic mixed-integer programming with a convex relaxation. Networks with up to 104 vertices were addressed successfully. Brandes et al. [START_REF] Brandes | On modularity clustering[END_REF] have shown that modularity maximization is NP-hard, even if there are only two communities. In addition, they propose to express modularity maximization as a clique partitioning problem. They maximize modularity of networks with up to 105 vertices. Their algorithm is close to that one of Grötschel and Wakabayashi [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF][START_REF] Grötschel | Facets of the clique partitioning polytope[END_REF]. Aloise et al. [START_REF] Aloise | Column generation algorithms for exact modularity maximization in networks[END_REF] apply column generation to modularity maximization and solve exactly instances with up to 512 vertices. Given a partition found by a heuristic, one can apply another heuristic or an exact algorithm to the subnetworks induced by the communities found. This will eventually lead to a new, better, partition. Moreover, this refinement can be based on splitting a community or merging a pair of communities. In the spirit of matheuristics, an exact algorithm for bipartition is applied in our approach first to the communities considered one at a time, then merging pairs of communities and applying again the bipartition algorithm.

We employ our approach as post-processing of some known heuristics for modularity maximization, obtaining improved solutions and, for some datasets, the optimal partition.

The paper is organized as follows. In the next section, the proposed approach to improve heuristic results for modularity maximization is described, presenting in particular an exact algorithm for bipartition. Section 3 presents the results of computational experiments carried out applying the proposed approach as post-processing to three of the best heuristics available for modularity maximization of networks, i.e., the agglomerative hierarchical heuristic of Clauset et al. [START_REF] Clauset | Finding community structure in very large networks[END_REF], the partitioning heuristic of Noack and Rotta [START_REF] Noack | Multi-level algorithms for modularity clustering[END_REF] and the multistep greedy with vertex move heuristic of Schuetz and Caflisch [START_REF] Schuetz | Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[END_REF]. We also apply this approach to the locally optimal divisive hierarchical heuristic of [START_REF] Cafieri | Locally optimal heuristic for modularity maximization of networks[END_REF]. Conclusions are given in Section 4.

Improving heuristics for modularity maximization

An exact algorithm for bipartition

We present in this section an exact algorithm for modularity maximizing bipartition of networks. Although it can be applied in full generality to any graph, we specifically apply it in the role of post-processing step to heuristics for the identification of communities in networks.

We model this bipartitioning problem using binary variables to identify to which community each vertex and each edge belongs. In this respect, our model is similar to that of Xu et al. [START_REF] Xu | Finding community structures in complex networks using mixed integer optimization[END_REF]. These authors proposed in 2007 [START_REF] Xu | Finding community structures in complex networks using mixed integer optimization[END_REF] a model for modularity maximization of networks which leads to an optimal partition generally with more than two communities. Their model is a mixed-integer quadratic program with a convex relaxation.

Let G = (V, E) be a graph, or network, with vertex set V of cardinality n and edge set E of of cardinality m. First, we recall the definition of modularity Q as a sum over communities of their modularities [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]:

Q = s [a s -e s],
where a s is the fraction of all edges that lie within community s, and e s is the expected value of the same quantity in a graph in which the vertices have the same degrees but edges are placed at random. Modularity can then be written equivalently as:

Q = s m s m - d s 2m 2 , (1)
where m s denotes the number of edges in community s, i.e., which belong to the subgraph induced by the vertex set V s of that community, and d s denotes the sum of degrees k i of the vertices of community s. Since we aim to find a bipartition, only two sub-modules of the original community have to be considered, i.e. s ∈ {1, 2}. We can express the sum of degrees d 2 of vertices belonging to the second community as a function of the sum of degrees d 1 of vertices belonging to the first one:

d 2 = d t -d 1 , (2)
where d t is the sum of degrees in the community to be bipartitioned. It is equal to 2m at the first iteration. We rewrite (1) for s ∈ {1, 2}, using (2):

Q = m 1 + m 2 m - d 2 1 4m 2 - d 2 2 4m 2 = = m 1 + m 2 m - d 2 1 4m 2 - d 2 t + d 2 1 -2d t d 1 4m 2 = = m 1 + m 2 m - d 2 1 2m 2 - d 2 t 4m 2 + d t d 1 2m 2 .
(

) 3
We then introduce binary variables X r1 , X r2 and Y i1 to model assignment of vertices and edges to the two communities of the bipartition. These variables are defined as follows:

X rs = 1 if edge r belongs to community s 0 otherwise (4)
for r = 1, 2, . . . m and s = 1, 2 and

Y i1 = 1 if vertex i belongs to community 1 0 otherwise, i.e., vertex i belongs to community 2 (5)
for i = 1, 2, . . . n.

We impose that any edge r = {v i , v j } with end vertices indiced by i and j can only belong to community s if both of its end vertices belong also to that community:

X r1 ≤ Y i1 ∀r = {v i , v j } ∈ E X r1 ≤ Y j1 ∀r = {v i , v j } ∈ E (6)
and

X r2 ≤ 1 -Y i1 ∀r = {v i , v j } ∈ E X r2 ≤ 1 -Y j1 ∀r = {v i , v j } ∈ E . (7)
Furthermore, we exploit the following expressions in terms of variables X r1 , X r2 , r = 1, 2, . . . m, and Y i1 , i = 1, 2, . . . n, for the number of edges of each of the two communities and the sum of vertex degrees of the first one:

m s = r X rs ∀s ∈ {1, 2}, (8)
d 1 = i∈V 1 k i Y i1 . (9)
Only the sum of vertex degrees of the first community is exploited, because of expression [START_REF] Fortunato | Community detection in graphs[END_REF].

We then have the following integrality constraints on the variables:

X rs ∈ {0, 1} ∀r = {v i , v j } ∈ E, ∀s ∈ {1, 2} Y i1 ∈ {0, 1} ∀i ∈ {1, . . . , n} m 1 , m 2 , d 1 ∈ N + . (10
)
Maximizing modularity (3) subject to constraints (6)-(7) and (8)-(9) and replacing the integrality constraints [START_REF] Massen | Identifying communities within energy landscapes[END_REF] by range constraints gives a quadratic mixed-integer program with a convex relaxation which can be solved by recent versions of CPLEX [START_REF]ILOG CPLEX 12.2 User's Manual[END_REF]. This model has 2m + n + 3 variables and 4m + 3 constraints. For sparse networks, as is the case in many applications, these sizes are reasonable.

Improving a partition by merging and splitting

The proposed post-processing heuristic aims at improving the modularity of a given partition obtained with some heuristic. A new partition is obtained in a sequence of steps, which act on the current communities by splitting and merging.

First, we split each community of the original partition into two subcommunities by applying the exact algorithm for bipartition described in subsection 2.1. We then check if the modularity value corresponding to the obtained bipartition is higher than the one of the original community. This comparison is justified by the definition of modularity of a partition as sum of modularities of its communities. If the new modularity value is higher than that one of the original community, this community is replaced by the two new communities. Otherwise the two obtained communities are discarded and the original one is kept. When all the original communities have been checked, a new partition is obtained with a higher modularity than before if at least one bipartition has been accepted.

Second, we merge provisionally pairs of communities and check if this induces an increased value for modularity. For each pair of communities, we consider the new community containing all vertices of this pair and check if the larger community has a modularity value higher than the sum of the modularities of the two original communities. If this is the case, the new large community is kept in place of the other two. Otherwise, if merge is not beneficial, we try to split the merged community using again the exact algorithm presented in subsection 2.1. As before, the two communities resulting from the bipartition are kept if the sum of their modularities is higher than the modularity of the splitted community. Obviously, pairs of clusters to be merged can be selected according to different criteria. We compute the number of edges joining pairs of clusters, that is the number of edges joining vertices belonging to the first cluster of the pair with vertices belonging to the second cluster. Then, the pairs are sorted by decreasing number of joining links. This gives the list of pairs of clusters to be considered for merging. In this way, we first attempt to improve the current partition by merging clusters which are more strongly connected than others, so that a merging can be expected to be beneficial.

A sketch of our algorithm is given in Alg. 1.

Computational results

We apply our approach as a post-processing heuristic to three known heuristics due to Clauset, Newman and Moore [START_REF] Clauset | Finding community structure in very large networks[END_REF], Noack and Rotta [START_REF] Noack | Multi-level algorithms for modularity clustering[END_REF] and Schuetz and Caflisch [START_REF] Schuetz | Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[END_REF]. We also apply it to the locally optimal divisive hierarchical heuristic of [START_REF] Cafieri | Locally optimal heuristic for modularity maximization of networks[END_REF]. Clauset et al. [START_REF] Clauset | Finding community structure in very large networks[END_REF] proposed in 2004 an efficient implementation of an agglomerative hierarchical scheme, that for sparse networks has a very low complexity and is considerably faster than previously proposed methods. Noack and Rotta [START_REF] Noack | Multi-level algorithms for modularity clustering[END_REF] presented in 2008 a comparison of heuristics for modularity maximization and proposed a heuristic based on a single-step coarsening with a multi-level refinement, which is competitive with other methods in the literature. Schuetz and Caflisch [START_REF] Schuetz | Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[END_REF] introduced in 2008 a multistep extension of the greedy heuristic and combined it with a vertex-by-vertex refinement procedure, called vertex mover. Their main idea is to promote simultaneous merging of several pairs of communities. Moreover, the vertex mover acts as an efficient ascent heuristic, used repetitively. The present authors proposed in 2011 a hierarchical divisive heuristic where bipartitions are done exactly using the model of Section 2.

Our computational results have been obtained on some datasets that are often used to evaluate heuristics and algorithms for identification of communities in networks. These datasets correspond to various real-life applications: a social network of dolphins described by Lusseau [START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Can geographic isolation explain this unique trait?[END_REF], a network describing interactions among the characters of Hugo's novel Les Misérables [START_REF] Knuth | The Stanford GraphBase: A Platform for Combinatorial Computing[END_REF], a network dealing with protein-protein interactions [START_REF] Dartnell | Self-similar community structure in a network of human interactions[END_REF], a network recording co-purchasing of political books on Amazon.com [47], a network represent-ing the schedule of games between American college football teams in the Fall of 2000 [START_REF] Girvan | Community structure in social and biological networks[END_REF], a network dealing with connections between US airports [49], a network describing electronic circuits [50], a network representing email interchanges between members of a university [START_REF] Guimerà | Selfsimilar community structure in a network of human interactions[END_REF], a network giving the topology of the Western States Power Grid of the United States [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF] and a network of authors collaborations [49].

In our implementation, the quadratic mixed-integer program with a convex relaxation which models the modularity maximizing bipartition problem is solved using CPLEX 12.2 [START_REF]ILOG CPLEX 12.2 User's Manual[END_REF], with the following parameters: the MIP cutting plane generation is disabled, the branching variable selection strategy is based on reduced pseudo costs, the number of nodes in the Branch-and-Bound tree is limited to 40000, and 1 only thread is used.

In Table 1 we report, for each dataset, the values of modularity computed by the four considered heuristics and by the proposed approach when applied as post-processing to the partitions obtained with these heuristics, together with the optimal value of modularity, when available in the literature. The number of vertices n and the number of edges m of the datasets are also reported.

It appears that:

• the best result obtained with the four heuristics and our proposed postprocessing approach is optimal 4 cases out of the 8 for which an optimal value is known.

• However, for the four cases in which the optimal solution could not be found, the error between the optimal value and the best value found by one of the heuristics appears to be very moderate, i.e., 0.00011 or 0.021% for p53 protein and 0.000016 or 0.043% for usair97, 0.000022 or 0.026% for netscience main and 0.00265 or 0.32% for s838.

• The proposed approach is very efficient in the sense that it improved the values given by the heuristics in all cases for all of them, except for les miserables for which the optimal solution was already obtained by Noack and Rotta's and Schuetz and Caflisch's heuristics.

• After post-processing, the Noack and Rotta's heuristic gives the best results in 8 cases over 11, the Schuetz and Caflish's heuristic in 4 cases over 11, which are a subset of the 8 cases solved by the Noack and Rotta's heuristic, the Clauset et al.'s heuristic found the best solution in 2 cases out of 11, i.e., political books (for which it was also obtained by the Noack and Rotta's and the Schuetz and Caflish's heuristics) and erdos02. Finally, the best solution after post-processing was found by the locally optimal divisive heuristic in 2 cases, i.e., s838 and power.

• The average value of modularity for the Clauset et al.'s heuristic over 11 problems is 0.616975 before post-processing and 0.634178 after postprocessing, the average improvement is 0.0172027 and the corresponding percentage of increase in modularity is 2.78824%. The average value of modularity for the Noack and Rotta's heuristic over 11 problems is 0.640711 before post-processing and 0.643135 after post-processing, the average improvement is 0.0024245 and the corresponding percentage of increase in modularity is 0.378415%. The average value of modularity for the Schuetz and Caflisch's heuristic over 11 problems is 0.640084 before post-processing and 0.643521 after post-processing, the average improvement is 0.0034373 and the corresponding percentage of increase in modularity is 0.537004%. Average value of modularity for the Cafieri et al.'s heuristic over 9 problems is 0.632559 before postprocessing and 0.633466 after post-processing, the average improvement is 0.000906667 and the corresponding percentage of increase in modularity is 0.143333%.

The approach proposed in the present paper is based on two main steps, which are applied sequentially. We call these steps split and merge+split for short. In order to evaluate the impact of the two steps, we report in Tables 2 and3 the modularity values obtained applying split and merge+split starting from Clauset et al.'s (CNM) solution and Noack-Rotta's (NR) solution for the first table and starting from Schuetz and Caflisch's (SC) solution and from Cafieri et al.'s (CHL) solution for the second table respectively. Note that modularity values for merge+split are the final results provided by our moves, already shown in Table 1. These results show that the splitting step provides in most cases a significant improvement of the original partition. Examples are given by dolphin, political books, football, usair97, netscience main and email datasets (that is, 6 cases out of 11) for CNM and by p53 protein dataset for SC, where an improvement on the second decimal digit of modularity value is obtained. Furthermore, the splitting step provides the optimal solution of political books dataset for NR and of political books and football datasets for SC. By contrast, this step does not provide for some instances a better partition [START_REF] Noack | Multi-level algorithms for modularity clustering[END_REF], Schuetz and Caflisch [START_REF] Schuetz | Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[END_REF] and Cafieri et al. [START_REF] Cafieri | Locally optimal heuristic for modularity maximization of networks[END_REF]. Q ′ , Q ′′ , Q ′′′ , Q iv are modularities computed applying the proposed approach to the partitions obtained by these heuristics. Q opt are the optimal modularity values as reported in the literature. n and m are the number of vertices and the number of edges of the networks.

dataset n m Q CNM Q ′ Q NR Q ′′ Q SC Q ′′′ Q CHL Q iv Qopt
than the original one, leading to an unchanged modularity value. Examples are given by erdos02 dataset for CNM, by p53 protein, usair97, s838 and erdos02 datasets for NR, and by usair97 and erdos02 datasets for SC. The splitting step never improves solutions found by the fourth heuristic CHL, as expected being the splitting step of that divisive heuristic already performed by using the exact algorithm of Section 2.1. This behavior shows the importance of a combined use of both splitting and merging steps in the proposed approach to obtain eventually a new, better, partition. Table 4 shows computing time required by our post-processing strategy applied to the four considered heuristics to get an improved solution. Results have been obtained on a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM shared by three other similar CPU running Linux. As expected, times are roughly increasing with network dimension, even though they depend mostly on the quality of the initial partition and the cardinality of its communities to be handled. Times are in general reasonably moderate, and very short times are spent on most of the tested networks. The optimal partition is found in less than 1 second for dolphin dataset and in less than 4 seconds for football dataset starting from NR and SC solutions and in less than 4.30 seconds and slightly more than 5 seconds respectively for political books starting from CNM, NR and SC solutions.

dataset CNM NR Q CNM Q ′ split Q ′ merge+split Q NR Q ′′ split Q ′′ merge+split dolphin 0.
dataset SC CHL Q SC Q ′′′ split Q ′′′ merge+split Q CHL Q iv split Q iv merge+split dolphin 0

Conclusion

This paper describes the application of an approach based on an exact algorithm for bipartitioning a network, in the framework of split and merge movements on communities of a network partition. Computational results obtained on a set of examples from the literature, applying the proposed approach as post-processing to four heuristics for modularity maximization of networks, show the impact of an exact approach on the improvement of heuristic results.

The presented approach can be easily applied in full generality to any modularity maximization based heuristic to improve the quality of the partition provided by the heuristic.

It has been succesfully exploited to develop a hierarchical divisive clustering heuristic which is locally optimal [START_REF] Cafieri | Locally optimal heuristic for modularity maximization of networks[END_REF] and may be further developed including the described moves directly in a local search heuristic. split CL i into CL 1 , CL 2 using algorithm in subsection 2.1

Algorithm 1 1 :

 1 /* ncl = number of communities of the partition found by a heuristic */ 2: /* CL i = community of the partition found by a heuristic, ∀i = {1, . . . , ncl} */ Require: V, E, ncl, CL i ∀i = {1, . . . , ncl} 3: ncl split ← 0 4: for all i ≤ ncl do 5:

Table 1 :

 1 Results on real-world datasets: comparison between the modularity values found by heuristics and by the proposed approach applied as post-processing. Q CNM , Q NR , Q SC and Q CHL are modularities computed using heuristics by Clauset et al.[START_REF] Clauset | Finding community structure in very large networks[END_REF], Noack and Rotta

	dolphin	62	159	0.49549	0.52011	0.52377	0.52852 0.52456	0.52852 0.52646	0.52680	0.52852
	les miserables	77	254	0.50060	0.52438	0.56001	0.56001 0.56001	0.56001 0.54676	0.55351	0.56001
	p53 protein	104	226	0.52052	0.52621	0.53216	0.53502 0.51825	0.52910	0.53000	0.53004	0.53513
	political books	105	441	0.50197	0.52724 0.52694	0.52724 0.52694	0.52724 0.52629	0.52678	0.52724
	football	115	613	0.57728	0.59121	0.60028	0.60457 0.60316	0.60457 0.60091	0.60112	0.60457
	usair97	332	2126	0.32039	0.36221	0.36577	0.36808 0.36374	0.36458	0.35959	0.35975	0.3682
	netscience main	379	914	0.83829	0.84551	0.84745	0.84842 0.84567	0.84754	0.84702	0.84703	0.8486
	s838	512	819	0.80556	0.80666	0.81624	0.81656	0.81274	0.81364	0.81663	0.81675	0.8194
	email	1133	5452	0.51169	0.54736	0.57740	0.57776 0.57425	0.57660	-	-	-
	power	4941	6594	0.93402	0.93658	0.93854	0.93873	0.93679	0.93752	0.93937	0.93941	-
	erdos02	6927	11850	0.78092	0.79543 0.75926	0.76958	0.77481	0.78941	-	-	-

Table 2 :

 2 Modularity values corresponding to the partition found by the heuristic and by our approach after the splitting step only (Q ′ split , Q ′′ split) and after the successive application of the merging and splitting step (Q ′ merge+split , Q ′′ merge+split) for Clauset et al.'s heuristic (CNM) and Noack and Rotta's heuristic (NR).

		49549 0.51693	0.52011	0.52377 0.52773	0.52852
	les miserables	0.50060 0.50732	0.52438	0.56001 0.56001	0.56001
	p53 protein	0.52052 0.52518	0.52621	0.53216 0.53216	0.53502
	political books 0.50197 0.52708	0.52724	0.52694 0.52724	0.52724
	football	0.57728 0.58232	0.59121	0.60028 0.60237	0.60457
	usair97	0.32039 0.36157	0.36221	0.36577 0.36577	0.36808
	netscience main 0.83829 0.84537	0.84551	0.84745 0.84828	0.84842
	s838	0.80556 0.80639	0.80666	0.81624 0.81624	0.81656
	email	0.51169 0.53939	0.54736	0.57740 0.57741	0.57776
	power	0.93402 0.93605	0.93658	0.93854 0.93867	0.93873
	erdos02	0.78092 0.78092	0.79543	0.75926 0.75926	0.76958

Table 3 :

 3 Modularity values corresponding to the partition found by the heuristic and by our approach after the splitting step only (Q ′′′ split , Q iv split) and after the successive application of the merging and splitting step (Q ′′′ merge+split , Q iv merge+split) for Schuetz and Caflisch's heuristic (SC) and Cafieri et al.'s heuristic (CHL).

		.52456 0.52852	0.52852	0.52646 0.52646	0.52680
	les miserables	0.56001 0.56001	0.56001	0.54676 0.54676	0.55351
	p53 protein	0.51825 0.52663	0.52910	0.53000 0.53000	0.53004
	political books 0.52693 0.52724	0.52724	0.52629 0.52629	0.52678
	football	0.60316 0.60457	0.60457	0.60091 0.60091	0.60112
	usair97	0.36374 0.36374	0.36458	0.35959 0.35959	0.35975
	netscience main 0.84566 0.84587	0.84754	0.84702 0.84702	0.84703
	s838	0.81274 0.81338	0.81364	0.81663 0.81663	0.81675
	email	0.57425 0.57557	0.57660	-	-	-
	power	0.93678 0.93718	0.93752	0.93937 0.93937	0.93941
	erdos02	0.77481 0.77481	0.78941	-	-	-

Table 4 :

 4 Computing time (seconds) required by the proposed approach applied as postprocessing to Clauset at al.'s heuristic (time CNM), Noack and Rotta's heuristic (time NR), Schuetz and Caflisch's heuristic (time SC) and Cafieri et al.'s heuristic (time CHL). Solutions have been obtained on a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM shared by three other similar CPU running Linux.

	dataset	time CNM time NR	time SC	time CHL
	dolphin	0.58	0.20	0.38	0.26
	les miserables	0.32	0.67	0.68	0.35
	p53 protein	0.18	1.02	0.15	0.26
	political books	4.25	5.10	5.10	3.41
	football	0.95	3.26	2.51	0.99
	usair97	1000.96	334.72	525.91	454.64
	netscience main	1.02	1.38	0.75	0.77
	s838	0.73	1.20	0.63	1.06
	email	15591.40	57.80	1196.91	-
	power	21.63	18.62	20.53	17.50
	erdos02	525.37	919.74 15043.85	-

6 :

 6 if Q(CL 1) + Q(CL 2) > Q(CL i) then 7:replace CL i with CL 1 , CL 2 ncl split ← number of communities of the new partition 12: end for 13: ncl merge+split ← ncl split 14: for all i ≤ ncl split do 15: listcl ← list of pairs of communities (CL j , CL k), j, k ∈ {1, . . . , ncl split } select a pair of communities CL j , CL k from listcl 18: merge CL j and CL k into CL m 19:if Q(CL m) > Q(CL j) + Q(CL k) then 20: replace CL j , CL k with CL m = CL j ∪ CL k split CL m into CL m1 , CL m2 23: if Q(CL m1) + Q(CL m2) > Q(CL m) then 24:replace CL m with CL m1 , CL m2 end for 32: ncl merge+split ← number of communities of the new partition 33: compute modularity Q =

	8:	else
	9:	keep CL i
	10:	end if
	11:	
	16:	while listcl = ∅ do
	17:	
	21:	else
	22:	
	25:	else
	26:	keep CL m
	27:	end if
	28:	end if
	29:	update listcl
	30:	end while
	31: i=ncl merge+split i=1	Q(CL i)
	34: return final partition, Q