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Abstract

Predicted air traffic growth is expected to double the number of
flights over the next 20 years. If current means of air traffic control
are maintained, airspace capacity will reach its limits. The need for in-
creasing airspace capacity motivates improved aircraft trajectory plan-
ning in 4D (space-+time). In order to generate sets of conflict-free 4D
trajectories, we introduce a new nature-inspired algorithm: the light
propagation algorithm (LPA). This algorithm is a wavefront propaga-
tion method that yields approximate geodesic solutions (minimal-in-
time solutions) for the path planning problem, in the particular case of
air-traffic congestion. In simulations, LPA yields encouraging results
on real-world traffic over France while satisfying the specific constraints
in air-traffic management.

1 Introduction

When flying between two airports, aircraft must follow a specified set of
routes and beacons (crossing points of several airways) on an airway network
in order to structure the traffic for the ease of the air traffic controllers. As
a consequence, beacons promote conflicts between aircraft when trajectories
converge on common points of the network structure, thereby inducing a risk
of collision. Air traffic controllers monitor traffic and ensure that aircraft fol-
low their planned trajectories. When two or more aircraft are converging to
the same point, controllers are required to issue heading, speed or altitude
maneuvers to some aircraft in order to ensure a minimum security distance
(called separation distance) between all aircraft. For en-route cruising air-
craft, air traffic controllers usually use heading changes for conflict resolution
in order to minimize the impact on flight efficiency (vertical maneuvers are
mainly used in terminal areas). Moreover, heading changes have a more ef-
fective impact on the traffic situation from the air traffic controller point of
view (compared to speed regulation). Speed control is effective for conflict
resolution only in the descent phase as it is shown by Durand |7].



Predicted air traffic growth is expected to double the number of flights
over the next 20 years. Air Traffic Management (ATM) will therefore have
to absorb this additional burden and to increase airspace capacity, while
ensuring at least equivalent standards of safety and interoperability. The
European project SESAR (Single European Sky ATM Research) [32] was
initiated to propose solutions to address this increasing demand problem. A
major new concept of SESAR is the introduction of 4D trajectory planning.
4D trajectory planning consists of exploiting the possibilities of the flight
management systems (FMS, system in charge of the aircraft navigation and
controlling the auto-pilot) to ensure that a given aircraft is at a given position
at a specified time. In this future framework, general curve trajectories can
be designed. For each flight, a reference trajectory, called Reference Business
Trajectory (RBT), is computed by the airline operating center and sent to
the aircraft in order to be managed by the FMS. In such a case, air traffic
controllers and pilots simply monitor trajectories computed by the planner.

Aircraft trajectory planning is concerned with the generation of a tra-
jectory from start to goal (taking into account several objectives such as
minimizing path distance, motion time or fuel) while avoiding obstacles in
the environment and satisfying aircraft dynamics.

The problem of path planning deals with finding paths connecting dif-
ferent locations in an environment (e.g. a network, a graph, or a geometric
space). Depending on the specific applications, the desired paths may need to
satisfy constraints (e.g. obstacle avoidance) and to optimize combinations of
criteria (e.g. distance metrics and cost functions). The path planning prob-
lem can be formulated as an optimization problem that involves computing a
collision-free path between two locations. This type of path planning is used
in a large number of applications such as robotics, manufacturing, assembly,
transportation, etc.

In this paper, two classes of path planning in ATM will be addressed.
The first class considers static obstacles and is associated with the so-called
pre-tactical phase. In pre-tactical phase, aircraft trajectories are altered to
reduce congestion of airspace. Some aircraft trajectories are recomputed to
avoid congestion areas. Such pre-tactical planning is also used to avoid bad-
weather areas. Congestion areas and weather events may be considered as
known for a given aircraft, one or two hours in advance. In our experiments,
such areas will be considered fully “static" but our algorithm is capable of
addressing dynamic obstacles. For this problem, the shapes and the locations
of obstacles are assumed to be known. We are then searching for an aircraft
trajectory that avoids obstacles while minimizing distance.

The second class of path planning studied here is dedicated to the tactical
phase. As mentioned earlier, airways crossing points at beacons may induce
risks of collision between aircraft, called conflicts. In the case of a potential
conflict, aircraft trajectories are adjusted 3 to 7 minutes before its expected
occurrence by air traffic controllers. This process is called tactical planning.



In the second class of path planning, aircraft involved in a conflict are con-
sidered as “dynamic" obstacles in regards to one another. In this case, the
goal is to identify a robust conflict-free trajectory for each aircraft.

For both classes of problems, the synthesized trajectories should be smooth
in order to avoid sharp turns. The roll angle has to be bounded for passen-
ger comfort. Furthermore, in order to fly, the aircraft speed has to stay
within a bounded interval. The lower bound is imposed by the stall (wings
do not produce any lift), and the upper bound is Mach 1 (destruction of
the aircraft). All trajectories produced by planners must meet these speed
constraints.

In the tactical phase, potential conflicts between aircraft are typically
resolved by means of heading changes using standardized maneuvers:

e turning points: changing an aircraft heading and then bringing it back
on its initial trajectory;

e offsets: inducing a lateral shift from the initial trajectory.

These maneuvers are elaborated by the air traffic controller and sent to pilots
by radio (vocal communication). When pilots are charged with controlling
aircraft trajectories, it is impossible to resolve conflicts by sending aircraft a
general curved trajectory for which a continuous heading change would be
needed, due to the voice communication limitations. This last point limits
the set of trajectories that can be considered for solving conflicts. How-
ever, in the future framework of SESAR, communications will be ensured
by the system wide information management (SWIM). The SWIM architec-
ture will be based on Internet protocols (data links between airborne and
ground equipments). In this context, general curve trajectories can be shared
between aircraft and ground control.

In order to address trajectory planning problems, we propose an algo-
rithm inspired by nature. Natural paradigms are at the basis of several
optimization algorithms. Through billions of years, nature has found so-
lutions to all the “problems" met. We can thus learn from the success of
problem-solving by nature to develop nature-inspired heuristic algorithms.
Classical nature-inspired optimization algorithms use two major components
which are intensification (selection of the best solutions) and diversification
(e.g. randomization). Intensification ensures that the solutions will converge
to optimality, while diversification avoids the solutions from being trapped
at local optima and at the same time, it broadens the range of proposed
solutions. The best-known methods of this class of algorithms are genetic
algorithms [24], simulated annealing [20], ant colony optimization [3], bee
algorithms [27] and particle swarm optimization [18].

In geometric optics, light behavior is modeled using rays. Light emit-
ted from a point is assumed to travel along such a ray through space. In
an effort to explain the motion through space taken by rays as they pass



through various media, Fermat (1601-1665) developed his principle of least
action [15]:

The path of a light ray connecting two points is the one for which the time
of transit, not the length, is a minimum.

We can make several observations as a result of Fermat’s principle :

e In a homogeneous medium, light rays are rectilinear. That is, within
any medium where the index of refraction is constant, light travels in
a straight line.

e In an inhomogeneous medium, light rays follow smooth geodesic curves
with minimum transit time.

Light therefore tends to avoid high index areas where rays are slowed down.
Light reaches lowest speed for the highest encountered index.

Based on this principle of least action, we introduce an optimal path plan-
ning algorithm which computes smooth geodesic trajectories in environments
with static or dynamic obstacles. This algorithm mimics light propagation
between a starting point towards a destination point, with obstacles modeled
by high-index areas. By controlling the index landscape, it is possible to en-
sure that the computed trajectories meet the speed constraints and remain at
a specified minimum distance from obstacles. Congestion and the protection
zone (volume surrounding the aircraft where no other aircraft may enter)
of other aircraft will be modeled as high-index areas. Our light propagation
algorithm (LPA) is designed from a particular aircraft point of view. It is
assumed that the aircraft knows the surrounding aircraft trajectories (the
set of trajectories of the other aircraft is a given input of the algorithm). We
presented preliminary results with LPA in the conferences [4, 5, 6].

The paper is organized as follows. Section 2 presents previous related
works. Section 3 introduces the light propagation model and gives some
theoretical clues linked to the synthesized trajectories. In Section 4, we
describe our light propagation algorithm, LPA, that computes approximate
geodesics. In Section 5, we report numerical experiments on ATM problems.
We show that LPA can solve 99% of the conflicts in the French airspace for
a real traffic day (8000 trajectories).

2 Previous works

In robotics, motion planning has been treated as a kinematic problem, i.e.
determining a path that avoids obstacles without concern to robot speeds.
This was first extensively addressed for articulated robots by transforming
the problem into the configuration space, in which the robot reduces to a



point and the obstacles map into C-space obstacles [22, 23]. Using only
obstacle-free paths computed using robot kinematics may be dynamically
infeasible even at moderate speed, causing the robot to deviate from the
kinematic path due to its dynamics and limited actuator efforts. This gave
rise to dynamic motion planning, which produces a trajectory in the state
space, rather than just a path in the configuration space. Planning in the
state space, while computationally more extensive, allows one to minimize a
dynamic cost function, such as time or energy [33, 34, 35].

We distinguish between motion planning in static, and in dynamic envi-
ronments. In static environments, the obstacles are fixed, and the robot is
the only moving object. In dynamic environments, both the robot and the
obstacles move. Motion planning in dynamic environments was originally
addressed by adding the time dimension to the robot’s configuration space,
assuming that the trajectories of the obstacles are given [10, 11, 28].

Another approach to dynamic motion planning is to decompose the prob-
lem into two sub-problems: path planning and velocity planning. This
method first computes a feasible path among the static obstacles in the
spatial dimension. Then, the intersection of the moving obstacle with the
path is represented as a forbidden region in the temporal dimension. The
velocity along the path is chosen to avoid the forbidden regions [12, 13, 17].

Different approaches for path planning rely on extension of wisibility
graphs which are graphs of intervisible locations, typically for a set of points
and obstacles in the Euclidean plane. Each node in the graph corresponds
to a point location, and each edge represents a visible connection between
them. In other words, if the line segment connecting two locations does not
pass through any obstacle, an edge is drawn between them in the graph [14].

None of the previous trajectory planning methods considers the non-
linear robot dynamics, except for the configuration space method. However,
the latter does not take into account speed constraints. Furthermore, none
of these approaches produces time optimal motions.

Several optimization methods have been proposed to resolve conflicts in
air traffic [21]. The aim of these methods is to find optimal conflict-free
4D trajectories that reach the destination point. Such trajectories optimize
a cost function which typically depends on the travel duration and on the
cost index (the ratio of the time-related cost of airplane operations and the
cost of fuel). The value of the cost index reflects the relative effects of fuel
cost on overall trip cost, as compared with time-related direct operating
costs. Methods for addressing conflict resolution problems are categorized
into deterministic approaches and stochastic methods.

Genetic algorithms [9, 24| are stochastic methods that consist of gener-
ating a new “population” of aircraft trajectories from an initial population,
using three basic operators: selection, mutation and crossover in order to
improve the cost function. This process is iterated until the cost function is
no longer improved. The solution space is a set of finite maneuvers, which



contains straight segments, turning points and offsets. These maneuvers
are commonly used by air traffic controllers. Genetic algorithms generate
trajectories with feasible operational maneuvers and with velocities within
bounded ranges. They can reach an asymptotically optimal solution. How-
ever, for a given computing time, a feasible (conflict-free) solution is not
guaranteed to be reached.

Navigation based approaches [2, 29, 30, 31| are deterministic methods
based on potential field for which aircraft are modeled by negative charges
moving towards its destination modeled by high positive charge. Further-
more, they are formulated to avoid local traps with zero velocity, which is a
strong limitation for our aircraft conflict resolution problem. This produces
a trajectory which connects the departure point to the destination while
avoiding obstacles (the other aircraft). Navigation functions have already
demonstrated their effectiveness in motion planning with guaranteed colli-
sion avoidance and convergence towards the goal configuration (reach the
destination point with the right orientation). However, they do not take
into account the ATM constraints, such as bounded speeds, smooth trajec-
tories and time constraints. Besides, they may yield large deviations from
the RBT.

To summarize, genetic algorithms and navigation-function based ap-
proaches have been intensively studied, but none of them provides a com-
pletely satisfactory solution to the problem.

3 Light-propagation model

In this section, we describe the aircraft trajectory planning problem we are
addressing, we present the light-propagation model and, finally, we discuss
some theoretical aspects of our approach.

3.1 Problem statement

We seek to find for a moving object, the shortest path between two points
in R, taking into account a given metric (time, distance, ...). The path is
subject to two types of constraints plus the requirement that the object’s
velocity remains within a given bounded interval and given initial /final con-
ditions (entrance, exit positions, head and speed). Furthermore, the curva-
ture of this path is bounded in order to produce a smooth trajectory (which
is critical for our problem for which aircraft heading change rates have to be
bounded t00).

The first type of constraint is hard; paths must not pass through obsta-
cles represented by prespecified subsets of R™ (barriers). The second type
of constraint is soft; the associated prespecified subsets of R™ should be
avoided, but the path may go through them at the expense of a penalty
term in the objective function. Another way to interpret these constraints



is to consider that trajectories are longer in these subsets, according to a
metric used to compute the path’s length. In both cases such constraints
may either be static or dynamic.

For a given area, such hard and soft constraints are modeled by a “metric
landscape” C. This metric landscape is a function that maps R" to a cost
value in [0, +00). This metric can also depend on the time dimension in the
case of dynamic constraints. In this case it is a function that maps R" x time
to a cost value in [0,+00). The shape of such a landscape enables the
inclusion of soft and hard constraints. For example, sharp peaks represent
hard constraints (obstacles) and smooth hills model soft constraints.

Let (s, d. u) be a mobile trajectory starting at point § and reaching
the destination d, where w is the curvilinear abscissa. Trajectory 7(5,d, u)
satisfies the following constraints:

(8, d,us) = § and §(8,d, ugq) = d, (1)

where us and ug are the curvilinear abscissa of 5 and d. In our model the
travel time of the trajectory, t, is given by:

t(u) =ts +u x (tg — ts), (2)

where tg is the starting time at point § and t4 the time of arrival at the
destination d. The associated speed constraints to 4 are modeled as:

0(5, d, t(u))

H ot H € ( mznavmax)7 Vu € [us>ud]> (3)

where, for our problem, me is the stall limit and Vmaw is Mach 1 (at which
the aircraft becomes unsafe). The smoothness constraint involves the cur-
vature, K (7,u), of the trajectory at a given curvilinear abscissa u, and is
defined by:

@AY W)
K=" mwp W

where A denotes the cross product. Finally for a given trajectory 7, the
curvature is bounded above by some given K q4:

|K(7,u)| < Kmaz Yu € [us, ugl. (5)

We are therefore looking for a trajectory ¥ satisfying constraints (2), (3),
(4) and (5), while minimizing the objective function:

1) = [ e dw)du. (6)

where ¢(§(5,d, u)) is the cost of traveling the elementary space quantum du
of the trajectory v according to the metric c.



3.2 Model

We introduce a refractive index map which will be used to compute the metric
landscape. This index map, I, is a function that maps R"™ or R" x time
(depending on the static or dynamic case) to an index value in [1, 4+00].

The phenomenon of light propagation appears to be particularly well
suited to model the search for a solution to the path planning problem.

Indeed, one can model the penalized areas (congestion areas or weather
events) that should be avoided with zones of high refractive indices. The
refractive index of a substance is a measure of the speed of light in that
substance. It is expressed as the ratio of the speed of light in vacuum relative
to that in the considered medium. One can then assign a refractive index
proportional to the level of penalization.

The same concept can be used to forbid trajectories from entering the
barrier areas by assigning infinite refractive indices to these subsets. In
practice, we shall be content with assigning refractive indices to barriers that
are much larger when compared to the rest of the index map. Areas where
there are no constraints are assigned a refractive index equal to 1, which
corresponds to the index of the vacuum, where light moves with maximum
speed.

For each entry point to airspace, let us introduce a light source at the
departure point emitting light beams in every direction. The path followed
by the first light beam (which will be the synthesized aircraft trajectory)
that reaches the destination point is the shortest path that we seek. Indeed,
according to Fermat’s principle, light follows the shortest-time path. This
can also be interpreted mathematically as light follows geodesics, i.e. it uses
a shortest path (if it exists) between two points in a space provided with a
metric which is the path travel time. Light seeks to avoid areas with high
indices (our soft constraints) because it is slowed down there, and it cannot
pass through infinite-index areas (our hard constraints).

Another argument for modeling our aircraft path planning problem with
light propagation is that, aside from the fact it fits well with our objective
function and our penalty and barrier constraints, it also satisfies our speed-
interval constraints. Indeed, light velocity being finite and depending on the
medium’s refractive index, we can guarantee solutions with speed remaining
within a given interval simply by requiring index values to remain within an
appropriate range.

4 Computing geodesics

As noted above, the geodesic trajectory followed by light represents a po-
tential solution to our path planning problem (the searched trajectory is the
shortest in time). In this section, we concentrate on algorithms to compute
geodesics. We first review the state-of-the-art methods from the literature.



Then, we propose a practical branch-and-bound heuristic algorithm denoted
LPA.

4.1 Triangle Mesh Algorithm

Triangle mesh algorithms look for approximate geodesics on a triangular
mesh. First proposed by Kimmel and Sethian [19], they were later improved
by Novotni [25] and enhanced by Tang [36]. These algorithms use front
propagation from the departure point. It is similar to Dijkstra’s algorithm
for finding a shortest path in a graph.

In order to use the triangle mesh method, one must first create a mesh
on a surface embedded in R3. However, it is not dedicated to find a geodesic
on the whole R? space, which would require building a full tridimensional
mesh. A disadvantage of triangle mesh algorithms is that they cannot handle
moving objects with variable speed.

4.2 Geodesic computation by the light propagation algorithm
(LPA)

Let us assume for now that we numerically seek the path followed by light
between two points in R™ gpace, the starting point, §, and the destination
point, cf, provided with a refractive index map. Later in the paper, we
shall mostly consider the special cases where n = 2 or n = 3, in view of
our ATM application. First, we introduce a light source at the departure
point. Then, we simulate the light propagation from this source using the
wave propagation theory of light proposed by the Dutch scientist Christiaan
Huygens in 1678. The Huygens principle [16] can be stated as follows: any
point on a wavefront can be considered as the source of tiny wavelets that
propagate forward at the same speed as the wave, and the new wavefront is
the envelope of all the wavelets (that is to say, the tangent to these wavelets),
as shown in Figure 1.

We propose here a wavefront propagation algorithm in R™ that we call
light propagation algorithm, LPA. The light wavefront is issued from the
starting point and is discretized in space. It is propagated in time using a
time step dt.

We implement LPA within a branch-and-bound algorithm (B&B) [1], a
clagsical framework for solving discrete optimization problems. A B&B al-
gorithm represents the set of all possible solutions by the root of an enu-
meration tree. Constructive procedures to obtain lower and upper bounds
for the optimal value of our objective function (trajectory travel time) are
first applied to the root. If these two bounds are equal, then the optimal
solution is found, and the algorithm stops. Otherwise, the solution set is
partitioned into several sub-problems (new children nodes). This process is
called branching. The method is then applied recursively on the correspond-
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Figure 1: Huygens principle used to determine the wave front at time ¢ + dt
from the wave front at time ¢

ing sub problems, generating a tree. If an optimal solution is found for a
sub-problem then it is feasible but not necessarily optimal for the original
problem. Based on the bounds, feasible solutions are used to eliminate sets
of partial solutions, reducing the size of the search tree (cutting branches).
The search goes on until all the nodes are explored or eliminated.

For the implementation of B&B in the context of our light propagation
model, we propose to compute an approximate lower bound for a given node
by the summation of two terms (see Figure 2):

approxLB := TimeT oNode + TimeT oDest,

where the first term, “ TimeToNode" is the time that is required to reach the
current node from the origin. The second term, “TimeToDest", represents
the remaining time to reach the destination. This duration is a weighted sum
of two terms which are “integralTime" and “maxSpeed Time". The first term,
integralTime, is the time to reach destination considering the refractive index

along the direct route, denoted by vgirect- The speed used to compute inte-
Umax

index
where “vmax" is the speed assuming unit refractive index). The second term,

maxSpeed Time, is the time needed to reach the destination along vgrect Wwhen
traveled at speed vmax. TimeToDest is given by

gralTime depends on the index encountered along vVgirect (Speed =

10
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// TimeToNode
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Starting point, s

Figure 2: The approximate lower bound computation for the current node.
It is computed by adding the time required to reach the current node and the
time to reach the destination point from this node using the direct straight
line trajectory. Those times are computed taking into account the encoun-
tered index values

TimeToDest := a * integralTime + (1 — ) x maxSpeedTime  (7)

)

Ud o Vdirec Uq _’?’direc Unode
= a/ C(I(Yairect(w)))du + (1 — a)” t(mc)m; speectl( )l

node
where « is a weighting parameter set by the user; u is the curvilinear ab-
SCissa; Upode and ug are curvilinear abscissas of the current node and of the
destination; I is the index map; and C the metric landscape that represents
the time needed to travel an elementary space quantum with index I.

The wavefront propagation will be done by means of the branching pro-
cess of the B&B algorithm. The method projects light beams in straight
lines from the current node. The emission of light beams is restricted to the
directions in the half-space between the current node and the arrival point
(standard aircraft operations does not permit travel in the opposite direc-
tion, except in the neighborhood of the origin or destination airports). These
beams are launched in all such directions according to beam-launching an-
gles 61, 05...0,,_1 in the spherical coordinate basis of R™, and discretization
angle steps: df;, 1 = 1,2,..,n — 1 respectively. Each beam propagates in one
of these resulting directions with a velocity that depends on the refractive
index of the medium through which it passes, reaching a child node of the
current node after a time step dt. These algorithmic parameters df; and dt
are set by the user. All nodes that have the same depth in the resulting tree
will represent the same wavefront (see Figure 3 for an example with n = 2).

Next, LPA browses the search tree to find a minimal-time trajectory (an
approximate geodesic). This can be done in different ways. We choose a

11
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Figure 3: Half-space discretization with a time step dt and an angle step df,

strategy whose priority is to find quickly a feasible solution with Depth-First
Search (DFS). It consists of choosing a node for which children have not yet
been generated, with deepest level in the search tree. DFS is then combined
with the selection strategy of choosing the node that has the best lower
bound among the nodes at the same level in the search tree. In other words,
we combine DFS as the overall principle with Best-First Search (BFS) as a
secondary selection criterion.

Figures 3, 4 and 5 illustrate the algorithm operation in R2. Figure 3
displays an initial wavefront from the starting point, s. Figure 4 shows
wavefront deformation for the current node N. Finally, Figure 5 shows the
trajectory produced by the algorithm.

In order to describe our algorithm, we assume that the user has set a
distance-from-destination tolerance ¢ > 0 (see Figure 5). Moreover, we
shall need a procedure
“LaunchRays(N )" for a node N. This procedure is used as the branching
process of the B&B algorithm:

Procedure LaunchRays(V)

i. Discretize the half-space between node N and the destination point with
a time step dt and angle steps df;, i = 1,2,...,n — 1.

ii. Determine new child nodes and their approximate lower bounds using
the following rule:

For any light beam, if it goes into a region with index I, its velocity v
Umax

1

inside this region is v = , where vmax is the maximum speed.

12



For any child node, compute its approximate lower bound as described

above (Figure 2).
iii. Remove node N from the tree and add its children.

Note that when this procedure will be used for aircraft trajectory plan-
ning in our result section, we shall replace vmax (above) with the speed of

aircraft.

Half-space hetween
current node and arrival point

Current
Destination
Starting —= e point, d
point,s @ sy

Figure 4: Launching rays from current node N

The main steps of LPA are as follows:
1. Set TrajSolution := (). Set upperBound := +oc.

2. LaunchRays(s) (see Figure 3).

3. While there are still unexplored nodes in the tree, choose a node N ac-
cording to DFS and then BFS as described above. Then :

If distance(N,d)< e and approximate lower bound of node N <

upperBound then
- TrajSolution := Set of ascendant points that lead to N (see

Figure 5).
- upperBound:= approximate lower bound of node N.

- remove from the tree all nodes whose approximate
lower bounds are greater than upperBound.

Else
LaunchRays(N ) (see Figure 4).

13



. .s;;g\ndant nodes
4

A N
£ N

Lustiod ‘Destination
. _~__ poin

Starting 2 f e i = _'3-:__1)__
point,s @ / / ®
Shortest trajectory in time ~__

.

distance < &€

Figure 5: A shortest trajectory between the departure and the arrival points

4.3 Light propagation algorithm with dynamic obstacles

To address the case of dynamic obstacles, which is crucial in ATM applica-
tions, we adapt the algorithm to take into account the additional dimension
of time. We look for an approximate geodesic between two points in “space-
time" R™ x [0, +00][, on which we define an index function, I, that associates
to each point of “space-time" R" X [0, +00] an index value in [1, 4+o00[. Fur-
thermore, we consider that trajectories followed by the obstacles (other air-
craft in the ATM application) are input of the problem. These trajectories
are modeled by the index function, I. In fact, as discussed in Section 5.2,
LPA will be applied sequentially on each aircraft for which we seek a trajec-
tory. Thus, trajectories resulting from the application of the m — 1th
of LPA, are input for the problem “find the path of the mth aircraft!,

The time dimension is different from spatial dimensions. In fact, propa-
gation in this coordinate is made in one way, from past to future. In the pure
spatial case (in R") discussed in the previous section, one has to connect the
starting point, §, to the destination point, cZ; through a trajectory 4. A
simple manner in which to extend LPA to take into account the extra time
dimension is to add a time coordinate for the points 5 and J, and to find a 4D
path between them. By forcing the light beams to propagate one way in the
time dimension, the previous algorithm may be directly adapted in this new
coordinate system. However, resulting trajectories may then violate aircraft
speed constraints. For instance, if the original path 4,4 between two points
(§ and cf) is a straight line with associated times ¢ and ¢4, the new trajectory
produced by this “time-extended version" of the algorithm may be longer. In
order to reach the time target ¢4 at destination d, the synthesized trajectory
may induce a speed profile that is incompatible with flight constraints. In

steps
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Figure 6: Two trajectories in a 2D+time coordinate system. The dashed
trajectory represents a moving obstacle (another aircraft going from s tod
and arriving at time ¢/;) and the plain line represents the trajectory controlled
by the LPA and reaching a time target segment containing ¢4

some other situations, the new path may be shorter in the space dimension,
inducing an excessive speed reduction. To avoid these pitfalls, we propose an
adaptation of LPA that replaces the target in the time dimension with a time
segment target at destination, as illustrated in Figure 6. This time segment
target is equal to [tq — A\, tq + p] where X\ and p are parameters set by the
user. This modification ensures the feasibility of the produced trajectories
from the speed constraint point of view. Indeed, relaxation of the punctual
arrival-time requirement into a time segment target allows the moving object
not to over-accelerate or over-decelerate to meet “the appointment”. As a
congsequence, the resulting trajectory can satisfy the speed constraints.

5 Numerical Results

In this section, we present numerical experiments for several ATM problems.

First, we test LPA on the pre-tactical phase problem, with static obsta-
cles for which high indices model congestion areas and weather events have
to be avoided. As mentioned before, LPA can deal with dynamical obstacles
but we implement it with static obstacles in the first test for simplicity. Sec-
ond, we report results with LPA in the tactical phase, with several aircraft
involved in a conflict. Finally, we consider a real-world problem involving a
day of traffic over the French airspace.
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In each of our tests, we set the sampling angle df; to ?1)_[—6. The weighting
coefficient « is set to 0.9. All experiments are performed on a 2.33 GHz
machine running under the Mandriva Linux operating system with 1024 MB
of RAM. LPA is programmed in java.

5.1 Trajectory planning with static obstacles

In order to validate our algorithm, we first test LPA in R? space (no time
involved) to which we associate a static refractive index map. The goal is to
find geodesics between two given points in R?.

§C

(c) (d) (e)

(a) (b)
A

Figure 7: Resulting trajectories in R? space (flying from bottom to top)

We use a coordinate system that is scaled according to separation stan-
dards. Thus, we use an (x,y) grid with a standard horizontal separation (5
Nm) unit. The index map used is a square of 40 x 40 standard horizontal
separations.

We test our algorithm by using an artificial index map given by the fol-

2 2
lowing formula: I(z,y) = max(l,Ze_w) where a;, b; and k
are given. By setting different coéff?cient values for a;, b; and k, we have
created five different maps, as displayed in Table 1. Figure 7 displays tra-
jectories produced by LPA for various obstacles and with maps defined by
the parameter values of Table 1. High values, corresponding to region of
congestion, are represented in dark areas surrounded by white.

The five solution trajectories displayed in Figure 7 are found by LPA

in less than 5 seconds of CPU time. Each trajectory produced by LPA is
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Table 1: Index function coeflicients for each of the five instances illustrated
in Figure 7.

a geodesic approximation that avoids high index areas and passes through
low-value “valleys". Moreover, trajectories produced by LPA are guaranteed
to have velocity above the predetermined speed lower bound. This is crucial
in our ATM applications. Finally, these trajectories are, by construction,
sequences of segments and arcs, which can be managed by the FMS.

Although the test problems we consider in this subsection are academic,
LPA can be applied to real-world aircraft trajectories in pre-tactical planning
to avoid convective-weather or congested areas that are considered as static
obstacles aircraft try to avoid (but can cross with high penalty).

5.2 Application to aircraft conflict resolution

In this subsection, we consider the tactical phase for the aircraft conflict res-
olution problem involving several aircraft. We consider as given input a set
of aircraft trajectories in conflict and for which new conflict-free trajectories
have to be designed. For each aircraft, a, involved in the conflict zone, a new
trajectory with approximate minimum deviation is generated, between the
aircraft entry point, S;, and its exit point, da.

To address this conflict resolution problem, aircraft are sequentially re-
solved using LPA. We assign a trajectory to the first aircraft disregarding
the other aircraft (without considering any constraints). Then, LPA looks
for a trajectory for the subsequent aircraft by considering the trajectory of
the first aircraft as a constraint, and so on, up to the m!” aircraft which
considers the m — 1 previous aircraft trajectories as constraints. The trajec-
tory assigned to an aircraft in each resolution step must avoid other aircraft
trajectories that are considered as fixed constraints (known data). In our
case, the aircraft ordering is chosen at random. In practice, some opera-
tional criteria may also be used in order to select a specific sequence (for
instance: first-come first-served rule, some aircraft may have higher priority,
trajectory length, etc.).

More specifically, we adapt LPA to the aircraft conflict resolution prob-
lem as follows :

e Working in 4D (R3+time), the propagation in the time dimension is
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done exclusively in one direction (from past towards future) with a
time step dt. The time step is adjusted by the user in order to ensure
proper conflict detection. Depending on the speed of the aircraft, we
choose to fix dt to the duration needed to fly a half horizontal standard
separation distance (2.5Nm). The time segment target is set to [ts, tq+
0 X (tqg —ts)], where ts and tg4 are respectively the times of the starting
and destination points and J is a weighting parameter set by the user.

e In order to resolve conflicts in the cruise phase, only lateral devia-
tions are allowed in the algorithm in order to keep the optimal ver-
tical profile of aircraft. Conflict avoidance is then accomplished by
heading changes. This is in accordance with common ATM prac-
tice: level changes are much more expensive from the fuel consumption
point of view; moreover, vertical change is less comfortable for passen-
gers. Propagation in the vertical dimension is then adjusted in order
to match the original aircraft vertical profile. Hence, the user only
needs to provide one discretization angle, df;, as if we were working
in R%+time.

e In the branching phase (Figure 4), instead of launching light beams
in the half-space between the current node and the destination point,
we choose to launch them into a cone pointed at the current node and

™

directed towards the arrival point. The angle of this cone is set to ¢

in our tests. This prevents undesirable sudden heading changes higher

than & and allows the aircraft trajectory to remain within a certain
envelope around the direct route (recall that one objective is to keep

the trajectory solution as close as possible to the original route).

e The maximum speed, vipax, is no longer constant but depends on the
specific aircraft velocity profile. This velocity profile is an input of
the problem that gives the speed of the aircraft at each time. When
propagating rays, one easily obtains the speed of the aircraft at time
value TimeToNode associated with the current search tree node.

Sparation distance in
horizontal plane = 5Nm

i = >
4 1 . | — g
Separation distance in S :
: Aircraft
vertical plane = 2000 ft L
L]
“‘-\.,_ "

Figure 8: Aircraft protection zone cylinder in 3D

e At the m! step, LPA synthesizes a trajectory for the m!* aircraft
in R3+time space that must avoid 4D tubes representing the m — 1
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previous aircraft trajectories (already computed). The section of such a
4D tube at time ¢, is the aircraft protection zone (in R?). Tt is a cylinder
whose basis is a disk of radius equal to the minimal separation distance
between two aircraft in the horizontal dimension (5 Nm) and whose
height is the minimal separation distance in the vertical dimension
(1000 ft), as illustrated in Figure 8. To guarantee conflict-free aircraft
trajectories, LPA directly eliminates any ray that enters such a 4D
tube within the B&B process.

The refractive index function associated with this second test problem
must guarantee avoidance with the other aircraft 4D tubes. The index func-
tion, I, is set to a high constant value (Imax ) inside these tubes and elsewhere
it is set to the value 1. Let Y;(¢),

i =1,2,...,m — 1 be the positions at time t of the m — 1 aircraft already
treated. The index function I is given by the following formula at any point
X(t) e R®:

Imax if 3i such that (dy(X(¢),Y;(t)) < 1000 ft) and (dy(X(¢),Y;(t)) < 5 Nm)
1 otherwise.

I(X'(t))Z{

—

The distances d, and dj are defined as follows: consider two points A =

( gy Ay, O ),

B = ( by, by, b ) € R3, dv(ff, é) = |b, —a.| (distance in the vertical plane)
and

dp = \/(bg —a2) + (b2 — a2) (distance in the horizontal plane).

We consider an artificial problem instance involving P aircraft which are
initially located on a circle of radius 100 Nm, converging at the same speed
(450 knots velocity) towards the center of the circle, at the same flight level
(FL) 300 (a standard nominal altitude of an aircraft, in hundreds of feet).

To resolve this problem, and the real-world problem later in the paper,
LPA is sequentially applied to the involved aircraft with Imax = 2 and the
weighting parameter for time segment target 6 = 0.1. To detect conflicts, we
use a 4D grid with a standard horizontal separation unit in the plane (z,y)
and standard vertical separation unit in the vertical plane.

The set of resulting solution trajectories is found by LPA in less than 30
seconds of CPU time. The solution result is a conflict-free situation where, as
expected, the first aircraft does not deviate from its direct route, as displayed
on Figure 9.

This problem is a classical benchmark in aircraft trajectory planning.
Other studies also find similar (roundabout-like) results for this academic
problem, including Durand’s approach [8] that uses genetic algorithms and
modifies trajectories with offset maneuvers. The result obtained by Durand
on a similar problem with P = 6 aircraft is shown on Figure 10. The first
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(a) (b)
Figure 9: Conflict resolution with 7 aircraft converging towards the center of

a circle. Straight line trajectories in (a) represent aircraft trajectories before
conflict resolution. (b) shows the solution trajectories produced by LPA

aircraft keeps a direct trajectory and all other aircraft make an offset to the
left.

Aircraft 1 ‘}

Aircraft 2

Aircraft 3

Aircraft 4

Figure 10: Conflict resolution by Durand (genetic algorithm and using offset
maneuvers) for 6 aircraft.

Similar results have also been found for a case involving P = 5 aircraft
by Pallottino and Feron [26] with mixed integer programming. They modify
the initial heading of aircraft by the minimal angle that permits to avoid
conflicts. The algorithm is applied iteratively to reach the original goal of
each aircraft. The only difference between the results of Pallottino & Feron
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and ours results is that in their case every conflicting aircraft changes its
heading (there is no privileged aircraft).

5.3 Application to real-world data

We consider here the same aircraft conflict resolution problem as in the
previous subsection, but on a real-world problem. We test LPA on a real
day of traffic for the French airspace. In order to simulate a day of traffic in
the the French airspace, we use historical flight plans for a given day which
represent the demand for aircraft traffic.

Figure 11: A complete trajectory set (a) and trajectory segments relevant
to a given time window (in bold) (b).

Flight plans are documents filled by pilots or by a flight dispatcher with
the local civil aviation authority (e.g. Federal Aviation Administration in
the USA) prior to departure. They generally include basic information such
as departure and arrival points, the route, etc. The route is designed by
a list of waypoints. These flight plans are then used as input for a traf-
fic simulator named CATS (Complete Air Traffic Simulator), developed by
the former French Civil Aviation Research Center (CENA). The core of the
CATS system is an en-route traffic simulation engine used to produce sam-
pled trajectories. It is based on a discrete, fixed-time slice execution model:
the positions and velocities of aircraft are computed at fixed time steps,
usually every 5, 10 or 15 seconds. Aircraft performances are in tabulated
form describing ground speed, vertical speed, and fuel burnt as a function of
altitude, aircraft type and flight segment (cruise, climb or descent). These
performances are extracted from the Eurocontrol aircraft data base BADA.
The simulator computes the associated trajectory set for each flight plan of
the input set (see Figure 11(a)). Each trajectory is a list of points sampled
every 15 seconds.

In order to build our instance, we proceed iteratively using moving time
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windows. In our tests, time windows are set to 21 minutes. For each time
window, we extract the relevant trajectory segments from the complete tra-
jectory set (see Figure 11(b)). In order to detect conflicts, each segment is
included in a box. The box is the smallest rectangular cuboid that include
the segment, enlarged by a safety buffer equal to half the separation norm
(see Figure 12).

ys 2.5Nm

7]

Trajectory segment

24 Nm I 500 11 /

2.5 Nm

Figure 12: The box including a trajectory segment.

When boxes intersect, the associated trajectories are considered poten-
tially in conflict. To detect actual counflicts, trajectory segments are em-
bedded in a grid whose elements are of size 5Nm x 5Nm x 1000ft. The
trajectory segments that are actually in conflict are gathered together in a
same including rectangular cuboid and are called conflict clusters (see Fig-
ure 13(a)). When modifying trajectory segments to resolve conflicts, we only
allow new trajectory segments to be inside the including rectangular cuboid.
Moreover, all other trajectories present in this rectangular cuboid (the ones
that are not in conflict) are added into the cluster in order to be treated as
constraints of the problem.

(a) (b)
Figure 13: Conflict detection (a) and conflict resolution (b).

All clusters are then solved separately by LPA in order to produce conflict-
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free trajectories (see Figure 13(b)). The old trajectory segments are then
replaced by the solutions produced by LPA. To reinstate a new trajectory
segment Spe produced by LPA in the database, we first remove the corre-
sponding old segment s,;4 (before resolution) from the database.

If Spew is longer or shorter than syg, points of Tremain (the part of the
trajectory that is downstream of s,;4) must be recalculated. A simple way
to recalculate these points is sampling them every 15 seconds from the final
time of Spew (time associated with the destination point in Spew), and to
associate to each points the altitude and speed that correspond to its new
time in the profile of altitude and speed of the trajectory. Unfortunately,
with this simple recalculation, the velocity associated with a given point
being shifted, it does no longer match the speed to connect this point to the
next one. To avoid this problem, we can calculate the actual passage times
of the points of Temain, based on the velocity profile of the trajectory. Then,
we compute the real points of Temain sampled every 15 seconds from the
penultimate point of s,y (see the example of Figure 14). The old points of
Tremain are deleted from the database and are replaced by the new ones.

Previous plots of T .
remain

New plots of T

/ remain

/ &
t=150 t=165 t=180 I=1‘5 (=210 =225 (=240 =255 =270 =285 =300 (=315
2

=15 1=30 1=45 =60 (=75 t=90(=108 |5y =135

e o "
A S /‘/'t/l-,‘;ﬂ."s =150 =165 (=180 (=195 (=210 =225 (=240 (=255 =270 (=285 (=300 (=31
=13 =120 =
=30, T e =105 —— (=320
=45 =60 =90 T
. - O
v remain

Figure 14: Replacing the segment s,q by the optimized segment Spe, and
recalculation of new points of Tiemain-

Then, aircraft are “allowed" to fly for a period corresponding to a fraction
of the time window (one third, in our experiments) during which aircraft
follow the new trajectories. This process is repeated for the next time window
(see Figure 15).

We now present results produced on a day of traffic (August 12, 2008)
with about 8000 flights. The initial trajectories (before conflict resolution)
induce a total number of clusters, with some aircraft in real conflict, equal
to 3344. The algorithm nearly solves all conflicts, with only 28 situations for
which conflict-free trajectories have not been found. However, these situa-
tions correspond to some aircraft being already in conflict at the beginning
of the simulation, for instance at their starting point. Only 1501 trajectories
have been modified to reach such a conflict-free planning. In many cases,
the new computed trajectories are shorter than the initial ones (those that
follow waypoints), due to the fact that LPA is searching for the shortest
path trajectories and proposes direct routes when possible. On average, the
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Figure 15: Next iteration

length of the computed trajectories is shortened by 4.41 Nm per aircraft,
with a maximal shortening of 51.9 Nm. On the other hand, some trajecto-
ries undergo length extension with a maximum of 9.86 Nm. The associated
quantiles are displayed in Table 2.

H Quantile H Distance in Nm
1/4 quantile -4.94
1/2 quantile -1.65
3/4 quantile -0.07

Table 2: Trajectory length changes after conflict resolution by LPA.

The overall computation time is about 17 hours. We expect to reduce
substantially this computation time by rewriting some parts of the software
in the C language. On a second step, for a given time window, the cur-
rent clusters (which are independent) will be solved on several machines in
parallel.

Some specific examples of resolutions are displayed in Figures 16, 17 and
18. The past and future parts of the trajectories are represented by sim-
ple lines. The current time window is represented by lines with squares or
circles. The line with circles represents the initial trajectory (with conflict),
and the line with squares is the solution produced by LPA (without conflict).
The solution trajectories met the aircraft speed constraint (by following air-
craft speed profiles) and are smooth, as required by airliners (thanks to the
heading-change constraint, when rays are launched from the current posi-
tion). The synthesized trajectories are fully adapted to be followed by the
FMS.
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Figure 16: Example of conflict resolution yielding a shorter distance. The
simple line represents the future trajectory. The line with circles represents
the initial trajectory in the current time window, and the line with squares
represents the trajectory produced by LPA.

Figure 17: An example of conflict resolution without change in distance.

Figure 18: Conflict resolution yielding a longer distance.



6 Conclusion

Aircraft conflict resolution is a crucial issue for air traffic management (ATM).
Much work and efforts have been dedicated to address this problem. This
is the key issue to increase the capacity of the future ATM system. Robot
motion planning, navigation functions and some other previous related work
cannot be used for such problems due to aircraft trajectory constraints.

Light rays follow smooth geodesic curves with minimum transit time for
which the minimum speed is controlled by the maximum index encountered
by the light ray. Based on this natural phenomenon, we have developed a
new path planning algorithm, called LPA, which mimics the light propaga-
tion behavior. By controlling the index landscape, it is possible the ensure
that the resulting trajectories meet the speed constraints and are at specified
minimum distance from obstacles. We have presented two implementations
of LPA in order to address pre-tactical and tactical aircraft path planing.
In the first case, obstacles are considered static and the algorithm optimizes
aircraft trajectories for congestion areas or weather-event avoidance. The
second implementation of LPA that we introduced can deal with dynami-
cal moving obstacles such as encountered aircraft. In this case, light rays
propagate in a four dimensional space (3D -+ time), where propagation is
restricted to one direction for the time dimension.

We applied successfully these two variants of LPA on three ATM prob-
lems. In the first case, LPA found minimum-time trajectories avoiding con-
gestion areas (considered as static smooth constraints). In the second case,
LPA solved a classical benchmark problem in the tactical phase for which
several aircraft are involved in a conflict. Finally, LPA yielded very encourag-
ing results on a real-world tactical phase ATM problem involving numerous
aircraft in various conflict situations.

Current work involves improving the algorithm performance by comput-
ing cluster resolutions in parallel. Finally, in order to take into account
uncertainties in aircraft positions, this algorithm will be extended to pro-
duce robust solutions. Our model supports both temporal congestion and
moving weather. In future work, one could apply our methodology to such
situations, or with more general cost functions, replacing the traveled time
(delay) criteria with, for instance, fuel consumption or cost index (a com-
promise between the cost of fuel and the cost of time). Besides, future work
could concentrate on solving the problem involving several coordinated air-
craft in a more general manner. Instead of relying on sequentially applying
our light propagation methodology to one aircraft at a time (the previous
ones considered fixed), one could attempt to solve the problem globally (all
aircraft moving simultaneously). This is a non trivial challenging issue.
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