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Abstract

A new hierarchical divisive algorithm is proposed for identifying communities in complex networks.
To that effect, the definition of community in the weak sense of Radicchi et al. is extended into a criterion
for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of
the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do
this in an optimal way for each bipartition. This includes an exact solution of Wang et al.’s problem of
detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact
modularity maximization on both artificial and real world datasets. For two problems of the former kind
optimal solutions are found, for five problems of the latter kind the edge ratio algorithm always appears
to be competitive. Moreover, it provides new information in several cases, notably through the use of the
dendrogram summarizing the resolution.

Résumé

Un nouvel algorithme hiérarchique divisif est proposé pour l’identification des communautés dans les
réseaux complexes. Pour ce faire, la définition de communauté au sens faible de Radicchi et al. est
étendue en un critère pour qu’une bipartition soit optimale : on cherche à maximiser le minimum pour
les deux classes de la bipartition du rapport du nombre d’arêtes internes au nombre d’arêtes coupées.
Un programme mathématique est utilisé à l’intérieur d’une procédure de recherche dichotomique pour
se faire de manière optimale pour chaque bipartition. On obtient ainsi une solution exacte au problème
de Wang et al. de détecter des communautés indivisibles. L’algorithme hiérarchique divisif résultant
est comparé avec la maximisation exacte de la modularité sur des ensembles de données artificielles et
réelles. Pour deux problèmes de la première sorte, les solutions optimales sont obtenues et pour cinq
problèmes de la seconde sorte l’algorithme proposé se montre toujours compétitif. De plus, il produit de
l’information nouvelle dans plusieurs cas notamment par l’usage du dendrogramme résumant la résolution.

Acknowledgments: Research of the second author supported by Digiteo Foundation (France), NSERC
grant 105574-07 (Canada), and HEC Montréal Data Mining Chair (Canada).
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1 Introduction

Networks, or graphs, are a basic and versatile tool for the study of complex systems in a variety of settings.

This includes modelling of telecommunication networks, such as the World Wide Web [1], transportation

networks [2], such as rail or road networks or electricity grids, social networks [3], such as board structures

and situations of cooperation or conflict, citation and coauthorship networks [4], biological networks, such as
food webs [5], and many more. Networks are composed of a set of vertices and a set of edges joining pairs

of vertices. Vertices are associated with the entities of the system under study (people, companies, towns,

natural species, ...). Edges express that a relation defined on all pairs of vertices holds or not for each such

pair. Often networks are weighted, i.e., a number is associated to each edge which expresses the strength
of the corresponding relation. Networks have long been studied for their mathematical properties and as a

tool for modelling and optimization [6, 7, 8]. In the last decade, extensive studies of complex networks have

been made by the physicists community. This led to several important discoveries, such as the power law

distribution of degrees [9] and the small world property [10].

A topic of particular interest in the study of complex networks is the identification of communities, also
called modules or sometimes clusters. Fortunato [11] recently made an extensive and thorough survey of

that very active research domain. Speaking informally, a community is a subset of vertices such that there

are more edges within the community than edges joining it to the outside (or, in other words, belonging

to the cut separating that community from all others). Communities are akin to clusters which have been

studied for a long time in data analysis and, more recently, in data mining. However, particular properties
of networks lead to specialized heuristics or algorithms, many of which can identify communities in very

large networks. To perform such a task, it is necessary to make precise the definition of a community. In a

seminal paper of 2002, Girvan and Newman [12] proposed to compare the number of edges within a cluster

to the expected number of edges within that cluster should they have been chosen at random with the same
distribution of degrees. A couple of years later, this definition was made precise in [13] by formulating the

concept of modularity for a partition of a network as the sum for all communities of the difference between

the fraction of edges they contain and the expected fraction of edges under the configuration model [14, 15].

Such a criterion can be used to evaluate partitions and its maximization leads to an optimal partition

in a precise sense. Moreover, this optimal partition should itself have an optimal number of clusters. A
large number of heuristics were proposed to maximize modularity. They rely on simulated annealing [16],

extremal optimization [17], mean field annealing [18], genetic search [19], dynamical clustering [20], multilevel

partitioning [21], contraction-dilation [22], multistep greedy [23], quantum mechanics [24] and a variety of

other approaches [25, 26, 27, 28, 29, 30].
These heuristics provide, usually in moderate time, near optimal partitions for the modularity criterion

or, possibly, optimal partitions but without the proof of their optimality. Brandes et al. [31] proved that

modularity maximization is NP-hard. Recently, Xu, Tsoka and Papageorgiou [32] proposed a mathematical

programming model to maximize modularity exactly, and, using the CPLEX 10 software [33], they were able

to find optimal partitions for data sets with up to 104 vertices. While such a number of vertices is clearly
moderate, problems of these sizes may be of interest in their own right. Moreover, such research may pave the

way towards more efficient exact methods. Many data sets have however much more than 100 entities and

can only be solved approximately by some heuristic. Clustering heuristics and algorithms can be divided,

as traditional in cluster analysis [34, 35, 36], into partitioning algorithms which aim at finding the best
partition into a given number of clusters, and hierarchical algorithms which lead to a set of nested partitions,

i.e. partitions such that any two clusters in any of them are either disjoint or included one into the other.

Hierarchical clustering schemes can be further divided into agglomerative and divisive ones. In agglomerative

hierarchical clustering schemes one begins with a partition into as many clusters as entities, each containing a

single entity, then one iteratively merges the two clusters such that the objective function increases the most
in case of maximization (or decrease the most in case of minimization). In divisive hierarchical clustering

schemes one begins with a single cluster containing all entities, which is then bipartitioned in such a way that

the objective function increases most (or decreases most). While merging at each iteration in agglomerative

algorithms is done in an optimal way, there is no guarantee that the partition obtained remains optimal
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after several iterations (there are a few exceptions as e.g. the single linkage algorithm, which maximizes the
split of partitions obtained at all levels [37]). In divisive hierarchical clustering algorithms the bipartitioning

problem to be solved at each iteration is often NP-hard and requires a specific algorithm or heuristic. Again

there is no guarantee that the partition obtained after several iterations will be optimal.

A very efficient agglomerative hierarchical clustering scheme was proposed by Clauset et al. in 2004 [38].

It exploits the fact that merging clusters is only profitable if there is at least one edge between them. For

sparse networks this gives a heuristic with very low complexity, i.e. O(n log2 n), where n is the number of

vertices. This contrasts with standard agglomerative hierarchical clustering schemes (e.g. single average or

complete linkage, ...) which require O(n2) time [39]. Several divisive algorithms were derived even before the
definition of modularity was proposed [12, 40]. They solve the bipartition problem arising at each iteration

by removing edges of the network which appear to be likely to join different communities. One may then

select iteratively edges with the largest betweenness, i.e., which belong to the largest number of shortest paths

between pairs of vertices of the network. If removing edges increases the number of connecting components,
a new partition has been obtained. Alternatevely, one can use the clustering coefficient, i.e. the ratio of

the number of triangles including an edge to the largest possible number of such triangles. Edges with

small clustering coefficient are good candidates for removal. This approach can be extended by considering

small cycles larger than triangles. A spectral method for divisive clustering with the modularity criterion

was developed by Newman in 2006 [41]. Signs of the components of the first eigenvector of the so-called
modularity matrix give a first approximate bipartitioning, which can be improved upon by some further

heuristic such as the Kernighan-Lin method [42].

Clearly, maximizing modularity is the mainstream in community identification since about five years.

However, several authors have criticized this concept, usually showing that counterintuitive results can be
obtained for artificial constructed instances [31, 43]. Moreover, it was shown [43] that using the modularity

criterion has some limit of resolution. This means that in the presence of large communities, small com-

munities may be undetectable even if they are very dense. Two such examples will be discussed later. To

paliate this problem several modifications to the modularity function were proposed [44, 30] and heuristics
generalized accordingly.

An alternative approach to modularity maximization for finding communities is based on the satisfaction

of reasonable a priori conditions to have a community. Radicchi et al. [40] proposed two such conditions

defining communities in a strong and a weak sense, respectively. Recall that the degree ki of a vertex i
belonging to V is the number of its neighbors (or adjacent vertices). Let S ⊆ V be a subset of vertices. Then

the degree ki can be separated into two components kin
i (S) and kout

i (S), i.e., the number of neighbors of i

inside S and the number of neighbors of i outside S. A set of vertices S forms a cluster in the strong sense

if and only if every one of its vertices has more neighbors within the cluster than outside:

kin
i (S) > kout

i (S), ∀i ∈ S.

Such a condition is hard to satisfy by a community and even more so by all communities of a partition.

Therefore, it does not appear to be much used in practice. A set of vertices S forms a cluster in the weak

sense if and only if the sum of all degrees within S is larger than the sum of all degrees joining S to the rest
of the network:

∑

i∈S

kin
i (S) >

∑

i∈S

kout
i (S).

This is equivalent to the condition that the number of edges within S is at least half the number of edges

in the cut of S. From now on, we refer to this inequality as the weak condition. Note that it may be of
interest to consider a similar definition but with a non strict inequality. Indeed, mathematical programming

handles more easily non strict inequalities than strict ones. Moreover, as will be shown below, it may also

be of interest to consider alternative optimal solutions for which the condition is satisfied as an equality.

Divisive hierarchical algorithms work by successive bipartitions. It appears to be desirable that the weak

condition be satisfied by both communities obtained when a bipartition takes place. Clearly, this is not always
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possible. This led Wang et al. [45] to define a community S as indivisible if there is no bipartition, (S1, S2)
of S, such that both S1 and S2 satisfy the weak condition. Such a concept is useful to determine when

to stop dividing clusters in a divisive hierarchical clustering heuristic. These authors give a mathematical

programming formulation of the problem of determining whether a community is divisible or indivisible.

Unfortunately, this formulation is a mixed 0-1 quadratic program with a nonconvex continuous relaxation,
and consequently it is very difficult to solve.

In this paper, we give another, much simpler, program to detect indivisibility. We then observe that the

weak condition is often satisfied by a very large number of bipartitions. To choose among them we consider

the ratio of the number of edges within a community to the number of cut edges which have one end point

only within that community, i.e., denoting this ratio by r(S), we have:

r(S) =
∑

i∈S

kin
i (S)/

∑

i∈S

kout
i (S).

When dividing S we consider this ratio for both communities S1 and S2 and maximize the smallest value,

i.e., we address the problem

max
S1,S2⊂V

min (r(S1), r(S2)) ,

where S1 ∪ S2 = S, S1 ∩ S2 = ∅, S1, S2 6= ∅. Solving this problem by a sequence of linear programs in 0-1

variables within a dichotomous search yields a divisive clustering algorithm, with a clear and well defined

criterion. Moreover, it is locally optimal in the sense that each division is done in an optimal way.

The paper is organized as follows. In the next section some notation is given and conditions for a
community to be divisible are presented. These conditions are used in an algorithm to maximize the edge

ratio of a given community. Moreover, it is explained how this can be done for the communities obtained

after several iterations. Computational results are presented in Section 3, first on two artificial datasets and

then on five well-known real world ones. Results are compared to those obtained by maximizing modularity.

Section 4 presents conclusions and a few topics for future research.

2 Maximizing the edge ratio

2.1 Indivisible communities

The first problem we address is to find whether a given network can be divided into two or more communities

which all satisfy the weak condition. Note that if a network can be partitioned into more than two communities

it can also be partitioned into two communities. Indeed, merging two communities can never decrease the

number of inner edges nor increase the number of cut edges. Let G = (V, E) denote the network under study,
with vertex set V and edge set E. Then G is indivisible if and only if there is no bipartition (V1, V2) of V

such that each class V1 and V2 contains at least as many inner edges as one half the number of cut edges,

i.e., edges joining vertices from one cluster to the other. The factor of one half implies that when both V1

and V2 satisfy the weak condition, the total number of inner edges is larger than or equal to the number of

cut edges.

Both V1 and V2 must be non-empty, disjoint and their union equal to V . Binary variables xi will be used

to denote to which set V1 or V2 belongs vertex vi for all i ∈ V . By convention, we assume xi = 1 if i belongs

to V1 and xi = 0 otherwise. We next introduce two sets of binary variables tij and sij associated to the edges

(i, j) of E. Edge (i, j) will belong to the community induced by V1 if tij = 1 and sij = 0, to the community

induced by V2 if tij = sij = 0 and will join vertices belonging to both communities if tij = 0 and sij = 1. All
these conditions are imposed by the following constraints associated with each of the edges:

2tij + sij = xi + xj ∀i, j ∈ E. (1)
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Indeed, if xi = xj = 1, then xi +xj = 2, which imposes tij = 1 and sij = 0; if xi = 1, xj = 0 or xi = 0, xj = 1,
their sum is equal to 1, which imposes tij = 0 and sij = 1; finally, if xi = xj = 0, their sum is equal to 0,

which imposes tij = 0 and sij = 0.

We next express the weak condition. For the first community it amounts to

2
∑

i,j∈E

tij ≥
∑

i,j∈E

sij . (2)

To find a similar expression for the second community, we note that its number of edges is equal to |E| −
∑

i,j∈E tij −
∑

i,j∈E sij . We can then write the condition as:

2
∑

i,j∈E

tij + 3
∑

i,j∈E

sij ≤ 2|E|. (3)

In order for both communities to be non-empty, we need to add a further condition: at least one edge
joins a vertex of one community to a vertex of the other:

∑

i,j∈E

sij ≥ 1. (4)

Moreover, all variable must be binary:

xi, tij , sij ∈ {0, 1} ∀i, j ∈ E. (5)

Observe that this mathematical expression of the weak condition does not imply any optimization and
hence does not require an objective function. One could easily decide upon a reasonable one which whould

be used as a secondary criterion. For instance, one might wish to minimize the number of cut edges (which

corresponds to min
∑

i,j∈E sij). Computational experiments show however that adding such an objective

function may increase very substantially the resolution time of this mathematical program.

2.2 Finding two communities with largest edge ratio

The definition of a community in the weak sense given by Radicchi et al. [40] can often be satisfied by a
very large number of communities, and it may be difficult to choose among them. This does not matter if

one considers only those communities obtained with divisive hierarchical clustering schemes, such as those of

Girvan and Newman [12] or of Radicchi et al. [40]. Indeed, in such cases, the identification of communities is

done through exploiting betweenness of edges or clustering coefficients in order to choose edges to be removed
one at a time until the network becomes disconnected. Following the proposal of Wang et al. [45], the weak

community definition would then only be used as a stopping criterion. It would answer the indivisibility

problem as a yes/no question.

The situation is different if one wishes to build a divisive hierarchical clustering scheme using only the

weak condition or a variant thereof. One may then wonder if it is possible to strenghten this definition by
quantifying how much the number of inner edges is larger than the number of cut edges. This is easily done

by introducing a parameter α in the weak condition which then becomes equal to

∑

i∈S

kin
i (S) ≥ α

∑

i∈S

kout
i (S). (6)

So, in case of equality, the coefficient α is equal to the ratio of twice the number of edges within the community

S divided by the number of edges within the cut of that community. We call it edge ratio for short. One can
then seek the maximum value of α for which the network will be divisible. For this value α will be equal to

twice the ratio of the number of edges within S divided by the number of edges within the cut of S.
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Doing this, we obtain a more coherent divisive hierarchical clustering scheme than we would obtain
following Wang et al.’s [45] proposal discussed above, because the communities found will be selected using

only the (extended) weak condition. Returning to the formulation of this condition given in the previous

subsection, we observe that inequalities (2) and (3) become

2
∑

i,j∈E

tij ≥ α
∑

i,j∈E

sij (7)

and

2
∑

i,j∈E

tij + (2 + α)
∑

i,j∈E

sij ≤ 2|E|. (8)

Then maximizing α subject to these last constraints as well as the constraints (1), (4) and (5), gives us a
mathematical programming formulation for identification of optimal communities according to the edge ratio

criterion. This program has a linear objective function but, due to α, non linear and non convex constraints.

As in the previous case, all the variables except α take the values 0 or 1. Moreover, if α is fixed, a linear

program in 0-1 variables is obtained. Despite being NP-hard, such programs may be solved efficiently in

practice by a state-of-the-art software such as CPLEX [33]. This suggests to solve the optimal bipartition
problem with a dichotomous search on the values of α. An initial value α equal to 1 can first be chosen.

If there is no feasible solution for that value, the network is indivisible. Otherwise, the value of α may be

doubled and feasibility checked until a value is attained for which the weak condition cannot be satisfied,

i.e., the program is no more feasible. This gives an upper bound ᾱ and the previous value of α gives a lower
bound α. Then the dichotomous search proceeds by considering the mid value of the interval [α, ᾱ]. If the

program is feasible for this value of α, the procedure is iterated on the upper half of the current interval, if

not it is iterated on the lower half. The procedure stops when the length ᾱ − α of the current interval is

smaller than some given tolerance ǫ.

We note that an alternative approach can be based on the solution of a mixed-integer linear programming

problem obtained considering α as a (continuous) variable and linearizing the products of α and the binary
variables in constraints (7) and (8). However, this will leave to the introduction of many more variables and

constraints. Also, in order to apply the linearization one needs a lower and an upper bound on α explicitily

known. Thus, our approach, that dynamically computes bounds on α, appears to be more convenient.

This basic procedure can be accelerated in several ways. First, one can use an initial value of α corre-

sponding to a solution obtained by some heuristic instead of the value α = 1. Second, each time a feasible
solution is obtained, one can check what is the corresponding maximum value for α, i.e. the minimum of the

edge ratios for the two communities obtained. If this value is larger than the current value of α it may be

taken as the lower bound of the next interval of values of α. Third, once the best value of α for the current

solution is found, one may test whether the solution obtained for α + ǫ is feasible or not. If not, the optimal
solution (up to a tolerance ǫ) has been found. Fourth, symmetry of the solution set can be removed by fixing

a variable, say x1, at 1 from the outset.

Another possibility is to use an alternating algorithm, which explores increasing values of α by alternatively

finding a feasible solution and the corresponding largest value for α. More precisely, it begins by considering

the known feasible solution with the largest value of α. Then, it increases α by ǫ and attempts to solve the

corresponding 0-1 program. If a feasible solution is found, the value of α for that solution is computed, i.e.
α is set to the minimum of the edge ratios for both communities found and the procedure is iterated. If not,

an optimal solution (up to a tolerance of ǫ) has been found.

Computational experiences show that there is no systematic dominance of the dichotomous search over

the alternating algorithm or conversely.

2.3 A divisive algorithm

Once a partition into two communities has been found in the given network, one may wish to find further

bipartitions of one or both of these or show that they are indivisible. In doing this, one must take into account
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not only the edges within each of these communities, but also those of the cut between them. To this effect,
one will introduce weights wi associated to each vertex and equal to the number of cut edges between that

vertex and those of the other community (or after several cuts have taken place, of all other communities).

Again, inequalities (2) and (3) are modified and become:

2
∑

i,j∈E

tij ≥ α





∑

i,j∈E

sij +
∑

i∈V

wixi



 (9)

and

2
∑

i,j∈E

tij + (2 + α)
∑

i,j∈E

sij + α
∑

i∈V

wi(1 − xi) ≤ 2|E|. (10)

All tools for building a divisive hierarchical clustering scheme based on the edge ratio criterion are now
available. It proceeds by first finding the two communities with largest edge ratio in the given network using

the algorithm described in Subsections 2.1 and 2.2. Then the corresponding subproblems are updated by

computing the weights of the vertices and stored together with the corresponding value of α. Iteratively,

as long as some subproblems remain stored, one of them is selected (the order does not matter) and the

bipartition of it with largest edge ratio is found using the algorithm of Section 2.2 with the formulas (9)
and (10) instead of (7) and (8). When the best bipartition of the current subproblem has been found, the

procedure is updated. If however, it is indivisible, the subproblem is deleted and another one chosen. The

algorithm stops when all remaining subproblems are indivisible.

Results can be represented on a dendrogram, which allows both tracking of the successive bipartitions

and representation of the corresponding values of the edge ratios. This gives more information than simply

noting successive divisions.

3 Results and comparison

3.1 Two artificial examples

We first apply the edge ratio algorithm to two artificial examples of Fortunato and Barthelemy [43] mentioned

in the intoduction.

The first example consists of a ring of cliques each joined to both of its neighbors by a single edge. As

in [43], we consider the case of 30 cliques of 5 vertices. Maximizing modularity gives communities consisting
each of two successive cliques joined by an edge instead of communities consisting of single cliques. The edge

ratio algorithm does find, very quickly, communities corresponding to each of the cliques. The dendrogram

summarizing the resolution is given in Figure 1. The first bipartition, at α = 164, consists of two communities

of 15 successive cliques. Each of these cliques is bipartitioned at α = 76 into a community of 8 successive
cliques and a community of 7 successive cliques. Bipartitions continue yielding communities corresponding

to an equal or almost equal number of cliques. At α = 1 all communities correspond to single cliques and

are shown to be indivisible.

The second example consists of two large cliques joined by a single edge and two small cliques joined by

an edge and also each joined by an edge to the same large clique. Again as in [43], we consider the case

where the large cliques have 20 vertices and the small ones 5. Maximizing modularity gives three communities

corresponding to the two large cliques separately and to the union of the small ones. The edge ratio algorithm
gives four communities which correspond to each of the cliques. The partition obtained with the edge ratio

algorithm is presented in Figure 2. The dendrogram summarizing the resolution is given in Figure 3.

3.2 Zachary’s karate club

We now turn to datasets corresponding to various real world applications, often studied for purposes of

evaluating community identification heuristics and algorithms. The first and probably the best known is



Les Cahiers du GERAD G–2009–55 7

Figure 1: Dendrogram summarizing the resolution with the edge ratio algorithm for the first artificial dataset.
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Figure 2: Partition obtained by the edge ratio algorithm for the second artificial dataset.
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Figure 3: Dendrogram summarizing the resolution with the edge ratio algorithm for the second artificial
dataset.

Zachary’s karate club dataset. It describes friendship relations between 34 members of a karate club observed

over two years by Zachary [46]. In that period the club split into two groups after a dispute between the

club owner and the karate instructor. The edge ratio algorithm obtains, after 3 bipartitions, a partition into

4 indivisible communities, which is quite close to those obtained by other researchers [12, 47, 48, 49, 32, 31].

This partition is represented in Figure 5. The corresponding dendrogram is depicted in Figure 4. The first
bipartition occurs at α = 6.8 and consists of the two following communities: C1 = {1, 2, 3, 4, 5, 6, 7, 8, 10,

11, 12, 13, 14, 17, 18, 20, 22 }, C2 = {9, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 }. This

bipartition corresponds exactly to the split of the karate club, as observed by Zachary, with the exception

of member 10, which is included in the first community instead of the second one. Note that the vertex
corresponding to this member is connected to two other vertices, i.e. members 3 from community 1 and

34 from community 2. So the evidence that it should belong to one or the other community appears to be

limited. It has several times been misclassified by former proposed methods, e.g. [48, 49]. Should vertex 10 be

included in community 2 instead of community 1, the number of cut edges would remain unchanged at 10 and

the edge ratio would be reduced by min(2× 34/10, 2× 34/10)− min(2 × 35/10, 2× 33/10) = 6.8 − 6.6 = 0.2
only. The next bipartition occurs at the lower level of α = 3 and splits the community C1 into the two

following communities: C3 = {5, 6, 7, 11, 17 }, C4 = {1, 2, 3, 4, 8, 10, 12, 13, 14, 18, 20, 22 }. The small

community C3 is connected to one vertex of C4 only and is fairly dense. To the best of our knowledge, it

has been detected by all previous methods [12, 47, 48, 49, 32, 31]. The last bipartition, of community C2,
arises at the very low level α = 1.5 and yields the two communities: C5 = {9, 15, 16, 19, 21, 23, 31, 33, 34 },
C6 = {24, 25, 26, 27, 28, 29, 30, 32 }. Comparing with results of modularity maximization, as reported for

various previous methods and proved optimal by Xu et al. [32], we see that four communities are obtained
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Figure 4: Dendrogram summarizing the resolution with the edge ratio algorithm for Zachary’s karate club
dataset.

and are close to those given by the edge ratio algorithm. Indeed, community C3 is the same, community C4

differs only by vertex 10, community C5 and C6 differ by vertices 27 and 30 being included in C5 instead of
C6 and vertex 10 being outside. The edge ratio for C5 and C6 is min(2 × 9/12, 2 × 16/16) = 1.5. Should

vertices 27 and 30 be included in community C6 instead of C5, the edge ratio for C5 and C6 would become

min(2 × 8/10, 2× 13/18) = 1.44, i.e. be reduced by 0.06 only.

Comparing briefly with results of betwenneess-based divisive algorithm of Girvan and Newman [12] as

reported in [32], we find a smaller degree of agreement. There are five communities, one of which is the

isolated vertex 10 and another of which is exactly community C3. Another community is very close to C4,

but does not include vertex 3. Vertices 25, 28 and 29 form a small community with vertex 3 and the remaining

vertices form a large community including those of C5 as well as vertices 22, 24, 26, 27, 32.

To summarize, the edge ratio algorithm shows there is one main bipartition at high level of α which

corresponds (almost) to that one reported by Zachary, then two more bipartitions at medium and lower

levels of α which thus appear to be less natural.

3.3 Lusseau’s Dolphins

A group of 62 bottlenose dolphins has been studied by Lusseau [50] for many years in Doubtful Sound, New

Zealand. This led to a network with 62 vertices corresponding to the dolphins and 159 edges joining vertices

associated with pairs of dolphins with frequent communications among them. This dataset is also often

studied, with various methods. An optimal partition into five communities for modularity maximization

was obtained by Xu et al. [32] (these authors also obtained a rather different heuristic partition into five
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Figure 5: Partition obtained by the edge ratio algorithm for Zachary’s karate club dataset.
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Figure 6: Partition obtained by the modularity-based algorithm for Zachary’s karate club dataset.

communities for the same criterion but using hierarchical clustering). The partition into 5 communities

found by the former algorithm is the following: Cm
1

= {1, 3, 11, 21, 29, 31, 43, 45, 48}, Cm
2

= {2, 6, 7, 8, 10,

14, 18, 20, 23, 26, 27, 28, 32, 33, 42, 49, 55, 57, 58, 61}, Cm
3

= {4, 9, 37, 40, 60}, Cm
4

= {5, 12, 16, 19, 22,

24, 25, 30, 36, 46, 52, 56}, Cm
5 = {13, 15, 17, 34, 35, 38, 39, 41, 44, 47, 50, 51, 53, 54, 59, 62}.
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Applying the edge ratio algorithm yields an optimal partition into 8 communities, which is represented
in Figure 8. These communities are: C1 = {33, 61}, C2 = {6, 7, 10, 14, 40, 49, 57, 58}, C3 = {18, 23, 26, 28,

32}, C4 = {2, 8, 20, 27, 42, 55}, C5 = {13, 15, 17, 21, 34, 37, 38, 39, 41, 51, 53, 59}, C6 = {3, 35, 44, 45, 47,

50, 54, 62}, C7 = {5, 12, 19, 22, 24, 25, 30, 36, 46, 52}, C8 = {1, 4, 9, 11, 16, 29, 31, 43, 48, 56, 60}.

The corresponding dendrogram is given in Figure 7. Lusseau [50] noticed that two groups of dolphins, one

predominantly male and one predominantly female, were separated during part of the observation period.
The first bipartition, obtained at the edge ratio level of α = 14.6667, corresponds exactly to the bipartition

described by Lusseau, except for vertex 40 which is added to the first cluster instead of remaining in the

second. As in the case of vertex 10 for the karate club example, vertex 40 is joined to two vertices only, one

in each of the communities found. Then both communities obtained are bipartitioned at the α level of 3.44
and 2.40 respectively. Furthermore, each of the 4 resulting communities is bipartitioned one more time at a

level of α close or equal to 1.

The modularity maximization partition does not separate the first left hand side community, while the

edge ratio algorithm separates it into 4 communities, i.e., C1, C2, C3, C4, which are thus included in the same

community Cm
2 . We leave the interpretation of these communities to the biologists. While the four right hand

side communities obtained by the edge ratio algorithm are sometimes fairly close to communities obtained

with the modularity maximization algorithm they never coincide, nor is any community of one partition

included into a community of the other. Again, possible substantive interpretations of these communities are

left to the biologists.

Figure 7: Dendrogram summarizing the resolution with the edge ratio algorithm for Lusseau’s dolphins
dataset.
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To summarize, the edge ratio algorithm finds one bipartition at high level of α which corresponds (almost)
to that of Lusseau and several further partitions one of which at α = 3.44 appears to be fairly natural.
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Figure 8: Partition obtained by the edge ratio algorithm for Lusseau’s dolphins dataset.
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3.4 Knuth on Hugo’s Les Misérables

The next dataset that we studied describes the relationships between characters in Victor Hugo’s masterpiece

Les Misérables. Knuth [51] patiently noted the names, and the interactions, of all the 80 characters in this

1486 pages long novel [52]. A graph was then built with 77 vertices associated to characters which interact

(not including, e.g. king Louis-Philippe, whose character is illustrated and discussed without interactions
with other characters of the novel) and 257 edges associated with pairs of characters appearing jointly in at

least one of the many and usually short chapters of the novel. The data are available at [51] and [53]. This

network was studied by Newman and Girvan [47] with their betweenness-based divisive hierarchical algorithm,

leading to a partition into 11 clusters with a modularity Q = 0.54. More recently, Xu et al. [32] obtained with

their mathematical programming formulation an optimal solution with 6 clusters and modularity Q = 0.56.
The communities of the optimal partition found are the following: Cm

1
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, Cm

2
=

{11, 12, 14, 15, 16, 29, 30, 33, 34, 35, 36, 37, 38, 39, 45, 46}, Cm
3

= {13, 17, 18, 19, 20, 21, 22, 23, 24, 31,

32}, Cm
4 = {25, 26, 28, 41, 42, 43, 69, 70, 71, 72, 76}, Cm

5 = {27, 40, 44, 50, 51, 52, 53, 54, 55, 56, 57, 73},
Cm

6 = {47, 48, 49, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 74, 75, 77}.

We reproduced this result using a recent implementation of the Grötschel and Wakabayashi algorithm for
clique partitioning [54]. Using the edge ratio algorithm we obtained a partition into 10 clusters, which is the

following: C1 = {74, 75}, C2 = {49, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 77}, C3 = {26, 40, 41, 42,

43, 69, 70, 71, 72, 76}, C4 = {47, 48}, C5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, C6 = {30, 35, 36, 37, 38, 39}, C7 =

{17, 18, 19, 20, 21, 22, 23}, C8 = {29, 45, 46}, C9 = {50, 51, 52, 53, 54, 55, 57}, C10 = {11, 12, 13, 14, 15,
16, 24, 25, 27, 28, 31, 32, 33, 34, 44, 73}.

The numbering of vertices corresponds to the order of first appearance of the associated characters in

the novel. It is therefore to be expected that each community will contain several vertices with successive

indices, all the more so if the communities correspond to subplots rather than involving characters in the

central plot of the novel. One measure of this regularity is the number of breaks in the list of vertices of
each community, i.e., the number of times two vertices do not have successive indices, after ranking them

in increasing order. The modularity partition has 17 breaks and the edge ratio partition 13 breaks. The

10 communities obtained by the edge ratio algorithm can be divided into three groups: i) communities

corresponding to subplots, usually around some main character, i.e., C5, C6, C7, C9, which have zero or one

break. For instance, community C5 consists of characters playing a role in the life of bishop Myriel (vertex
1). Note that these characters do not interact between themselves with the exception of Myriel’s sister and

his servant. Consequently, there are ten inner edges only. As another example, community C7 corresponds

to the four students Tholomyès, Listolier, Fameuil and Blachevelle and their grisettes. This community has

maximum density or, in other words, it is a clique. The heroine Fantine (vertex 24) is not in this community
despite being connected to all of its members as, due to other interactions, she belongs to the main plot

community; ii) communities close to the central plot, which have several breaks, i.e., C2, C3 and C10. For

instance, C10 contains vertices associated with the main hero redeemed convict Jean Valjean (vertex 12), his

nemesis inspector Javert (vertex 28) as well as Fantine (vertex 24). iii) small communities of unimportant

characters, i.e., C1, C4 and C8. For instance, community C1 consists of child 1, child 2, to which Victor Hugo
did not deem necessary to give names.

The modularity maximizing algorithm finds community C10 as does the edge ratio algorithm, but all

other five communities that is finds have two breaks or more. Community Cm
3

adds Fantine (vertex 24) to

the group of students and their grisettes, but also the old lady Marguerite (vertex 13) and the nuns Perpetue

and Simplice (vertices 31 and 32), which have very few connections to the other members of that community.

The dendrogram summarizing the working of the edge ratio algorithm is given in Figure 10 and also

provides interesting information. First one can note that two groups of communities are separated at the

very high α level of 7.16 and both of these groups present chaining effects, i.e., in all divisions one of the

communities will not be separated anymore. Community C1 to C4 on the left side are difficult to divide,

i.e., the values of α go from 1 to 2 only. Communities C5 to C10 separate more easily: first community C5

(bishop Myriel) at level 5.8, then community C6 (affaire Champmathieu) at level 3.61, then community C7
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(students) at level 1.9 and finally community C8 at level 1.33. The community C9 (Gillesnormand family)
only separates from C10 (main plot) at level 1.09.

To summarize, it appears that the edge ratio algorithm recognizes both dense and sparse communities

and gives a quantitative measure of how close or how far they are, i.e., how difficult they are to separate.

Moreover, it appears to be more selective in the inclusion of vertices into communities than modularity

maximization, as well as less prone to the resolution limit.

Figure 10: Dendrogram summarizing the resolution with the edge ratio algorithm for Hugo’s Les Misérables

dataset.

3.5 Krebs’ Political books

The third dataset we studied deals with copurchasing of political books on Amazon.com. Krebs [55] listed

105 titles which are represented by vertices of a network with 441 edges. On the basis of titles and reviews,

Newman [41] classified these 105 books as liberal (l), conservative (c) or neutral (n). This dataset was

studied with the modularity maximization criterion by Newman [41] using his hierarchical divisive spectral
heuristic, by Agarwal and Kempe [49] using heuristically a mathematical programming model and randomized

rounding as well as by Wagner at al. [31] using an integer programming formulation and an algorithm close

to those of Grötschel and Wakabayashi [54]. We reproduced these results with our version of the Grötschel

and Wakabayashi algorithm. The optimal partition for modularity maximization contains the following 5
communities: Cm

1
= {1, 2, 3, 5, 6, 7, 8, 19, 29, 30} with 6 n and 4 c, Cm

2
= {4, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

54, 55, 56, 57} with 39 c, Cm
3

= {31, 32, 60, 61, 62, 63, 64, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103} with 38 l, 1 n and 1 c.

Cm
4 = {49, 50, 58} with 1 n and two c, Cm

5 = {51, 52, 53, 59, 65, 66, 68, 69, 70, 86, 104, 105} with 5 l, 4 n
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Figure 11: Partition obtained by the edge ratio algorithm for Hugo’s Les Misérables dataset.
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Figure 12: Partition obtained by the modularity-based algorithm for Hugo’s Les Misérables dataset.

and 3 c. These 5 communities consist of two large ones with no (for c) or very few (for l) misclassifications,

two small communities with both n and c books and one community with all three categories. We count

misclassifications as follows: any l in a community with a majority of c’s or n’s or conversely counts for 1;



16 G–2009–55 Les Cahiers du GERAD

any n in a community with a majority of c’s or a majority of l’s or conversely counts for 1/2 misclassification.
The total number of misclassifications for the modularity maximization algorithm is 9.

The optimal partition obtained with the edge ratio algorithm is the following: C1 = {67, 74, 82, 85, 87,

89, 90, 94, 97, 98, 101}, C2 = {62, 95, 96, 102, 103}, C3 = {60, 61, 63, 64, 100}, C4 = {31, 32, 71, 72, 73,

75, 76, 77, 78, 79, 80, 81, 83, 84, 88, 91, 92, 93, 99}, C5 = {68, 104, 105}, C6 = {29, 52, 53, 59, 65, 66, 69,
70, 86}, C7 = {9, 10, 12, 14, 18, 21, 23, 25, 27, 28, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, 58},
C8 = {35, 36, 37, 38, 39, 40}, C9 = {4, 11, 13, 15, 16, 17, 19, 20, 22, 24, 26, 33, 34, 56}, C10 = {1, 2, 3, 5, 6,

7, 8, 30}. Again, the total number of misclassifications is 9.

The dendrogram summarizing the resolution with the edge ratio algorithm is presented in Figure 13. At
a very high level of α, i.e., 22, there is a division into two groups that clearly corresponds to liberal and to

conservative books. Indeed, the left hand side group, which eventually splits into 6 communities, contains

vertices associated with 43 liberal books, 6 neutral and 3 conservative ones. The right hand side group contains

vertices associated with 46 conservative books, 7 neutral and 0 liberal ones. So in this sample purchasers

of mostly conservative books never buy liberal ones, but occasionally buy a neutral one, while purchasers of
mostly liberal books occasionally buy a conservative or a neutral book. A further division of the left hand

side group separates at level α = 2.95 into a subgroup with communities C1, C2, C3 which only contain liberal

books and another subgroup which contains communities C4, C5, C6 whose members sometimes buy neutral

or conservative books. Whether it is to strive toward objectivity or to comfort prejudices, simultaneous
purchasers of liberal and conservative books appear to be limited. There are several further partitions among

homogeneous groups which might indicate some latent dimensions which cannot be explained only in terms

of the l, n and c categories.

Figure 13: Dendrogram summarizing the resolution with the edge ratio algorithm for Krebs’ Political Books
dataset.
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Figure 14: Partition obtained by the edge ratio algorithm for Krebs’ Political Books dataset.
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Figure 15: Partition obtained by the modularity-based algorithm for Krebs’ Political Books dataset.
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3.6 Girvan and Newman on American football games

As a final example, we consider the network of [12] representing the schedule of games between American

college football teams in the Fall 2000. There are 115 teams, most of which belong to one or another

of 11 conferences, with intra-conference games more frequent than others. There are also 5 independent

teams. This network has been analyzed by Girvan and Newman [12] with their betweenness based divisive
algorithm and by Radicchi et al. [40] using another divisive algorithm, based on the frequency of small cycles

containing an edge. Newman [48] reports on the application of his agglomerative hierarchical clustering

heuristic to maximize modularity. The same objective has been considered by Agarwal and Kempe [49],

which use mathematical programming to find an initial, not necessary integer, solution followed by randomized

rounding. Newman obtained a modularity of Q = 0.546, but his algorithm found only six communities, often
containing two or more conferences. Agarwal and Kempe obtained a modularity of Q = 0.6046. Using again

our implementation of Grötschel and Wakabayashi’s [54] algorithm for clique partitioning led to the solution,

for the first time, of the American college football teams problem with a guarantee of optimality (a comparison

of mathematical programming algorithms for modularity maximization is currently under way and will be
reported in a future paper). This computation also showed that the heuristic solution of Agarwal and Kempe

was indeed optimal. To compare results obtained with modularity maximization and edge ratio criteria for

this example, one may consider two questions: i) does the heuristic or algorithm find the structure of the

problem, i.e. the number of communities, and ii) how many misclassification errors are made. The Agarwal

and Kempe heuristic found ten communities, thus missing one of the conferences. The edge ratio algorithm
found twelve communities, two of which correspond to the same conference (Mid American), but in one case

also to two additional independent teams. Modularity maximization misclassifies ten teams, i.e., attributes

them to a community of which they do not form the majority (the five independent teams not been counted).

The edge ratio algorithm does better, as it misclassifies six teams only (again not considering independent
teams). It is worth noting that the six misclassifications made by the latter algorithm are among the ten

made by the former one. Results of the Girvan and Newman [12] and Radicchi et al. [40] divisive heuristics

are more difficult to interpret. In both cases the structure was recovered, i.e., eleven communities were

found. While it is stated in [40] that “the observed communities perfectly correspond to the conferences,

with the exception of the six members of the independent conference, which are misclassified”, there are
seven misclassifications in the Radicchi et al. case (not counting the misclassifications of the five independent

teams) and four teams (Nevada LasVegas, Southern California, Louisiana Monroe, Louisiana Lafayette) have

inadvertedly been omitted.

The dendrogram summarizing the resolution is given in Figure 16 and conferences predominant in each

of the communities are listed below. Observe that the only conference split among two communities is Mid
American and corresponds to a level of α equal to 1. So, taking strict inequality in the weak condition

will give 11 communities, each corresponding to a single conference. Otherwise, not surprisingly, partitions

follow geographic lines, as geographically close teams play more often together than far away ones. The first

partition at level α = 8.88 corresponds to 6 communities located on the eastern half of USA and the other
to the 6 communities located on the western half. Other bipartitions can be explained in a similar way.

To summarize, the edge ratio algorithm finds the structure of the dataset with few misclassifications

and through the dendrogram explains further the classification by geographical considerations. In this case,

modularity maximization does neither.

4 Conclusions

A new criterion for a community in a network has been proposed, the edge ratio or ratio of twice the number
of inner edges to the number of cut edges of that community. When bipartitioning a community, it is natural

to consider the edge ratio values for both of the resulting communities. We propose therefore a locally

optimal hierarchical divisive algorithm for identifying communities based on edge ratio. This algorithm was

implemented and applied to both artificial and well known real datasets with up to 115 entities.
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Figure 16: Dendrogram summarizing the resolution with the edge ratio algorithm for Girvan and Newman
Football games dataset.

Comparing the new algorithm with modularity maximization, it appears not to suffer from the resolution
limit problem and usually identifies more communities, often with more precision. Much work remains to

be done. First, it is clear that the proposed algorithm can presently solve only problems of limited size, i.e.

about one hundred entities or slightly more. Larger and possibly much larger instances could be addressed

in a heuristic way. This could be done by replacing the exact algorithm for satisfiability of the indivisibility
condition by a heuristic one, at least for the first few iterations. There are many options for building such

heuristic. For instance, one could adapt heuristics for the maximum cut problem or the normalized maximum

cut problem.

A mathematical study of the bipartitioning problem could lead to improve resolution methods, e.g. by

using cutting planes. Also one could seek conditions which allow to simplify instances of edge ratio maxi-
mization program as was done for modularity maximization [44].

Moreover, the edge ratio maximization algorithm should be applied to further artificial or real datasets

and compared more fully to other modularity maximization heuristics or community detection methods based

on different principles.

Finally, designing a weighted version of the edge ratio algorithm appears to be both straightforward and

of interest.
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Figure 17: Partition obtained by the edge ratio algorithm for Girvan and Newman Football games dataset.
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Figure 18: Partition obtained by the modularity-based algorithm for Girvan and Newman Football games
dataset.
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