
HAL Id: hal-00934812
https://enac.hal.science/hal-00934812v1

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing an interval computation library for
OCaml on x86/amd64 architectures

Jean-Marc Alliot, Jean-Baptiste Gotteland, Charlie Vanaret, Nicolas Durand,
David Gianazza

To cite this version:
Jean-Marc Alliot, Jean-Baptiste Gotteland, Charlie Vanaret, Nicolas Durand, David Gianazza. Imple-
menting an interval computation library for OCaml on x86/amd64 architectures. OUD 2012, OCaml
Users and Developers workshop, Sep 2012, Copenhagen, Denmark. �hal-00934812�

https://enac.hal.science/hal-00934812v1
https://hal.archives-ouvertes.fr

Implementing an interval computation library for OCaml
on x86/amd64 architectures

Jean-Marc Alliot1 and Jean-Baptiste Gotteland1,2 and Charlie Vanaret1,2

and Nicolas Durand1,2 and David Gianazza1,2

Abstract. In this paper we present two implementation of interval

arithmetics for Ocaml on x86/amd64 architectures. The first one is

simply a binding to the classical MPFI/MPFR library. It provides ac-

cess to multi-precision floating point arithmetic and multi-precision

floating point interval arithmetic. The second implementation has

been natively written in assembly language for low-level functions

and in ocaml for higher-level functions ans is as fast as classical C or

C++ implementations of interval arithmetic.

1 Fundamentals of interval arithmetic

Interval arithmetic has been used in computer science and numerical

computations for years [5]. Its main goal was to create computing

environments where the exact value of a computed result lies with

certainty within an interval, which might be paramount for some crit-

ical applications. Floating point units (FPU) only work with a fixed

size for the mantissa of the operands, and numerical errors are un-

avoidable. For example, 1/3 rounded to two decimals is neither 0.33
nor 0.34 but the exact value lies within the interval [0.33, 0.34]. Most

FPU are compliant with the IEEE-754 standard regarding numerical

computations. The most widely used format is the IEEE-754 double

precision. This format gives around 16 decimal digits of precision.

In this context, numerical errors might seem insignificant or irrele-

vant. However, the accumulation of many numerical errors with ill-

conditioned functions can lead to disastrous results. Let us consider

the function: f(x, y) = 333.75y6+x2(11x2y2−y6−121y4−2)+
5.5y8+x/(2y) The correct result with six digits of f(77617, 33096)
is −0.827396. However, when computed with an IEEE-754 com-

pliant x87 FPU in double precision, the result is −1.180592.1021

with OCaml 3.12 compiler. Interval arithmetic yields a lower bound

(−5.902958.1021) and an upper bound (5.902958.1021), which im-

mediately points out the ill-conditioned nature of the function at this

point.

Over the last 30 years, interval arithmetic has expanded to new

grounds; since Rokne and Ratschek book [2], interval arithmetic has

been widely used in global optimization. Branch and bound algo-

rithms associated with interval arithmetic are now used to find global

optima of deceptive functions (such as Griewangk and Michalewicz

functions) with up to 20 variables.

The IEEE-754 standard requires that every FPU is able to make

any elementary computation in four rounding modes: toward +∞
(upper rounding), toward 0, toward −∞ (lower rounding) and toward

the nearest representable number (nearest rounding). It is thus quite

easy to implement the most basic functions of interval arithmetic

1 Institut de Recherche en Informatique de Toulouse, name.surname@irit.fr
2 Laboratoire “Mathématiques Appliquées et Informatique” de l’ENAC

with proper roundings of both endpoints. The addition of two inter-

vals is for example defined by: [a, b] + [c, d] = [a+low c, b+up d].
Multiplication and division are slightly more complex tasks that re-

quire to take into account the position of the intervals relatively to

0. For example, if a < 0 < b, we have 1/[a, b] = [−∞, 1/a] ∪
[1/b,+∞]. As the second member of the equation has to be reduced

to a single interval, we simply have: 1/[a, b] = [−∞,+∞] There

is thus a loss of information, which is unavoidable. The usual real-

valued functions (cos, sin, arcsin, log, etc.) can also be extended to

interval arithmetic. The extension is trivial for monotonic functions

(such as exp(x)), as the image of interval [a, b] by exp is simply

[explow(a), expup(b)]. Computing interval extensions of periodic

functions such as sin(x) or cos(x) is a much more complex task.

When elementary functions are defined, more complex functions can

be computed by composition.

2 Existing implementations

There are numerous interval arithmetic implementations with various

bindings to different languages such as Profil/BIAS (a C++-class li-

brary developed in 1993 at the Hamburg University of Technology),

a template class for interval arithmetic in the Boost C++ libraries,

Gaol (a C++ interval arithmetic library that implements operators for

interval constraint programming), MPFI [6] (a multi-precision inter-

val arithmetic library for C or C++), and the SUN interval arithmetic

implementation for Fortran 95 or C++ [4]. There is a proposal to have

interval arithmetic integrated to the standard C++ language [1] and

an IEEE interval standard is currently under development.

3 Bindings to the MPFR/MPFI libraries

We chose to develop bindings to the MPFR/MPFI libraries since

these libraries provide a unique feature: the possibility to work with

an arbitrary precision. This feature is extremely valuable when pre-

cision (and not time) is paramount. The MPFR library is a multi-

precision arithmetic library which implements a very large number of

functions on arbitrary-precision floating-point numbers. We only im-

plemented the bindings to MPFR functions which are needed when

using the MPFI bindings (more complete MPFR bindings are avail-

able in the APRON library). The MPFI library uses the MPFR li-

brary to provide arbitrary-precision floating-point interval arithmetic.

OCaml bindings exist for almost all MPFI functions with almost no

syntactic sugar. Thus, an interval is an opaque structure that must be

allocated with the init function prior to use. After allocation, it can be

used and modified in place. The semantic of the functions is thus not

functional whatsoever. Marshalling of these objects is not possible

yet.

4 A native implementation

The MPFR/MPFI library is widely used, but is quite slow due to its

versatility. We thus decided to implement a faster library limited to

double-precision floating-point interval arithmetic. There were two

possibilities: developing bindings to an existing library, or imple-

menting the library by ourselves. From an overview of the existing

implementations, we concluded that developing bindings to these li-

braries (usually in C++) would be tedious and would require the use

of an extra layer that would slow us down. We chose to directly im-

plement the library in assembly language for the lower-level func-

tions, and in OCaml for the higher-level functions. The latter imple-

ments the “logical” part of the function, while the former implements

the elementary function computations for both rounding modes. The

target architecture was the Intel processor family (x86/amd64), on

the three main operating systems (Windows, Linux and Mac OS X).

We decided to use a functional semantics for all functions: imple-

mented operators such as $+, $-, $*, $/ extend standard operators to

interval arithmetic. This allows us to write let a = b $+ c with a, b
and c being interval objects. Implementations choices regarding in-

clusion functions and throwing exceptions are based on the following

properties: Let f be a function and F its extension to interval arith-

metic, then

• ∀x ∈ [a, b], if f(x) is defined then f(x) ∈ F ([a, b])
• if {f(x) | x ∈ [a, b]} is empty then F ([a, b]) raises an exception

All the elementary operations with both rounding modes are avail-

able via the Fpu module of our library, while the interval function

extensions are available in the Interval module.

We had to deal with some unexpected problems. The x87 is sup-

posed to return the nearest value, the upper and lower bounds for each

elementary operation, but this is not always the case: some functions

such as cos, sin or tan are not properly implemented everywhere.

For example, we computed cos(a), with a = atan2_low 1. 0. and

with the following cosine implementations:

1. the MPFI library (with 128-bit precision),

2. the x87 in round-toward −∞ mode,

3. the x87 in nearest mode (default value for the C and OCaml li-

braries on 32-bit Linux),

4. the x87 in round-toward +∞ mode,

5. the SSE2 implementation (default value for the C and OCaml li-

braries on 64-bit Linux):

We got the following results: cosx87low(a) < cosx87(a) =
cosx87high(a) < cosMPFI(a) < cosSSE2(a), so the upper bound

(4) computed by the x87 is clearly incorrect, as it is lower than the

correct value computed by the MPFI library. The value computed

by the SSE2 (5) is much more precise than the one computed by

the x87. However, it is unfortunately impossible to get upper and

lower bound values with the SSE2 implementation, and we have no

other choice but to use the x87 for computing these (sometimes in-

correct) bounds. The problem here is that the value computed by

the standard C-lib (or OCaml) cos(x) function does not always lie

within the lower bound/upper bound interval returned by the x87

functions. This can be very prejudicial when executing branch and

bound algorithms where the mid-value is expected to lie within the

lower/upper interval. We solved this issue by rewriting quite effi-

ciently the trigonometric functions in assembly language. With our

new implementation, the lower and upper bounds are properly set

and they are always lower (resp. higher) than the values computed

by the standard cos(x) functions on 32 and 64-bit architectures.

Values returned by the standard (C-lib or OCaml) cos(a), sin(a)
or tan(a) functions remain different on 32 and 64-bit architectures.

In order to obtain the same behavior on both architectures, the fcos,

fsin or ftan functions from module Fpu can be used. They always

return the same values on all architectures, and they can trans-

parently replace standard functions by using the Fpu_rename or

Fpu_rename_all modules.

5 Performance issues

Figure 1 from [3] presents some comparison results of classical in-

terval libraries, including MPFI. The scale is logarithmic.

Figure 1. Comparison of standard interval libraries

Table 1 is a comparison of MPFI with our native implementation

on 106 operations (times are in seconds). The third column is the

logarithm of the ratio of the execution times of both implementations

(log
10
(M/N)).

Op MPFI Nat log(M/N) Op MPFI Nat log(M/N)

+ 0.124 0.076 0.21 log 2.696 0.096 1.44
- 0.172 0.068 0.40 exp 4.568 0.224 1.31
* 0.148 0.088 0.23 cos 3.544 0.136 1.42
/ 0.240 0.088 0.43 sin 3.868 0.136 1.45

Table 1. Comparison of MPFI bindings and native implementation

From the above figure and table, we can compare our native im-

plementation with some of the fastest implementations of interval

arithmetic. We can observe that on most functions, our library is on

par with Filib. Moreover, the native implementation suffers from its

functional semantics, as it creates at each of the 106 operation a new

interval object, while the classical libraries (including MPFI) create

interval objects once and for all before the computation and modify

them in place. So the observed performance is indeed excellent.

References

[1] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion, ‘A pro-
posal to add interval arithmetic to the c++ standard library’, Technical
Report N1843=05-0103, INRIA, (2005).

[2] New computer methods for global optimization, H. Ratschek and J.
Rokne, Ellis-Horwood, 1988.

[3] R. Dabrowski and B. Kubica, ‘Comparison of interval c/c++ libraries in
global optimization’, Technical report, Warsaw university, (2009).

[4] SUN Microsystems, C++ Interval Arithmetic programming manual,
SUN, Palo Alto, California, 2001.

[5] R.E. Moore, Interval Analysis, Prentice Hall, NJ, 1966.
[6] N. Revol and F. Rouillier, ‘Motivations for an arbitrary precision interval

arithmetic and the MPFI library’, Reliable computing, 11(4), (2005).

	Fundamentals of interval arithmetic
	Existing implementations
	Bindings to the MPFR/MPFI libraries
	A native implementation
	Performance issues

