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1 Introduction

Mixed Integer Nonlinear Programming (MINLP) problems of the form:

min f(x)
s.t. g(x) ≤ 0

x ∈ X0 ∈ I n

∀i ∈ Z xi ∈ Z















(1)

(where f : R
n → R, g : R

n → R
m are continuous functions, x ∈ R

n, I is the interval lattice,
and Z ⊆ N = {1, . . . , n}) are usually solved to optimality using the spatial Branch-and-Bound
(sBB) algorithm [1]. The efficiency of sBB depends on many parameters, among which the width of
the variable ranges at each node. The fastest range reduction algorithm is called Feasibility-Based
Bounds Tightening (FBBT): it is an iterative procedure that propagates bounds up and down the
expression trees [1] representing the constraints in (1), tightening them by using the constraint bounds
(−∞, 0]. Depending on the instance, and even limited to linear constraints only, FBBT may not
converge finitely to its limit point. Tolerance-based termination criteria yield finite termination but,
in general, in unbounded time (for every time bound, there is an instance exceeding it). So, although
the FBBT is practically fast, its theoretical worst-case complexity status is far from satisfactory. We
propose an alternative approach to FBBT based on fixed point equations F(X) = X for the variable
bounding box, where F represents the action of the bounds propagation up and down the expression
trees and X ∈ I n, and treat these equations as constraints of an auxiliary Mixed Integer Linear
Program (MILP), which can be solved by a finitely terminating exponential time algorithm.

2 Semantic equations for the FBBT algorithm

To each variable xj in (1) we associate an interval Xj ⊆ X
0
j . For each constraint gi(x) ≤ 0 we let

Ti = (Vi, Ai) be the directed expression tree [1] of gi, and ri its root node. Leaf nodes of Ti represent
constants and variables, whereas other nodes represent operators: (u, v) ∈ Ai only if v represents an
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argument of the operator represented by u in the function gi(x). For all i ≤ m, v ∈ Vi we let Yiv ∈ I

be the interval associated to node v in Ti (initially set at ⊤ = (−∞,∞)). For all i ≤ m we denote
the interval vector (Yiu | u is a leaf node of Vi) by varproj(Yi). For all i ≤ m and leaf nodes u ∈ Vi
we can update Yiu with Yiu ∩ Xindex(u), where index maps variable leaf nodes to the corresponding
variable indices; we denote the resulting interval vector by restrict(X,Yi) for each i ≤ m.

For basic subtrees of Ti with arc sets {(⊕, u), (⊕, v)}, representing operations xu ⊕ xv, Yi,⊕ is
obtained by interval arithmetic on Yiu, Yiv. By recursion, this defines an operation up(Ti, Yi) which
updates Yi = (Yiv | v ∈ Vi) starting from the leaf nodes. Supposing Yi,ri is not contained in (−∞, 0]
(the constraint bound), then we can update Yi,ri with Yi,ri ∩ (−∞, 0]. Then, supposing the inverse
operator to node ri is well-defined (call it ⊖), for each v ∈ δ+(ri) we can propagate the update on
Yi,ri to Yiv using interval arithmetic on ⊖(ri, δ

+(ri) r {v}). By recursion, this defines an operation
down(Ti, Yi) which updates Yi starting from the root node. Since we perform up and down on each
tree Ti in sequence, we update the ranges for Ti−1 using those from Ti.

We let the operator F in the fixpoint equations represent an up/down cycle carried out across
T = (T1, . . . , Tm). Letting Y = (Y1, . . . , Ym) and Y0 = Y1 we formally define:

F(Y ) = (down(Ti, up(Ti, restrict(varproj(Yi−1), Yi))) | i ≤ m). (2)

Consider the sequence {Y k} s.t. ∀k ∈ N Y k = F(Y k−1) and Y 0 = (up(Ti, restrict(X0, Yi)) | i ≤ m).
Since F is monotone, by Tarski’s Fixpoint Theorem [2] in the lattice I m̄ (where m̄ =

∑

i≤m |Vi|),
the sequence has a limit point which is the least fixed point of F (denoted by lfp(F)). The same
theorem also ensures that lfp(F) is the intersection of all the post-fixpoints of F , i.e. of all those Y
such that Y ⊇ F(Y ). In other words, lfp(F) is given by the following problem:

inf{Y | Y ⊇ F(Y )}. (3)

Since the natural interval width extended to vectors is monotonic with the natural order of the lattice
I m̄, (3) is equivalent to (min{|Y | | Y ⊇ F(Y )}). Next, we decompose the expression for F in (2)
by introducing auxiliary interval vectors, and impose Y 0 as the first component of the sequence by
requiring Y0 = Y1 ∩ Y

0
1 with Y 0

1 = up(T1, restrict(X0, Y1)). Thus, the solution to:

min |Y |+ |Y0|+ |X|+ |Ỹ |+ |Ȳ |
Y0 ⊇ Y1 ∩ Y

0
1

∀i ≤ m X ⊇ varproj(Yi−1)
∀i ≤ m Ỹi ⊇ restrict(X,Yi)
∀i ≤ m Ȳi ⊇ up(Ti, Ỹi)
∀i ≤ m Yi ⊇ down(Ti, Ȳi)



































(a)
(b)
(c)
(d)
(e)
(f)

(4)

is lfp(F), which is in turn the limit point of the FBBT. As long as the m constraints used in the
FBBT are linear, (4) can be formulated as a MILP by introducing binary variables for the various
interval operators appearing in (4).
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