
HAL Id: hal-00934665
https://enac.hal.science/hal-00934665

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal design of electrical machines : mathematical
programming formulations

Sonia Cafieri, Leo Liberti, Frédéric Messine, Bertrand Nogarède

To cite this version:
Sonia Cafieri, Leo Liberti, Frédéric Messine, Bertrand Nogarède. Optimal design of electrical ma-
chines : mathematical programming formulations. COMPEL: The International Journal for Com-
putation and Mathematics in Electrical and Electronic Engineering, 2013, 32 (3), pp 977-996.
�10.1108/03321641311305863�. �hal-00934665�

https://enac.hal.science/hal-00934665
https://hal.archives-ouvertes.fr

Optimal Design of Electrical Machines:

Mathematical Programming Formulations ∗

Sonia Cafieri1 Leo Liberti2 Frédéric Messine3

Bertrand Nogarede4

1 École Nationale de l’Aviation Civile (ENAC, Lab. MAIAA),
7 avenue E. Belin F-31055 Toulouse France,
Email:sonia. cafieri@ enac. fr

2 LIX, École Polytechnique,
91128 Palaiseau, France.
Email:liberti@ lix. polytechnique. fr

3 ENSEEIHT-IRIT, Université de Toulouse,
2 rue C. Camichel, 31071 Toulouse, France.
Email:messine@ n7. fr

4 ENSEEIHT-LAPLACE, Université de Toulouse,
2 rue C. Camichel, 31071 Toulouse, France.
Email:nogarede@ n7. fr

Abstract

The optimal design of electrical machines can be mathematically
modeled as a (mixed-integer) nonlinear optimization problem. We
investigate the impact of different mathematical formulations on the
results obtained using a local optimization solver which is well-known
in the engineering community: MatLab’s fmincon function. Our anal-
ysis is based on six different mathematically equivalent formulations
for the same problem of the design of an electrical machine without
slot. Our results underline the important impact that formulation dif-
ferences may have on solver performance even on a small example of
design.

Keywords: analytical model, formulation, modeling, local optimiza-
tion, inverse problem, design, electrical machine

∗The second and third author were partially supported by grant ANR 07-JCJC-0151
“ARS”.

1

sonia.cafieri@enac.fr
liberti@lix.polytechnique.fr
messine@n7.fr
nogarede@n7.fr

1 Introduction

The design of electromechanical actuators is known as an inverse problem,
i.e. from the characteristic values given by the schedule of conditions (for
example the torque), obtain the structure, the dimensions and the material

compositions of the actuator constitutive parts, [1, 2, 13]. One is usually
interested in performing an optimal design where a given criterion is opti-
mized (for example, the volume of the magnet is minimized). The interest
of the electromagnetic actuators design combining optimization algorithms

and analytical models has in fact already been widely shown in the literature
[10, 9, 5, 14, 15, 16, 17]. The inverse problems of electromechanical actua-
tor design are more general than optimal dimensioning problems [2]. These
problems must be formulated as mixed-constrained optimization problems,
see [1, 2] for complete formulations. Optimization problems of this kind are in
general quite difficult to solve to global optimality. Exact global optimization
solvers can however be adapted for their solution. Methods based for exam-
ple on interval analysis have been proposed in [2, 11, 9, 10]. Other recent
methods for global optimization of mixed-integer problems can be applied
as well. In practice, however, the picture is not as simple: recent powerful
solvers are not always publically available (this is the case for interval analysis
based solvers) or do not interface to a modelling environment for easy using.
In practice, in the context of engineering applications, one usually prefers to
resort to well known and easy to use optimization solvers [13, 14, 15, 17].
In this sense, a very successful solver is provided by the MatLab’s fmincon
function [8]. It is based on Active-Set and Sequential-Quadratic Program-
ming (SQP) methods with computation of the Hessian from Quasi-Newton
techniques [3, 4] and finds local optima of nonconvex nonlinear optimization
problems with continuous decision variables. This solver does not represent
the state of the art for nonlinear nonconvex optimization and, being a local
solver, does not provide global solutions. However, it usually provides good
quality (local) solutions which are often considered satisfactory in practical
contexts.

Even though this kind of solver is quite easy to use, the mathematical
features of the optimization problem may have an impact on the practical
efficiency of the solver. It is known that the same optimization problem
can be often formulated in different ways, sharing some properties such as
optima and feasible regions. Furthermore, the formal description of opti-
mization problems has an impact on the applicability and efficiency of the
corresponding solution methods. Indeed, the study of reformulations is an ac-
tive research area in the optimization community [6, 7]. The aim of this paper
is to investigate the efficiency and reliability of standard local optimization

2

solvers when handling different mathematical formulations. We illustrate the
impact of such different formulations on solver performance. While providing
any advancement on the global solution of engineering design problems is out
of the scope of this paper, we consider a local solver which is widely used
in the engineering community for optimal design, with the aim of providing
guidelines for designers in practical engineering applications.

Our application testbed is a slotless electrical rotating permanent magnet
machine. This example was first presented in [14] and also studied in a lot
of papers such as [11, 14, 9, 17]. The analytical equations of the considered
design problem, which come from approximations of Maxwell’s equations
(taken in the quasi-static mode) and mechanical considerations, can be found
in [11, 12, 14]. These equations are recalled below:

Γem =
π

2λ
(1−Kf)

√

krβEchED2(D + E)Be (1)

Ech = AJcu = krEJ2
cu (2)

p =
πD

∆p

(3)

Kf = 1.5pβ
e+ E

D
(4)

C =
πβBe

4pBiron

D (5)

Be =
2laP

D ln
(

D+2E
D−2(la+e)

) (6)

where Γem is the electromagnetic torque (from an energetic calculation, see
Eq. (1)); D(m) is the bore diameter, λ the diameter over length ratio, E(m)
the winding thickness, β the polar arc factor, kr a coefficient of occupation; the
global heating up of the winding is rather roughly modeled by Ech (function
of current electric loading A and Jcu, see Eq. (2)); Jcu(A/m

2) is the current

areal density; p is the number of pole pairs, ∆p the polar step (p is linked to ∆p

by Eq. (3)); Kf is a semi-empiric magnetic leakage coefficient (established by
numerical simulations, see Eq. (4)); e(m) is the thickness of the mechanical

air-gap; C(m) is the thickness of yoke (Eq. (5) is obtained by neglecting
interpolar leakages and armature reaction flux); Biron is the magnetic field in

the iron; Be(T) is the no-load magnetic radial flux density (see Eq. (6)); la(m)
is the thickness of the permanent magnets, P the magnetic polarization. For
this study, we fix Γem = 10N.m, P = 0.9T , kr = 0.7, Biron = 1.5T , Ech =
1011A/m and the polar step ∆p = 0.1m as in [14]. The other parameters can
vary inside the following intervals: D(m) ∈ [0.01, 0.5], λ ∈ [1, 2.5], la(m) ∈
[0.003, 0.05], E(m) ∈ [0.001, 0.05], C(m) ∈ [0.001, 0.05], β ∈ [0.8, 1], Be(T) ∈

3

[0.1, 1], Jcu(A/m
2) ∈ [105, 107], Kf ∈ [0.01, 0.3], e(m) ∈ [0.001, 0.005] and

p ∈ {1, · · · , 10}.
The motor structure is presented in Figure 1.

Figure 1: Structure of the considered permanent magnet machine

2

E

p
βπ

la
eC

C

D

The addressed design problem can be formulated as an optimization prob-
lem by minimizing or maximizing a given criterion under constraints given
by equations (1)-(6).

Note that, even though we focus on a simple specific design problem
for the sake of illustration, the same analysis may be generalized to more
complex examples formulated as nonlinear nonconvex constrained problems.

The rest of this paper is organized as follows. In Section 2, we propose
six equivalent mathematical formulations of the optimal design problem of a
slotless electrical rotating permanent magnet machine. In Section 3, we first
computationally compare the six proposed formulations in the continuous
case, i.e., with a fixed value for p and we discuss about their efficiency when
the optimization problem is solved using the solver fmincon of MatLab. We
show that numerical performances are different depending on the formula-
tion. The the effect of changing starting points on the optimization results
is also discussed. We then summarize some results when p is free on three
mixed-integer formulations. Some concluding remarks are given in Section 4.

4

2 Mathematical formulations

In this paper, the addressed optimization problem has the following general
form:

P :

min
x∈IRn

y∈IRm

f(x, y)

s.t.
gi(x, y) ≤ 0, ∀i ∈ {1, · · · , p},
hi(x, y) = 0, ∀i ∈ {1, · · · , q},
yi = Ai(x, yJi), ∀i ∈ {1, · · · ,m},
xi ≤ xi ≤ xi, ∀i ∈ {1, · · · , n},
yi ≤ yi ≤ yi, ∀i ∈ {1, · · · ,m}.

where Ji ⊆ {1, · · · ,m}\{i}. Moreover, yi depends explicitly or implicitly on
x by recursive calls to Aj functions and there is no cycle in the definition of yi.
Hence, yi = Ai(x, yJi) = AR

i (x); as a vectorial notation, we use: y = AR(x).
By replacing the occurrences of yi in (P) by AR

i (x), we obtain the follow-
ing reformulation:

R :

min
x∈IRn

f(x,AR(x))

s.t.
gi(x,A

R(x)) ≤ 0, ∀i ∈ {1, · · · , p},
hi(x,A

R(x)) = 0, ∀i ∈ {1, · · · , q},
xi ≤ xi ≤ xi, ∀i ∈ {1, · · · , n},
yi ≤ AR

i (x) ≤ yi, ∀i ∈ {1, · · · ,m}.

This reformulated problem (R) of (P) is obtained by removing m variables
(all the variables y) and changing m equality constraints (yi = Ai(x, yJi)) to
2m inequality ones (yi − AR

i (x) ≤ 0 and AR
i (x)− yi ≤ 0).

The two optimization problems (P) and (R) are mathematically equiva-

lent because they provide the same solution which corresponds to the global
minimum of the two problems: all realizable solutions of (P) are realizable
solutions of (R) and reciprocally, moreover the objective function values are
equal (because y = AR(x)).

From equations of the design problem such as those defined in (1)-(6),
and by introducing the minimization of the volume of the magnets: Vm =
πβla

D
λ
(D−2e−la), we can generate some distinct but equivalent formulations

of our design problem, as described above by problem (R). The differences
concern some variables which are replaced by functions and equality con-
straints by inequality ones. This yields six formulations.

5

The first formulation comes directly from the equations (1)-(6) of the
design problem. Hence, we obtain:

F1 :

min
(D,λ,···)∈D⊂IR10

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t.
constraints defined by Equations (1)-(6)

Formulation F1 is a nonlinear, nonconvex optimization problem, the nonlin-
earities arising in the analytical formulæ expressing the objective function
and the constraints. The variables D(m), λ, la(m), E(m), C(m), β, Be(T),
Jcu, Kf and e(m) are continuous, while p is integer. Hence, the problem is a
mixed-integer nonlinear program (MINLP).

We remark that the problem is badly scaled, because some parameters
such as Jcu have large values and the others, such as D, e, . . ., are definitely
small. However, this seems to have no impact when a solver like fmincon is
used on all the formulations considered in this paper. We also note that
the integer variable p will be fixed to a constant in the first part of Section 3
to provide a continuous nonlinear problem (NLP) and p will be an integer
variable in subsection 3.4.

The following formulations are reformulations of F1 which are mathemat-
ically equivalent.

First, we consider Be as an auxiliary function (depending on D, la, E,
e) which returns 2laP

D ln(D+2E
D−2(la+e))

and whose value is bounded by 0.1 and 1; in

fact, in all the expressions of Formulation F1, Be could be directly replaced
by 2laP

D ln(D+2E
D−2(la+e))

. Thus, from F1 we remove one variable and its correspond-

ing equality constraint, and we replace this constraint with two inequality
constraints which impose lower and upper bounds on the value of Be. We
obtain the following formulation:

F2 :

min
(D,λ,···)∈D⊂IR9

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t. constraints defined by Equations (1)-(5)
0.1 ≤ Be(.) ≤ 1

where Be(.) is an auxiliary function and returns 2laP

D ln(D+2E
D−2(la+e))

(or where Be(.)

is directly replaced in Formulation F2 by its corresponding expression).
The two formulations only differ in size (number of variables and con-

straints). The first one, F1, has 10 continuous variables: D, λ, la, E, C, β, Jcu, Kf , e, Be

6

and 6 equality constraints, while the second one, F2, has 9 continuous vari-
ables: D, λ, la, E, C, β, Jcu, Kf , e, 5 equality constraints and 2 inequality con-
straints involving Be. Additional constraints are given in both cases by the
bounds on the variables. We remark that any solution (global minimum) of
F1 is also a solution of F2 and conversely.

We now proceed to eliminate another variable and considering it as a
function. Again, the equality constraint corresponding to the selected vari-
able is replaced by two inequality constraints which impose lower and upper
bounds on its value. Considering C as a function which returns πβBe

4pBiron
D, we

have:

F3 :

min
(D,λ,···)∈D⊂IR8

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t. constraints defined by Equations (1)-(4)
0.1 ≤ Be(.) ≤ 1
0.001 ≤ C(.) ≤ 0.05

Formulation F3 has 8 continuous variables, 4 equality constraints, 4 inequal-
ity constraints and bounds on variables.

Considering now Kf as a function which returns 1.5pβ e+E
D

, we obtain the
following formulation:

F4 :

min
(D,λ,···)∈D⊂IR7

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t. constraints defined by Equations (1)-(3)
0.1 ≤ Be(.) ≤ 1
0.001 ≤ C(.) ≤ 0.05
0.01 ≤ Kf (.) ≤ 0.3

Formulation F4 has 7 continuous variables, 3 equality constraints, 6 inequal-
ity constraints and bounds on variables.

Another possibility to reformulate the problem is to introduce a new
variable y which replace a nonlinear term appearing in the first equality
constraint, and add the corresponding constraint to the formulation. Let y

7

be equal to
√
βE. We can reformulate the problem as follows:

F5 :

min
(D,λ,···)∈D⊂IR8

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t. Γem = π
2λ
(1−Kf (.))

√
krEchyD

2×
(D + E)Be(.)

y2 = βE
constraints defined by Equations (2),(3)
0.1 ≤ Be(.) ≤ 1
0.001 ≤ C(.) ≤ 0.05
0.01 ≤ Kf (.) ≤ 0.3

Note that now the square root term appearing in the first constraint is a
constant term. Note also that y has a positive value because of the bounds
on variables β and E. Formulation F5 has 8 continuous variables, 4 equality
constraints, 6 inequality constraints and bounds on variables.

Finally, we consider again y =
√
βE and we add this variable to formu-

lation F1, obtaining a new formulation with 11 continuous variables and 7
equality constraints:

F6 :

min
(D,λ,···)∈D⊂IR11

p∈{1,··· ,10}

Vm(D, λ, ...) = πβla
D

λ
(D − 2e− la)

s.t. Γem = π
2λ
(1−Kf)

√
krEchyD

2(D + E)Be

Ech = AJcu = krEJ2
cu

y2 = βE
constraints defined by Equations (2)-(6)

These six formulations vary in size from 7 to 11 continuous variables, from 3
to 7 equality constraints and from 0 to 6 inequality constraints.

Comparing the six formulations above, we note that when the number
of variables increases, the nonlinearities of the equations decrease yielding
simpler optimization problems but with more variables. Since the solver per-
formance is roughly directly proportional to both the number of variables
and the number of nonlinearities in the objective and constraints, a natural
trade-off situation arises. Note that this behavior is independent of the spe-
cific considered problem and the same considerations apply to other possibly
more general design problems having nonlinear optimization formulations
like (P).

In the following section, we numerically compare the proposed formu-
lations and discuss about their efficiency when a local optimization solver
is used to solve the optimal design problem. We also consider two other

8

objective functions for the addressed problem:

Vu = π
D

λ
(D + E − e− la)(2C + la + e+ la) (7)

Pj = πρcu
D

λ
(D + E)Ech (8)

where Vu represents the volume of the active parts and Pj the losses by joule
effects with ρcu = 0.018× 10−6.

3 Computational comparison between formu-

lations

Different mathematical formulations of a given problem may share the same
properties, such as for example feasible region and optima. However, some
of them are easier to solve than others. The same optimization solver can
perform differently depending on the formulation. For this reason, a consid-
erable amount of work is often devoted to investigate efficient reformulations,
see e.g. [7].

In this section, we computationally compare formulations F1 to F6 and
evaluate their impact on the performance of the deterministic local optimiza-
tion solver fmincon of MatLab v7. In a first series of experiments, the integer
variable p is fixed to the constant value 5 (known to be optimal), so that for-
mulations F1 to F6 become continuous optimization problems. We employ
MatLab’s optimset function to fix the following parameters for fmincon:
(i) the maximum number of iterations and of function evaluations is fixed
to 30000, (ii) the tolerance on the value of the function is fixed to 10−10,
(iii) the tolerance on the solution point is fixed to 10−6, (iv) the tolerance
on the constraints satisfaction is fixed to 10−7 and (v) FunValCheck is fixed
to ‘on’, which generates an error if values become complex during the com-
putation (this can occur in equations (1)-(6) when computing the logarithm
of a negative number). In this last case (v), we have to use MatLab’s ex-
ception handling mechanism (the try and catch functions). The considered
tolerances correspond to standard settings in optimization solvers.

The performance of a local method such as fmincon often depends on
the choice of a starting point (values initially assigned to the decision vari-
ables). This may be given by the existing design configuration in case one
exists, otherwise it is very difficult to choose it appropriately. Depending
on this choice, we have three possibilities: (i) the algorithm converges to a
local solution; (ii) the algorithm progresses slowly towards a local optimum,
but finally exceeds the maximum allowed number of iterations or function

9

evaluations; (iii) the algorithm fails for a number of other reasons, with no
meaningful answer. An aprioristic choice of starting point guaranteeing the
occurrence of case (i) is usually impossible. We try and make our results
“starting point independent” by implementing a simple multistart approach
from 1000 randomly generated starting points (random values are generated
using MatLab’s rand function). We then record the percentage of starting
points yielding a local and a global optimum.

To generate starting points, two strategies are possible. In the first one,
random values are generated for each variable of Formulation F6 (corre-
sponding to the formulation having the maximum number of variables) and
the same values are used for all Fi, i = 1, . . . , 5. In the second one, a random
value is generated for the 7 continuous variables of Formulation F4 (corre-
sponding to the formulation having the minimum number of variables) and
corresponding values are computed for problem entities which are treated as
functions (in formulations F1 to F3, F5, F6). For example, in Formulation F2
the value of C and Kf can be computed using auxiliary functions defined for
Formulation F4 on the basis of the values of D, λ ... which are randomly
generated.

3.1 Numerical comparisons using Vm

In this subsection, we compare the results of our Multistart method on the
six optimization problems F1 to F6 defined in Section 2. The value of p is
fixed to 5.

Results are shown in Tables 1 and 2 depending on whether the starting
points are generated from Formulation F6 or from Formulation F4 respec-
tively (the same base of the 1000 starting points is used for all the formu-
lations). We compare, for each formulation, the percentage of local minima
and the percentage of best local minima found, the best and the worst values
of local minimum found, the best CPU time, the average CPU time, the av-
erage CPU time corresponding to successful running (i.e., providing a local
minimum), and the worst CPU time. It appears that the percentage of fail-
ure is quite high. Indeed, for all the considered formulations, the percentage
of local minima found is always lower than 50% and slightly higher than this
percentage in one case only. On the last line of the tables (x0 = mid), we
report the local minima which are obtained (or not) using the middle point of
the variable bounds taken as a starting point; ’—’ denotes no local minima.
In Table 1, only two formulations provide a local minimum using the middle
of the bounds as a starting point compared to Table 2 where four formula-
tions achieve the convergence. Nevertheless, all these local minima are far
from the best one (one order of magnitude of difference). This confirms that

10

a lot of care must be paid in the choice of a good starting point. When some
values are computed starting from values assigned to variables on which they
depend (Table 2), the percentage of local minima found is higher. In partic-
ular, the formulations with more variables, F1 and F6, provide the highest
percentage of local minima found. This remark yields to show that the for-
mulations with more variables F1 and F6, where the nonlinearity decrease,
associated with starting points made from components which are partially
randomly generated and partially computed from other components using
auxilary functions, provide the most efficient Multistart technique: about
50% of chance to provide a local minimum compared to less than 45% for all
the 10 others (see Tables 1 and 2), and about 5% to find the best local min-
ima compared to less than 4.6% for the other formulations excepted F5; note
that a minimum is considered equal to the best one if their corresponding
optimal value are numerically close.

CPU times are in general practically acceptable (lower than 30 seconds).
The average CPU time is however increased by the time spent in unsuccessful
runs, where convergence is not achieved because of a worse choice of the
starting point. We note that there is no impact on the CPU-time if the
formulation has more variables than another one.

Table 1: Numerical results by minimizing Vm in a Multistart method: random
case

F1 F2 F3 F4 F5 F6
% local min 40.4% 44.2% 43.7% 44.6% 44.0% 41.6%
% best min 3.7% 3.3% 2.8% 4.6% 4.8% 3.4%

best min value 7.3589e-5 7.3586e-5 7.3586e-5 7.3568e-5 7.3597e-5 7.3568e-5
worst local min 1.1443e-3 1.1215e-3 1.1220e-3 1.0526e-3 1.0976e-3 1.1065e-3
best CPU-time 0.02s 0.00s 0.00s 0.00s 0.00s 0.00s
avrg CPU-time 0.50s 0.24s 0.27s 0.18s 0.17s 0.42s

avrg-scf CPU-time 0.12s 0.14s 0.13s 0.14s 0.14s 0.13s
worst CPU-time 20.88s 27.61s 33.25s 23.02s 30.86s 23.94s

x0 = mid — 8.4162e-4 8.4163e-4 — — —

In Tables 3 and 4 we provide the best found solutions for each formula-
tion. We remark that Formulation F4 produces the minimal value for the
objective function Vm; this is understandable because F4 is the most com-
pact formulation. We note also that all computed objective function values
are different except for F2 and F3 in Table 3, this minimum point was also

11

Table 2: Numerical results by minimizing Vm in a Multistart method: par-
tially random case

F1 F2 F3 F4 F5 F6
% local min 49.7% 45.2% 44.7% 44.6% 45.5% 50.2%
% best min 4.8% 2.9% 3.1% 4.6% 5.0% 5.5%

best min value 7.3586e-5 7.3586e-5 7.3598e-5 7.3568e-5 7.3606e-5 7.3586e-5
worst local min 1.1512e-3 1.0382e-3 1.0327e-3 1.0526e-3 1.0077e-3 1.0261e-3
best CPU-time 0.02s 0.00s 0.02s 0.02s 0.02s 0.02s
avrg CPU-time 0.75s 0.17s 0.23s 0.18s 0.16s 0.61s

avrg-scf CPU-time 0.12s 0.13s 0.13s 0.14s 0.14s 0.13s
worst CPU-time 20.00s 26.66s 30.91s 23.09s 30.84s 12.98s

x0 = mid 8.0291e-4 7.7114e-4 7.7112e-4 — — 8.7127e-4

found using formulations F1, F2 and F6 in Table 4. Thus, as we found 8
different minima, we can conclude that there exist a lot of solutions which
provide close values for the objective function Vm. This kind of Multistart
method could be adapted to provide a large set of minimal points.

Note that Formulation F4 provides the same results in the two tables 3
and 4 because we take exactly the same starting point in both cases, as it
is the most compact formulation, so there are no components of the starting
point that can be deduced from others.

In [14], the considered design problem with formulation F1 was first mod-
eled and solved using a local search algorithm. These first solutions were
clearly local minima because in [17] new better solutions were found. In [11],
a deterministic global optimization solver was used for the first time (with
a restriction to 4 digits on the accuracy of parameters). The objective func-
tion values in Table 4 are the same as the one corresponding to the global
solution provided in [11]. Thus, some global minimizers are found here using
a multistart technique with the fmincon procedure. The same remarks could
be done for the results involving the objective functions Va and Pj presented
in next sections.

3.2 More numerical comparisons using Vu and Pj

In order to summarize all the computations that we performed, we present
in the following and until the end of the paper, only the two most important
formulations: F1, which comes directly from equations (1)-(6), and F4, which

12

Table 3: Comparison between local minima: completely random case

Best local min F1 F2 F3 F4 F5 F6
D∗ = 0.159155 0.159155 0.159155 0.159155 0.159155 0.159155
λ∗ = 2.5 2.5 2.5 2.5 2.5 2.5
l∗a = 0.003 0.003 0.003 0.003 0.003 0.003
E∗ = 0.002549 0.003419 0.003419 0.002897 0.003542 0.002997
C∗ = 0.005100 0.004556 0.004556 0.004853 0.004496 0.004790
β∗ = 0.8 0.8 0.8 0.8 0.8 0.8
B∗

e = 0.382466 0.341724 0.341724 0.363953 0.337209 0.359256
J∗

cu = 7485729.14 6464050.67 6464050.68 7021833.60 6350604.11 6904057.59
K∗

f = 0.149734 0.182640 0.182640 0.163657 0.186849 0.167446
e∗ = 0.001422 0.001426 0.001426 0.001444 0.001414 0.001445
V ∗

m 7.3589e-5 7.3586e-5 7.3586e-5 7.3568e-5 7.3597e-5 7.3568e-5

Table 4: Comparison between local minima: partially random case

Best local min F1 F2 F3 F4 F5 F6
D∗ = 0.159155 0.159155 0.159155 0.159155 0.159155 0.159155
λ∗ = 2.5 2.5 2.5 2.5 2.5 2.5
l∗a = 0.003 0.003 0.003 0.003 0.003 0.003
E∗ = 0.003419 0.003419 0.003549 0.002897 0.003633 0.003419
C∗ = 0.004556 0.004556 0.004493 0.004853 0.004454 0.004556
β∗ = 0.8 0.8 0.8 0.8 0.8 0.8
B∗

e = 0.341724 0.341724 0.336951 0.363953 0.334045 0.341724
J∗

cu = 6464050.65 6464050.67 6344113.56 7021833.60 6271081.34 6464050.68
K∗

f = 0.182640 0.182640 0.187094 0.163657 0.189877 0.182640
e∗ = 0.001426 0.001426 0.001413 0.001444 0.001404 0.001426
V ∗

m 7.3586e-5 7.3586e-5 7.3598e-5 7.3568e-5 7.3606e-5 7.3586e-5

13

is the most compact one. Moreover, two distinct techniques are applied to
F1 to generate its starting point: F1(rnd) indicates that all the components
of the starting point are randomly generate and F1(cmp) indicates that the
starting point is partially randomly generated and some components are com-
puted from others. In the following tables, the best and worst values of local
minima and the best and worst CPU-times used for one local minimization
step of the Multistart are reported as in the previous subsection.

In this subsection, two different objective function are minimized: Vu and
Pj defined in (7) and (8).

In Table 5, results using the Multistart method with the objective func-
tion Vu (7) are given. Similarly, in Table 6, results for the objective function
Pj (8) are presented. The best found local minima are respectively given in
Tables 7 for Vu and 8 for Pj.

We observe that results are similar to the ones of the previous subsection.
This seems to confirm that the Formulation F1 associated with partially
randomized starting points (denoted by F1(cmp)) provides the best results
in terms of percentage to converge to a local solution, while the percentage
to find the best local minimum are still low for Vm but quite high (about
20%) for Pj. In these two cases too, the minimum points are all different.

These remarks show that the objective function does not have a deep
impact in the considered optimal design problems.

Table 5: Numerical results by minimizing Vu in a Multistart method

F1(rnd) F1(cmp) F4
% local min 41.0% 49.8% 45.1%
% best min 2.4% 2.2% 2.4%

best min value 5.3632e-4 5.3631e-4 5.3635e-4
worst local min 1.7000e-3 1.6494e-3 1.7543e-3
best CPU-time 0.02s 0.00s 0.02s
avrg CPU-time 0.44s 0.73s 0.13s

avrg-scf CPU-time 0.13s 0.12s 0.20s
worst CPU-time 19.00s 12.03s 24.09s

x0 = mid — 1.5392e-3 —

Note that only Formulation F1(cmp) provides a local minimum when the
middle of the bounds on the variables is used as a starting point (and some
components are computed from the others). Note also that these two local
minima are not the best minima found (in Table 5, this local minimum is
close to the worst case).

14

Table 6: Numerical results by minimizing Pj in a Multistart method

F1(rnd) F1(cmp) F4
% local min 44.5% 50.2% 46.1%
% best min 19.7% 19.6% 21.6%

best min value 5.7810e+1 5.7810e+1 5.7810e+1
worst local min 8.5743e+1 7.0680e+1 6.9911e+1
best CPU-time 0.02s 0.00s 0.02s
avrg CPU-time 0.28s 0.55s 0.09s

avrg-scf CPU-time 0.10s 0.09s 0.12s
worst CPU-time 12.41s 20.45s 12.42s

x0 = mid — 58.057 —

Table 7: Comparison between local minima using Vu

Best local min F1(rnd) F1(cmp) F4
D∗ = 0.159155 0.159155 0.159155
λ∗ = 2.5 2.5 2.5
l∗a = 0.003 0.003 0.003
E∗ = 0.003373 0.003419 0.003419
C∗ = 0.004580 0.004556 0.004556
β∗ = 0.8 0.8 0.8
B∗

e = 0.343463 0.341724 0.341724
J∗

cu = 6507727.58 6464050.67 6464050.67
K∗

f = 0.181054 0.182640 0.182640
e∗ = 0.001429 0.001426 0.001426
V ∗

u 5.3632e-4 5.3631e-4 5.3635e-4

15

Table 8: Comparison between local minima using Pj

Best local min F1(rnd) F1(cmp) F4
D∗ = 0.159155 0.159155 0.159155
λ∗ = 2.5 2.5 2.5
l∗a = 0.047767 0.042697 0.040992
E∗ = 0.001429 0.001429 0.001429
C∗ = 0.007328 0.007250 0.007870
β∗ = 0.845289 0.803578 0.870069
B∗

e = 0.520176 0.541294 0.542699
J∗

cu = 10000000 10000000 10000000
K∗

f = 0.181863 0.193636 0.227066
e∗ = 0.003137 0.003685 0.004109
P ∗

j 57.8101 57.8101 57.8101

3.3 Comparison between the six formulations and the

three objective functions

Figures 2, 3, 4 and 5 summarize for the six proposed formulations and the
three objective functions the results obtained in terms of percentage of con-
vergence to a local minimum (Figures 2 and 3) and of percentage of times
when the best local minimum is found (Figures 4 and 5), using totally or
partially randomized starting points.

From Figure 2, we can see that Formulation F4 (which is the most com-
pact one) provides the best results for Vm and Vu, and Formulation F3 pro-
vides the best results for Pj. Comparing the six formulations on each of the
considered objective functions, it appears that close results were obtained
for formulations F2, F3, F4 and F5, while formulations F1 and F6 provide
a percentage which is about 3% lower. Contrarily on Figure 3 (when some
components of the starting points are computed from others), F1 and F6 ap-
pear clearly to be the most efficient formulations for our Multistart method
for all the three objective functions, providing a percentage about 5% higher
than all other formulations.

Concerning the percentage of best found local minima, from Figures 4
and 5 we can see that similar results are obtained for all the formulations
and all the objective functions.

16

Figure 2: Percentages of found local minima: totally randomized case

36

38

40

42

44

46

48

Vm Vu Pj

F1

F2

F3

F4

F5

F6

Figure 3: Percentages of found local minima: partially randomized case

41

42

43

44

45

46

47

48

49

50

51

Vm Vu Pj

F1

F2

F3

F4

F5

F6

Figure 4: Percentages of best found minima: totally randomized case

0

5

10

15

20

25

Vm Vu Pj

F1

F2

F3

F4

F5

F6

17

Figure 5: Percentages of best found minima: partially randomized case

0

5

10

15

20

25

Vm Vu Pj

F1

F2

F3

F4

F5

F6

3.4 Computational comparison with p free

In the considered optimal design problem, the number of pole pairs p has
an integer value and can be considered as a variable of the problem. In
fact, algorithms such as the one implemented in fmincon of MatLab, need
continuous formulations and twice differentiable functions. In some papers
of the literature (see [14, 17]), p is considered as a continuous variable and
the user has to convert the obtained real value of p into an integer one.
Previously, we considered p as a fixed parameter (p = 5).

Some ways to deal with the integer variable p could be the following: (i)
p is converted into a real variable p ∈ [1, 10] and its optimal value is rounded
into an integer one by the user (all the other variables must be adjusted);
(ii) p is treated as a real variable but an equality constraint (p − 1) × (p −
2) × · · · × (p − 10) = 0 is added; (iii) we first solve case (i) and following
the optimal value of p (denoted p∗) we add the constraint (p− ([p∗]− 1))×
(p− [p∗])× (p− ([p∗] + 1)) = 0, where [p∗] indicates that the closest integer
number of p∗ is taken into account.

In this study, we focus on two formulations only, the first one where all
entities are considered as variables of the problem F1 and the one where
there is the minimum number of variables F4. Results with F1 are again
obtained using random generated values for all variables as well as random
values for the 7 variables of F4 and values computed from this 7 values for
the other variables (as we did in subsection 3.2). Since, as noticed in the
previous section, no relevant differences in the behavior of the considered
formulations can be observed using a different objective function like Vu or
Pj, we focus in the following only on the minimization of the volume Vm of
the magnet.

18

In Figures 6 and 7, we compare the formulations in terms of percentage of
found local minima and percentage of best found local minima respectively,
considering the different choices of p discussed above. Thus, these figures
summarize the results obtained via the multistart method associated with
fmincon.

Figure 6: Percentages of found local minima

0

10

20

30

40

50

60

70

p=5 p in [1,10] p in { ,…, } p in {4,5,6}

F1(rnd)

F1(cmp)

F4

From Figure 6, one can see that Formulation F1 with recomputed values
for the starting point appears to be the most efficient to find the largest
number of local solutions, with the different strategies to deal with p. Thus,
as the values of the percentage of best found local solution are low, we can
have more confidence on the local solutions found by this formulation in order
to provide the global solution.

It is also evident, from Figure 6 and specially from Figure 7, that consid-
ering p as a variable, as expected the problem becomes more difficult to solve
and consequently the percentages of solutions found and best found solution
are low. The fourth proposed strategy, based on a lower-degree polynomial
constraint, allows to obtain higher percentages, though very low, when p is
treated as an integer variable.

In Figure 7, it is very clear that, using Formulation F1 with some com-
puted values for the starting point, a higher number of starting points allows
to obtain the best found local solution. Thus, as the values of the percentage
of best found local solution are low (except for p ∈ {1, · · · , 10} but the min-
imal value for F1(cmp) is the lowest one), we can have more confidence on
the local solutions found by this formulation in order to provide the global
solution.

19

Figure 7: Percentages of best found local minima

0

1

2

3

4

5

6

p=5 p in [1,10] p in { ,…, } p in {4,5,6}

F1(rnd)

F1(cmp)

F4

4 Conclusion

We have presented in this paper six mathematical formulations of an opti-
mal design problem. We have shown that, even though the formulations are
mathematically equivalent, their numerical performances are different when
an optimization solver is used. We mainly discussed the impact of reformu-
lations on a classical local solver based on Active-Set/SQP/Quasi-Newton
algorithm, thus showing that the designer must take care about the formu-
lation of the problem in order to make more efficient the use of this kind of
local algorithms, such as the one proposed by MatLab in fmincon.

First, we have discussed the solutions found using the six formulations,
considering the problem as a continuous one (fixing the value of the integer
variable present in the formulation), in a multistart setting where the solution
is computed at each step by fmincon. The first formulation F1, with 10
continuous variables, provides the best percentage of local solutions found,
specially when the starting point is computed by giving random values to
some of its components and computing the other values from these ones.
Second, we have discussed about strategies to deal with integer variables,
such as the number of pole pairs. Again Formulation F1 (with starting
points partially generated) appears to be the most efficient in providing the
best local solution.

These remarks could be extended to more general design problems when
a local solver is used: formulations of type (P), with starting points only
depending on variables x, seem to be more easier to solve and provide better
results than their possible reformulations of type (R).

20

References

[1] E. Fitan, F. Messine, and B. Nogarede. A general analytical model
of electrical permanent magnet machine dedicated to optimal design.
COMPEL - International Journal for Computation and Mathematics in

Electrical and Electronic Engeneering, 22(4), 2003.

[2] E. Fitan, F. Messine, and B. Nogarede. The electromagnetical actuators
design problem: a general and rational approach. IEEE Transactions

on Magnetics, 40(3):1579–1590, 2004.

[3] P.E. Gill, W. Murray, M.A. Saunders, , and M.H. Wright. Procedures
for optimization problems with a mixture of bounds and general linear
constraints. ACM Transactions on Mathematical Software, 10:282–298,
1984.

[4] P.E. Gill, W. Murray, and M.H. Wright. Numerical Linear Algebra and

Optimization. Addison Wesley, 1991.

[5] S. Huang, M. Aydin, and T.A. Lipo. A direct approach to electrical
machine performance evaluation: Torque density assessment and siz-
ing optimisation. In International Conference on Electrical Machines,
volume Art. 235, 2002.

[6] L. Liberti. Reformulations in mathematical programming: Definitions
and systematics. RAIRO-Operations Research, 43(1):55–86, 2009.

[7] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in Mathemati-

cal Programming: a Computational Approach, volume 203 of Studies in
Computational Intelligence, pages 153–234. Springer, Berlin, 2009.

[8] Mathworks. fmincon documentation.

[9] F. Messine. Deterministic global optimization using interval constraint
propagation techniques. RAIRO-Operations Research, 38(4):277–294,
2004.

[10] F. Messine. A Deterministic Global Optimization Algorithm for Design

Problems, pages 267–294. Kluwer, 2005.

[11] F. Messine, B. Nogarede, and J.L. Lagouanelle. Optimal design of elec-
tromechanical actuators: a new method based on global optimization.
IEEE Transactions on Magnetics, 34(1):299–307, 1998.

21

[12] T.J.E. Miller. Brushless Permanent-Magnet and Reluctance Motor

Drives. Clarendon Press, Oxford, 1989.

[13] P. Neittaanmki, M. Rudnicki, and A. Savini. Inverse Problems and

Optimal Design in Electricity and Magnetism. Clarendon Press, Oxford,
1996.

[14] B. Nogarede, A.D. Kone, and M. Lajoie-Mazenc. Optimal design of
permanent-magnet machines using analytical field modeling. Electro-

motion, 2(1):25–34, 1995.

[15] L. Rao, W. Yan, and R. He. Mean field annealing (mfa) and optimal
design of electromagnetic devices. IEEE Transactions on Magnetics,
32:1218–1221, 1996.

[16] G.R. Slemon and X. Liu. Modeling and design optimization of per-
manent magnet motors. Electric Machines and Power Systems, pages
71–92, 1992.

[17] F. Wurtz, J. Bigeon, and C. Poirson. A methodology and a tool for
the computer-aided design with constraints of electrical devices. IEEE

Transactions on Magnetics, 32:1429–1432, 1996.

22

	Introduction
	Mathematical formulations
	Computational comparison between formulations
	Numerical comparisons using Vm
	More numerical comparisons using Vu and Pj
	Comparison between the six formulations and the three objective functions
	Computational comparison with p free

	Conclusion

