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ABSTRACT. We introduce into classical mechanics the concept of non-
discerned particles for particles that are identical, non-interacting and
prepared in the same way. The non-discerned particles correspond to
an action and a density which satisfy the statistical Hamilton-Jacobi
equations and allow to explain the Gibbs paradox. On the other hand,
a discerned particle corresponds to a particular action that satisfies
the special Hamilton-Jacobi equations. We then study the convergence
of quantum mechanics to classical mechanics when ~ tends to 0 by
considering two cases : the convergence to non-discerned classical par-
ticles and the convergence to a classical discerned particle. Based on
these convergences, we propose an updated interpretation of quantum
mechanics.

RÉSUMÉ. Nous introduisons en mécanique classique le concept de par-
ticules indiscernées pour des particules qui sont identiques, sans in-
teraction et préparées de la même façon. Ces particules indiscernées
correspondent à une action et une densité qui satisfassent les équa-
tions d’Hamilton-Jacobi statistiques et qui permettent d’expliquer le
paradoxe de Gibbs. Par ailleurs, une particule discernée correspond à
une action particulière qui satisfait les équations spéciales d’Hamilton-
Jacobi. L’étude de la convergence de la mécanique quantique vers la
mécnique classique quand ~ → 0 se fait alors simplement en considé-
rant deux cas : la convergence vers des particules classiques indiscernées
et la convergence vers des particules classiques discernées. Nous dédui-
sons de ces convergences une interprétation renouvelée de la mécanique
quantique.

1 Introduction

The indiscernability concept, which is very relevant in quantum and
statistical physics, is not well-defined in the literature. In particular, it
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is the origin of the Gibbs paradox. Indeed, when one calculates the en-
tropy of two mixed gases, the classical result for distinguishable particles
is double the expected result. If the particles are considered indistingui-
shable, the correct result is recovered because of the indiscernability fac-
tor. This paradox identified by Gibbs [1] in 1889, was solved only by
means of quantum mechanics 35 years later by using the indiscernability
postulate for quantum particles. Indeed it was Einstein who, in 1924,
introduced the indiscernability of perfect gas molecules at the same time
as Bose-Einstein statistics. In his homage to Einstein for the centenary
of his birth in 1979, Alfred Kastler pointed out that [2] : " the distinction
between distinguishable and indistinguishable entities and the difference
of statistical behavior between those two types of entities remains obscure.
Boltzmann treated those ’molecules’ as distinguishable entities, which has
yielded the so-called Boltzmann statistics. On the contrary, Planck impli-
citly dealt with the "energy elements" he introduced as indistinguishable
particles, which led to a probabilistic counting of a macroscopic state dif-
ferent from the Boltzmann one. In 1909, Einstein rightly criticized this
lack of rigor." But as noted by Henri Bacry [3] p.129, "the historical pro-
gression could have been very different. Indeed, logically, one could postu-
late the non-discernability principle in order to solve the Gibbs paradox.
But this principle can be applied to all the principles of quantum mecha-
nics or to those of classical mechanics." This same observation has been
made by a large number of other authors. In 1965 Landé [4] demonstra-
ted that this indiscernability postulate of classical particles is sufficient
and necessary in order to explain why entropy vanished. In 1977, Leinaas
and Myrheim [5] used it for the foundation of their identical classical and
quantum particles theory. Moreover, as noted by Greiner, in addition to
the Gibbs paradox, several cases where it is needed to consider indistin-
guishable particles in classical mechanics and distinguishable particles in
quantum mechanics can be found [6] p.134 : "Hence, the Gibbs factor
1

N ! is indeed the correct recipe for avoiding the Gibbs paradox. From now
on we will therefore always take into account the Gibbs correction factor
for indistinguishable states when we count the microstates. However, we
want to emphasize that this factor is no more than a recipe to avoid the
contradictions of classical statistical mechanics. In the case of distingui-
shable objects (e.g., atoms which are localized at certain grid points), the
Gibbs factor must not be added. In classical theory the particles remain
distinguishable. We will meet this inconsistency more frequently in classi-
cal statistical mechanics." But nowadays, most of the textbooks contain
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definitions such as :"in classical mechanics, two particles in a system
are always distinguishable" and "in quantum mechanics, two particles
are always indistinguishable" [7] p.328-329, do not answer the concrete
problems exposed by Greiner in both classical statistics mechanics and
quantum statistical mechanics. In this article we propose an accurate de-
finition of both discernability and indiscernability in classical mechanics
and a way to avoid ambiguities and paradoxes. These definitions yield
an understandable interpretation both of the action in classical mecha-
nics and the wave function in quantum mechanics. We only consider the
case of a single particle or a system of identical particles without inter-
actions and prepared in the same way. The case of identical particles
with interactions will be presented in a future paper. In paragraph 2, we
introduce the discerned and non-discerned particles concepts in classical
mechanics through the Hamilton-Jacobi equations. In the following pa-
ragraphs, we study the convergence of quantum mechanics to classical
mechanics when ~ tends to 0 by considering two cases : the first corres-
ponds to the convergence to non-discerned classical particles, and the
second corresponds to the convergence to a classical discerned particle.
Based on these convergences, we propose an updated interpretation of
quantum mechanics.

2 Discerned and non-discerned particles in classical mecha-

nics

Let us consider in classical mechanics a system of identical particles
without interactions.

Definition 1 - A classical particle is potentially discerned if its ini-
tial position xo and its initial velocity v0 are known.

Let us note that there is an abuse of language when one talks about a
classical particle. One should rather speak of a particle that is studied
in the framework of classical mechanics.

We now consider a particle within a stationary beam of classical
identical particles such as electronic, atomic or molecular beams (CO2 or
C60). For such particle, one only knows, initially, the probability density
ρ0 (x) and the velocity field v0(x) through the action S0(x) ; this action

is known to within a constant from the equation v0(x) = ∇S0(x)
m

where
m is the particle mass. This yields the following definition :
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Definition 2 - A classical particle, of which at initial time only the
density of its initial position ρ0 (x) and initial action S0(x), is referred
to as potentially non-discerned.

This notion is intrinsic to a particle. It gives the initial conditions, which
means the way it has been prepared. Therefore, it is an indiscernability
on the initial particle position. It doesn’t depend on the observer but on
the effective modeling scale of the phenomenon.

In this article, we are only interested in the case where the N par-

ticles are prepared in the same way with the same initial density
ρ0 (x) and the same initial action S0(x) evolving in the same potential
V (x) and which can have independent behaviors. It is the case of classi-
cal identical particles without interactions and prepared in the same
way, such as C60 or neutral molecules. It is still the case for instance
for electrons prepared in the same way, and although they are able to
interact with each other, they will have independent behaviors because
they are generated one by one in the system. The general case of inter-
acting identical particles which are not prepared in the same way will be
presented in a future paper.

Definition 3 - N identical particles, prepared in the same way, with the
same initial density ρ0 (x), the same initial action S0(x), and evolving
in the same potential V (x) are called non-discerned.

We have named those particles non-discerned and not indistinguishable
because, if their initial positions are known, their trajectories will be
known as well. Nevertheless, when one counts them, they will have the
same properties as the indistinguishable ones. Thus, if the initial density
ρ0 (x) is given, and one randomly chooses N particles, the N ! permu-
tations are strictly equivalent and correspond to the same configuration
as for indistinguishable particles. This means that if X is the coordi-
nate space of a non-discerned particle, the true configuration space of N
non-discerned particles is not XN but rather XN/SN where SN is the
permutation group.

2.1 Non-discerned particles and statistical Hamilton-Jacobi equations

For non-discerned particles, we have the following theorem :
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THEOREM 1 - The probability density ρ (x, t) and the action S (x,t)
of classical particles prepared in the same way, with initial density ρ0(x),
with the same initial action S0(x), and evolving in the same potential
V (x), are solutions to the statistical Hamilton-Jacobi equations :

∂S (x, t)

∂t
+

1

2m
(∇S(x, t))2 + V (x) = 0 ∀ (x, t) ∈ R

3 × R
+ (1)

S(x, 0) = S0(x) ∀ x ∈ R
3. (2)

∂ρ (x, t)

∂t
+ div

(

ρ (x, t)
∇S (x, t)

m

)

= 0 ∀ (x, t) ∈ R
3 × R

+ (3)

ρ(x, 0) = ρ0(x) ∀x ∈ R
3. (4)

Let us recall that the velocity field is v(x, t) = ∇S(x,t)
m

and that the
Hamilton-Jacobi equation (1) is not coupled to the continuity equation
(3). The difference between discerned particles and non-discerned par-
ticles thus explains why the "recipes" proposed in some classical statis-
tical mechanics books are useful. But as has been demonstrated above,
it is not a principle which can be added. The nature of the discerna-
bility of the particles depends strongly on the experimental conditions
determined by the modeling scale.

2.2 Discerned particles and special Hamilton-Jacobi equations

One can ask if it is possible to define an action for a potentially dis-
cerned particle in a potential field V (x) ? Such an action should depend
only on the starting point x0, the initial velocity v0 and the potential
V (x).

THEOREM 2 - If ξ(t) is the classical trajectory in the field V (x) of a
particle with the initial position x0 and with initial velocity v0, then the
function

Sξ (x, t) = m
dξ(t)

dt
· x + g(t) (5)

where dg(t)
dt

= − 1
2m(dξ(t)

dt
)2 − V (ξ(t)) − md2ξ(t)

dt2
· ξ(t), is called local

action, and is solution to special Hamilton-Jacobi equations.

∂Sξ (x, t)

∂t
|
x=ξ(t)+

1

2m
(∇Sξ(x, t))2|

x=ξ(t)+V (x)|
x=ξ(t) = 0 ∀t ∈ R

+

(6)
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dξ(t)

dt
=

∇Sξ(ξ(t), t)

m
∀t ∈ R

+ (7)

Sξ(x, 0) = mv0x and ξ(0) = x0. (8)

The local action satisfies the Hamilton-Jacobi equations only along the
trajectory ξ(t). The introduction of such an action linked to a trajec-
tory appears as strange and devoid of any effective interest other than
a theoretical one by proposing a framework for defining discerned par-
ticles. This action will take on a meaning in paragraph 4 when we show
that it corresponds to the convergence of coherent state when ~ tends to
0. We have defined two kinds of actions, a global one S(x, t) and a local
one Sξ (x, t). The global action S(x, t) is a field defined for all x indepen-
dently of the starting point x0. But the local one Sξ (x, t) depends on the
trajectory ξ(t) and the starting point x0. The least action principle

is valid only for the global action and not for the local one.

This difference provides an answer to the precautions emitted by some
physicists bothered by the use of the least action principle. In particular,
Henri Poincaré who wrote in "La science et l’hypothèse" : [8]

"The statement of the least action principle is somehow shocking for
the mind. To move from one point to another, a material molecule, re-
moved from the action of any force, but subject to moving on a surface,
will move through the geodesic line, which means the shortest path. This
molecule seems to know the point one wishes to guide it to, to predict the
time it needs to reach it by choosing one path or another and to choose
the most suitable one. The statement thus presents the particle as a free
and animated being. It is clear that it would be better to replace it with
a less shocking statement and where, as the philosophers would say, the
final causes would not seem to be taking the place of efficient causes."
This paradox can be solved if one remarks that the least action principle
can only be applied to a global action and not to a local one because
this former one depends on the starting or final point.

3 Convergence to non-discerned particles when ~ → 0.

Let us consider the wave function solution to the Schrödinger equa-
tion Ψ(x, t) :

iℏ
∂Ψ

∂t
= −

ℏ
2

2m
△Ψ + V (x)Ψ ∀(x, t) ∈ R

3 × R
+ (9)
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Ψ(x, 0) = Ψ0(x) ∀x ∈ R
3. (10)

With the variable change Ψ(x, t) =
√

ρ~(x, t) exp(iS~(x,t)
~

), the density

ρ~(x, t) and the action S~(x, t) depend on the parameter ~. The Schrö-
dinger equation may be divided into Madelung equations [9] (1926) which
correspond to :

∂S~(x, t)

∂t
+

1

2m
(∇S

~(x, t))2 +V (x)−
~

2

2m

△
p

ρ~(x, t)
p

ρ~(x, t)
= 0 ∀(x, t) ∈ R

3
×R

+

(11)

∂ρ~(x, t)

∂t
+ ∇ · (ρ~(x, t)

∇S~(x, t)

m
) = 0 ∀(x, t) ∈ R

3 × R
+ (12)

with initial conditions

ρ~(x, 0) = ρ~

0(x) et S~(x, 0) = S~

0 (x) ∀x ∈ R
3. (13)

In the two following paragraphs we study the convergence of the
density ρ~(x, t) and the action S~(x, t) in the Madelung equations when ~

tends to 0. It is subtle and remains a difficult problem. For this reason, we
only consider two typical cases, for which analytical solutions exist. The
difference between the two examples is the fact that the initial conditions
are not the same due to a different preparation of the particles and initial
conditions for the potential when ~ tends to 0.

Definition 4 - A quantum system is non-discerned semi-classically

if it satisfies the two following conditions

- its initial probability density ρ~
0(x) and its initial action S~

0 (x)
converge respectively, to regular functions ρ0(x) and S0(x) when ~ → 0.

- its interaction with the potential field V (x) can be described clas-
sically. The simplest case corresponds to particles in vacuum with only
geometric constraints.

As previously described, this is the case of a set of non-interacting par-
ticles prepared in the same way : free particles beam in a linear potential,
electronic or C60 beam in the Young’s slits diffraction, atomic beam in
Stern and Gerlach experiment.



8 M. Gondran, A. Gondran

3.1 Convergence to statistical Hamilton-Jacobi equations

If we consider the system with classical initial conditions

ρ~

0(x) = ρ0(x) = (2πσ2
0)−

3
2 e

− (x−ζ0)2

2σ2
0 and S~

0 (x) = S0(x) = mv0·x.
(14)

in a linear potential field V (x) = −K · x. The density ρ~(x, t) and the
action S~(x, t), solutions to the Madelung equations (11)(12)(13) with
the initial condition (14), are respectively equal to [10] :

ρ~(x, t) = (2πσ2
~
(t))−

3
2 e

−

„

x−ζ0−v0t−K
t2

2m

«2

2σ2
~
(t) (15)

S~(x, t) = −
3~

2
tg−1(~t/2mσ2

0) −
1

2
mv2

0t+mv0 · x + K · xt

−
1

2
K · v0t

2 −
K2t3

6m
+

(

x − ζ0 − v0t− K t2

2m

)2

~
2t

8mσ2
0σ

2
~
(t)

(16)

with

σ~ (t) = σ0

(

1 +
(

~t/2mσ2
0

)2
)

1
2

. (17)

The constants σ0, v0, ζ0 and K are given and independent of ~ ;
σ0 for example corresponds to the hole width for preparing the particle
beam.

When ~ → 0, σ~ (t) converges to σ0 and one gets the following theo-
rem :

THEOREM 3 -When ~ → 0, the density ρ~(x, t) and the action
S~(x, t) converge to

ρ(x, t) = (2πσ2
0)−

3
2 e

−

„

x−ζ0−v0t−K
t2

2m

«2

2σ2
0

and S(x, t) = −
1

2
mv2

0t+mv0 · x + K · xt−
1

2
K · v0t

2 −
K2t3

6m
.

(18)

which are solutions to statistical Hamilton-Jacobi equations (1)(2)(3)(4).
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Thus, when ~ → 0, for semi-classical non-discerned particles, the
probability density ρ~(x, t) of the wave function tends to the probability
density of a statistical set of classical particles ρ(x, t). We conjecture
that this result in the case of a linear potential field can be generalized
to semi-classically discerned particles for other potentials.

CONJECTURE - For semi-classically non-discerned particles,
when ~ → 0, for all x and t bounded, the density ρ~(x, t) and the ac-
tion S~(x, t), which are solutions to Madelung equations(11)(12)(13),
converge to ρ(x, t) et S(x, t), which are solutions to statistical Hamilton-
Jacobi equations. (1)(2)(3)(4).

This conjecture is verified for the convergence of the density ρ~(x, t)
with an explicit calculation for the Stern-Gerlach experiment [11], for
the EPR one [12], and by numerical simulation for the Young’s slits
experiment [13, 14].

More generally, we can demonstrated this conjecture when the po-
tential V (x) is a quadratic function in x and when ρ~

0(x) = ρ0(x) and
S~

0 (x) = S0(x) are non-dependent functions of ~. In this case, the wave
function Ψ(x, t) at time t is written as a function of the initial wave
function Ψ0(x) by the Feynman formula[15] (p. 58) :

Ψ(x, t) =

∫

F (t, ~) exp(
i

~
Scl(x, t;x0)Ψ0(x0)dx0

= F (t, ~)

∫

√

ρ0(x0) exp(
i

~
(S0(x0) + Scl(x, t;x0))dx0

where F (t, ~) is an independent function of x and of x0 and where

Scl(x, t;x0) is the classical action min
u(s)

∫ t

0
L(x(s),u(s), s)ds, the mi-

nimum is taken over all trajectories x(s) with velocity u(s) from x0 to
x between 0 and t. The theorem of the stationary phase shows that, if
~ tends towards 0, we have

Ψ(x, t) ∼ exp(
i

~
minx0(S0(x0) + Scl(x, t;x0)).

that is to say that the quantum action Sh(x, t) converges to the function

S(x, t) = minx0
(S0(x0) + Scl(x, t;x0)). (19)
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However, S(x, t) given by (19) is the solution to the Hamilton-Jacobi
equation (1) with the initial condition (2). This is a consequence of the
principle of the least action and a fundamental property of the minplus
analysis we have developed[16, 17] following Maslov[18].

Moreover, as the quantum density ρh(x, t) verifies the continuity
equation (12) of the Madelung equations, we deduce, since Sh(x, t) tends
towards S(x, t), that ρh(x, t) converges to the classical density ρ(x, t),
which satisfies the continuity equation (3) of the statistical Hamilton-
Jacobi equations.

3.2 De Broglie-Bohm quantum trajectories

Those last convergence examples show that for semi-classically
non-discerned particles, the Madelung equations converge to statistical
Hamilton-Jacobi equations. The uncertainty of the position of a quan-
tum particle corresponds in that case to an uncertainty of the position
of a classical particle, only whose initial density has been defined. In

classical mechanics, this uncertainty is removed by giving the

initial position of the particle. It would be illogical not to do

the same in quantum mechanics.

We assume that for semi-classically non-discerned particles, a quan-
tum particle is not well described by its wave function. It is therefore
necessary to add its initial position and it becomes natural to intro-
duce the so-called de Broglie-Bohm trajectories. In this interpretation,
its velocity is given by [19, 20] :

v~(x, t) =
1

m
∇S~(x, t) (20)

or by the alternative form [21, 22, 23, 24] :

v~(x, t) =
1

m
∇S~(x, t) +

~

2m
∇ ln ρ~(x, t) × k, (21)

where k is the unit vector parallel to the particle spin vector.

This spin current ~

2m
∇ρ~(x, t) × k corresponds to Gordon’s current

when one changes from the Dirac equation to the Pauli equation and
subsequently to the Schrodinger equation[23]. This current is very im-
portant because it allows us to return to quantum mechanics on small
scales, in particular in relation to Compton’s wavelength, as in the Foldy
and Wouthuysen transformation [25].
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We have the following classical property : if a system of particles with
initial density ρ0(x) has de Broglie-Bohm-like trajectories defined by the
velocity field v~(x, t) from equations (20) or (21), then the probability
density of those particles at time t is equal to ρ~(x, t), the square of
the wave function magnitude. In the case of semi-classical non-discerned
particles, this shows that the Broglie-Bohm interpretation reproduces
the predictions of standard quantum mechanics.

In one dimension, for the initial particle position x0 = ζ0 + η0 with
initial velocity v0, in a linear potential V (x) = −Kx and with velocity

(20), one recovers the Broglie-Bohm trajectory : ξ~(t) = ζ0+v0t−K
t2

2m
+

η0
σ~(t)

σ0
which converges to the classical trajectory ξ(t) = ζ0 + η0 + v0t−

K t2

2m
when ~ → 0.

In three dimensions, for a particle initial position such as x0 =
ζ0 + η0 with an initial velocity v0, in a linear potential V (x) = −Kx3

and with the velocity (21), we have the Bohm-Broglie trajectory[13] :

ξ~
0,1(t) = ζ0,1 + v0,1t +

√

η2
0,1 + η2

0,2
σ~(t)

σ0
cosϕ(t), ξ~

2 (t) = ζ0,2 + v0,2t +
√

η2
0,1 + η2

0,2
σ~(t)

σ0
sinϕ(t), ξ~

3 (t) = ζ0,3 + v0,3t − K t2

2m
+ η0,3

σ~(t)
σ0

avec

ϕ(t) = arctan(
η0,1

η0,2
) − arctan( ~t

2mσ2
0
), which converges to the classical

trajectory ξ0,1(t) = ζ0,1 + η0,1 + v0,1t , ξ0,2(t) = ζ0,2 + η0,2 + v0,2t,

ξ0,3(t) = ζ0,3 + η0,3 + v0,3t−K t2

2m
when ~ → 0.

Generally, when ~ → 0, one deduces from conjecture that v~(x, t)
given from equations (20) or (21) converge to the classical velocity
v(x, t) = 1

m
∇S(x, t). This leads to the fact that the Broglie-Bohm tra-

jectories converge to the classical ones. We verify this conjecture with an
explicit calculation for the Stern-Gerlach experiment [11] and by nume-
rical simulation for the Young’s slits experiment [13, 14].

4 Convergence to discerned particles when ~ → 0.

Definition 5 - A quantum system is discerned semi-classically if it
satisfies the two conditions

- its initial probability density ρ~
0(x) and its initial action S~

0 (x)
converge respectively, when ~ → 0, to a Dirac distribution and an action
S0(x).

- its interaction with the potential field V (x) can be described classi-
cally.
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This situation occurs when the wave packet corresponds to a quasi-
classical coherent state which were introduced in 1926 by Schrödin-
ger [26], and is of great importance in quantum optics since Glau-
ber [27](1965). They have three properties : their gravity center follows a
classical trajectory ; they verify a Heisenberg equality and not an inequa-
lity ; the wave packet shape doesn’t change during motion (or at least
it recovers its shape after a cycle). It still occurs when the wave packet
corresponds to the periodic trajectories of a non-dispersive wave packet,
which are eigenvectors of the Floquet operator. For the hydrogen atom,
the existence of a localized wave packet on the classical trajectory (an old
dream of Schrödinger) and which was predicted in 1994 by Bialynicki-
Birula, Kalinski, Eberly, Buchleitner et Delande [28, 29, 30], has been
discovered recently by Maeda and Gallagher [31] on Rydberg atoms.

4.1 Convergence of coherent states to the solutions to the special

Hamilton-Jacobi equations

For the two dimensional harmonic oscillator, V (x) = 1
2mω

2x2, co-
herent states are built [10] from the initial wave function Ψ0(x) which
corresponds to the density and initial action :

ρ~

0(x) = (2πσ2
~
)−1e

− (x−x0)2

2σ2
~ and S0(x) = S~

0 (x) = mv0 · x (22)

with σ~ =
√

~

2mω
. Here, v0 and x0 are still constant vectors and inde-

pendent from ~, but σ~ will tend to 0 as ~.

For this harmonic oscillator, the density ρ~(x, t) and the action
S~(x, t),solutions to Madelung equations (11)(12)(13) with initial condi-
tions (22), are equal to [10] :

ρ~(x, t) =
(

2πσ2
~

)−1
e
− (x−ξ(t))2

2σ2
~ and S~(x, t) = +m

dξ(t)

dt
·x+g(t)−~ωt

(23)
where ξ(t) is the trajectory of a classical particle evolving in the potential
V (x) = 1

2mω
2x2, with x0 and v0 as initial position and velocity where

g(t) =
∫ t

0
(− 1

2m(dξ(s)
ds

)2 + 1
2mω

2ξ(s)2)ds. Because we have 2V (ξ(s)) =

md2ξ(s)
ds2 · ξ(s), it yields the following theorem :

THEOREM 4 - When ~ → 0, for all x and t bounded, the density
ρ~(x, t) and the action S~(x, t) converge respectively to ρξ(x, t) = δ(x −
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ξ(t)) and Sξ(x, t) = mdξ(t)
dt

· v0 + g(t) where Sξ(x, t) and the trajectory
ξ(t) are solutions to the special Hamilton-Jacobi equations (6)(7)(8).

Therefore, the kinematic of the wave packet converges to the single har-
monic oscillator described by ξ(t). Because this classical particle is com-
pletely defined by its initial conditions x0 and v0, it can be considered
as a discerned particle.

When ~ → 0, for all x and t bounded, the "quantum potential"

Q~(x, t) = − ~
2

2m

△√
ρ√

ρ
= ~ω − 1

2mω
2(x − ξ(t))2 tends to Q(x, t) =

− 1
2mω

2(x − ξ(t))2. It is then zero on the trajectory (x = ξ(t)).

More generally, let us consider semi-classically non-discerned par-
ticles where ρ~(x, t) converge to Dirac distribution ρξ(x, t) = δ(x−ξ(t)).
Mathematically, one needs, as proposed by Kazandjian [32], to study the
convergence of Madelung equations in the least square approach. This
yields :
∫

ρ~(x, t)[
∂S~(x, t)

∂t
+

1

2m
(∇S~(x, t))2 +V (x)+Q~(x, t)]2dx = 0. (24)

For ~ 6= 0, the equation (24) yields the Madelung equations (11) ; in the
limit ~ → 0, but, ρ~(x, t) tends to 0 for all x 6= ξ(t), and converges to a
Dirac distribution centered on ξ(t) ; In this limit, the equation (24) can
be written as

∂S(ξ(t), t)

∂t
+

1

2m
(∇S(ξ(t), t))2 + V (ξ(t)) +Q(ξ(t), t) = 0.

And because Q(ξ(t), t) = 0, this yields

∂S(ξ(t), t)

∂t
+

1

2m
(∇S(ξ(t), t))2 + V (ξ(t)) = 0 (25)

which corresponds to the special Hamilton-Jacobi equations (6). Thus,
in the general case of semi-classically non-discerned particles, the wave
function kinematics converges to the motion of a discerned classical par-
ticle ξ(t) which is completely defined by its initial position x0 and its
initial velocity v0.

It is then possible to consider, unlike in the semi-classically non-
discerned case, that the wave function can be seen as a single quantum
particle. The semi-classically discerned case is in agreement with the
Copenhagen interpretation of the wave function, which contains all the
information on the particle.
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4.2 Interpretation for the semi-classically discerned particles

In the semi-classically discerned case, the Broglie-Bohm interpre-
tation is not relevant mathematically, unlike the semi-classically non-
discerned case. Other assumptions are possible. A natural interpretation
is the one proposed by Schrödinger [26] in 1926 for the coherent states
of the harmonic oscillator. In the Schrödinger interpretation, the
quantum particle in the semi-classically discerned case is a spatially ex-
tended particle, represented by a wave packet whose center follows the
classical trajectory. For the coherent states of the harmonic oscillator in
two dimensions, the velocity field (21) at time t and at point x is then
equal to :

v~(x, t) = v(t) + Ω × (x − ξ(t)) (26)

with Ω = ωk. They behave as extended particles which have the same
evolution as spinning particles in two dimensions. But this cannot be
generalized easily in three dimensions. It seems that it is not possible to
consider in three dimensions the particle as a solid in motion. This is the
main difficulty in the Schrödinger interpretation : does the particle exist
within the wave packet ? We think that this reality can only be defined
on the scale where the Schrödinger equation is the effective equation.
Some solutions are nevertheless possible on smaller scales [33, 34], where
the quantum particle is not represented by a point but is a sort of elastic
string whose gravity center follows the classical trajectory ξ(t).

Another possible interpretation for the semi-classical discerned par-
ticles is the Bohr model of the atom (1913) found again by de Broglie [36]
in 1924 with conditions of resonance between the wave and the particle.
In the Bohr-deBroglie interpretation, the quantum particle is a point (in
relation to the wave packet size) which follows a trajectory in resonance
with its internal vibration in the wave.

The principle of an interpretation that depends on the particle pre-
paration conditions is not really new. It has already been figured out by
Einstein and de Broglie. For Louis de Broglie, its real interpretation was
the double solution theory introduced in 1927 in which the pilot-wave is
just a low-level product : "I introduced as a ’double solution theory’ the
idea that it was necessary to distinguish two different solutions but both
linked to the wave equation, one that I called wave u which was a real
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physical wave but not normalizable having a local anomaly defining the
particle and represented by a singularity, the other one as the Schrödin-
ger Ψ of wave, which is normalizable without singularities and being a
probability representation."

We consider as interesting L. de Broglie’s idea of the existence of a
statistical wave, Ψ and of a soliton wave u ; however, it is not a double
solution which appears here but a double interpretation of the wave
function according to the initial conditions.

Einstein’s point of view is well summed up in one of his final papers
(1953), "Elementary reflections concerning the foundation of quantum
mechanics" in homage to Max Born :

"The fact that the Schrödinger equation associated to the Born inter-
pretation does not lead to a description of the "real states" of an indivi-
dual system, naturally incites one to find a theory that is not subjected
to this limitation. Up to now, the two attempts have in common that
they conserve the Schrödinger equation and abandon the Born interpre-
tation. The first one, which marks a de Broglie’s return, was continued
by Bohm.... The second one, which aimed to get a "real description" of
an individual system and which might be based on the Schrödinger equa-
tion, is very late and is from Schrödinger himself. The general idea is
briefly the following : the function ψ represents in itself the reality and
it is not necessary to add Born’s statistical interpretation.[...] From pre-
vious considerations, it results that the only acceptable interpretation of
the Schrödinger equation is the statistical interpretation given by Born.
Nevertheless, this interpretation doesn’t give the ’real description’ of an
individual system, it just gives statistical statements of a set of systems."

Thus, it is because de Broglie and Schrödinger keep the Schrödinger
equation that Einstein, who considers it as fundamentally statistical,
refused each of their interpretations.

Finally, there exist situations where the Broglie-Bohm interpreta-

tion of the Schrödinger wave function is probably wrong. It is in
particular the case of state transitions for a hydrogen atom. Indeed, since
Delmelt’experiment [35] in 1986, the physical reality of individuals quan-
tum jumps has been fully validated. The semi-classical approximation,
where the interaction with the potential field can be described classically,
is no longer possible and one must use electromagnetic field quantization
since the exchanges occur photon by photon. Einstein thought that it is
not possible to find an individual deterministic behavior from the Schrö-
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dinger equation. It is the same for Heisenberg who developed matrix
mechanics and the second quantization from this example.

This doesn’t mean that one has to renounce to determinism and
realism, but rather that Schrödinger’s statistical wave function does not
permit, in that case, to discover an individual behavior.

5 Conclusion

The introduction into classical mechanics of the concepts of non-

discerned particles and discerned particles respectively verifying
the statistical Hamilton-Jacobi equations and the local Hamilton-

Jacobi equations gives a simple answer to some paradoxes in classical
statistical mechanics and allows to have a better understanding of the
least action principle.

When one studies the convergence of the Madelung equations when
~ → 0, we obtain the following results :

- In the semi-classically non-discerned case the quantum par-
ticles converge to classical non-discerned ones, verifying the statistical
Hamilton-Jacobi equations. The wave function is not sufficient to re-
present the quantum particles. One needs to add it the initial positions,
as for classical particles, in order to describe them completely. Thus, the
Broglie-Bohm interpretation is relevant.

- In the semi-classically discerned case the quantum particles
converge to classical discerned ones, verifying the local Hamilton-Jacobi
equations. The Broglie-Bohm interpretation is not imperative

because the wave function is sufficient to represent the particles as in
the Copenhagen interpretation. However, one can make some realistic
and deterministic assumptions such as the Schrödinger and the Bohr-

deBroglie interpretations.

- In the case where the semi-classical approximation is no lon-

ger valid , as in the transition states in the hydrogen atom, the two
interpretations are wrong as claimed by Heisenberg. Consequently,

Born’s statistical interpretation is the only possible interpre-

tation of the Schrödinger equation. This doesn’t mean that it is
necessary to give up to determinism and realism, but rather that the
Schrödinger wave function doesn’t allow, in that case, to reveal the indi-
vidual behavior of a particle. An individual interpretation needs to use
creation and annhilation operators of quantum Field Theory.
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Therefore, as Einstein said, the situation is much more complex than
what de Broglie-Bohm interpretation suggests.
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