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Abstract

Community detection in networks based on modularity maximization is currently done with hierar-
chical divisive or agglomerative as well as with partitioning heuristics, hybrids and, in a few papers, exact
algorithms. We consider here the case of hierarchical networks in which communities should be detected
and propose a divisive heuristic which is locally optimal in the sense that each of the successive biparti-
tions is done in a provably optimal way. This heuristic is compared with the spectral-based hierarchical
divisive heuristic of Newman [Proceedings of the National Academy of Sciences, USA 103, 8577 (2006)]
and with the hierarchical agglomerative heuristic of Clauset, Newman and Moore [Phys. Rev. E 70,
066111 (2004)]. Computational results are given for a series of problems of the literature with up to 4941
vertices and 6594 edges. They show that the proposed divisive heuristic gives better results than the
divisive heuristic of Newman and than the agglomerative heuristic of Clauset et al.

Résumé

L’identification de communautés dans les réseaux se fait actuellement par des heuristiques hiérarchi-
ques agglomératives ou divisives, ansi que par des heuristiques de partitionnement, des hybrides et, dans
quelques articles, par des algorithmes exacts. Nous considérons ici le cas de réseaux hiérarchiques dans
lequel les communautés doivent être détectées et nous proposons une heuristique divisive qui est locale-
ment optimale, dans le sens de ce que chacune des bipartitions successives se fait de manière optimale.
Cette heuristique est comparée à l’heuristique hiérarchique divisive spectrale de Newman [Proceedings of
the National Academy of Sciences, USA 103, 8577 (2006)] et à l’heuristique hiérarchique agglomerative
de Clauset et al. [Phys. Rev. E 70, 066111 (2004)]. On donne des résultats de calcul sur une série de
problèmes de la litérature. Ils montrent que l’heuristique divisive proposée donne de meilleurs résultats
que la précédente heuristique divisive et que l’heuristique agglomérative cités.





Les Cahiers du GERAD G–2011–15 1

1 Introduction

Networks, or graphs, are a powerful and versatile tool for the study of complex systems, with many appli-
cations in computer science, engineering, transportation, sociology, political science, biology, chemistry and

other fields. A network consists of a set of vertices (or nodes) and a set of edges (or lines). Vertices are

represented by points and associated with entities, such as customers, users of the World Wide Web, employ-

ees in an organization, transmitters, road-crossings, railway stations and atoms. Edges are pairs of vertices

and represented by a line joining them. The shape of this line is irrelevant; only its presence or absence
matters. Edges represent relationships between the entities associated with the vertices: communication,

collaboration, existence of a connection such as a road or a railway line and chemical bonds. A detailed

introduction to networks has recently been given by Newman [41].

A very important and much studied problem in network science and its applications is the detection of

communities (also called modules or clusters). These are sets of entities, or vertices, which are likely to have
some common function. Usually, the number of inner edges, i.e., edges joining two vertices of the same

community, is larger than the number of outer edges, i.e., edges joining two vertices of different communities.

An in-depth survey of the problem of community detection in graphs has recently been given by Fortunato [18].

There are several precise definitions of communities, and corresponding criteria, and many more heuristics as
well as a few exact algorithms to find partitions or sets of nested partitions into communities. A heuristic finds

a near optimal partition (or sometimes an optimal partition but without proof of its optimality) in moderate

time. An exact algorithm finds an optimal partition, with proof of its optimality, hopefully in reasonable

time. The most used definition for the quality of a community or of a partition into communities is that of

modularity, proposed by Newman and Girvan [39]. Modularity of a community is defined as the difference
between the number of edges it contains and the expected number of edges that it would contain if all edges

were drawn at random, keeping the same distribution of degrees. The modularity of a partition is the sum

of the modularities of its communities. See e.g. [18, 19, 9] for a discussion of the strengths and weaknesses

of the modularity function. Given a network and a partition, modularity can be viewed as a measure of
the extent to which the classes of the partition can be considered to be communities. Alternatively, given

a network, modularity can be maximized to find an optimal partition, together with its number of clusters

and their modularities.

As traditional in Data Analysis, given a set of n entities, clustering heuristics are either hierarchical,

i.e., they aim at finding a set of nested partitions, or partitioning schemes, i.e., they aim at finding a single
partition (or possibly several partitions into given numbers of clusters). In turn, hierarchical heuristics are

divided into agglomerative and divisive ones. Hierarchical agglomerative heuristics [42, 11, 12, 53, 5] proceed

from an initial partition with n communities each containing a single entity and iteratively merge the pair

of entities for which this operation increases most the objective function (e.g., modularity), until all entities

belong to the same community. Thus, they find 2n−1 communities which are pairwise disjoint or included one
into the other. Hierarchical divisive heuristics [38] proceed from an initial partition containing all entities and

iteratively divide a community into two in such a way that the increase in the objective function value (e.g.

modularity) is the largest possible, or the decrease in the objective value is the smallest possible. Bipartitions

are iterated until a partition into n communities having each a single entity is obtained. Thus, once more,
2n− 1 communities are obtained, which are pairwise disjoint or included one into the other. Note that for

some objectives, including modularity, mergings or bipartitions can be ended once they do not improve the

objective function value any more.

The partitioning and hybrid heuristics rely upon simulated annealing [24, 34, 35], mean field annealing [32],

genetic search [51], extremal optimization [16], linear programming followed by randomized rounding [1],
dynamical clustering [6], multilevel partitioning [15], contraction-dilation [36], multistep greedy search [49],

quantum mechanics [44] and many more sources of inspiration [10, 50, 48, 17, 31].

Hierarchical heuristics are in principle devised for finding a hierarchy of partitions implicit in the given

network when it corresponds to some situation where hierarchy is observed or postulated. Such situations

include the description of hierarchies in social organization and networks describing evolutionary processes.
Results are presented on a dendrogram which displays visually mergings or divisions of communities together
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with the values of a characteristic of each community (a variant of the dendrogram, called espalier, allows

displaying simultaneously two characteristics of the communities [26]).

The subproblem of choosing at each iteration which pair of communities should be merged is easy. It

suffices to consider all O(n2) merging of pairs of entities and compute each time the objective function

value for the new community. Moreover, a careful use of data structures often reduces complexity. Low

order polynomial hierarchical agglomerative heuristics have been obtained in several classical papers. These
include O(n2) algorithms for single-linkage [21], complete linkage and minimum variance [4] and several

others have a complexity of O(n2 logn) [37]. However, in a divisive hierarchical heuristic, the subproblem of

finding a bipartition locally optimizing the adopted criterion is more difficult. For some criteria there exists a

polynomial algorithm for bipartitioning. For instance, this is the case for the minimum diameter criterion for

which there is a O(n2) algorithm. With careful use of data structures, this gives a O(n2 logn) locally optimal
algorithm for hierarchical divisive clustering with the minimum diameter criterion [23]. The situation is less

favorable for the maximum modularity criterion. Indeed, this problem is NP-hard even in the case of two

clusters [8]. Nevertheless, as shown below, a non-polynomial algorithm can solve instances with up to 4941

vertices.

We consider only networks with unweighted and undirected edges in the present paper. Its purpose is

to propose a locally optimal divisive heuristic for the maximum modularity criterion. To that effect, in the

next section the bipartition subproblem is expressed as a quadratic mixed-integer program with a convex
relaxation. This problem can then be solved by the CPLEX solver [27]. In Sect. 3 the full hierarchical divisive

algorithm is described as well as the previous spectral hierarchical divisive heuristic of Newman [38] and the

fast hierarchical agglomerative heuristic of Clauset, Newman and Moore [11]. A computational comparison

of the three heuristics, detailing also the respective contributions of Newman’s spectral results and the

Kernighan-Lin heuristic, is given in Sect. 4. Conclusions are drawn in Sect. 5.

2 An exact algorithm for bipartition

We present in this section an exact algorithm for bipartition with maximization of modularity. We model

this bipartitioning problem using binary variables to identify to which community each vertex and each edge

belongs. In this respect, our model is similar to that of Xu et al. [55]. These authors proposed in 2007

a modularity maximization model to obtain a partition (generally with more than two communities) of a
network. This model is expressed as a mixed integer convex quadratic program. Xu et al. were able to solve

exactly instances with up to 104 vertices.

Let G = (V,E) be a graph, or network, with set of vertices V of order n = |V | and set of edges E of size

m = |E|. We next recall two equivalent definitions of modularity Q. In the first one, it is expressed as a sum
over communities of their modularities [39]:

Q =
∑

s

[as − es],

where as is the fraction of all edges that lie within community s and es is the expected value of the same

quantity in a graph in which the vertices have the same degrees but edges are placed at random. In the

second one, modularity Q is expressed as a function, for each community, of its number of inner edges and

of the sum of degrees of its vertices:

Q =
∑

s

[

ms

m
−

(

ds
2m

)2
]

, (1)

where ms denotes the number of edges in community s, i.e., the subgraph Gs = (Vs, Es) with set of vertices

Vs ⊂ V and set of edges Es having both vertices in Vs, and ds denotes the sum of degrees ki of the vertices

of community s. Since we aim to find a bipartition, only two sub-modules of the original community have

to be considered, i.e., s ∈ {1, 2}. We can express the sum of degrees d2 of vertices belonging to the second
community as a function of the sum of degrees d1 of vertices belonging to the first one:

d2 = dt − d1, (2)
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where dt is the sum of degrees in the community to be bipartitioned and it is equal to 2m at the outset. We

rewrite (1) for s ∈ {1, 2}, using (2):

Q =
m1 +m2

m
−

d2
1

4m2
−

d2
2

4m2
=

=
m1 +m2

m
−

d2
1

4m2
−

d2t + d2
1
− 2dtd1

4m2
=

=
m1 +m2

m
−

d2
1

2m2
−

d2t
4m2

+
dtd1
2m2

.

(3)

We then introduce binary variables Xr1, Xr2 and Yi1 to model the assignment of vertices and edges to

the two communities of the bipartition. These variables are defined as follows:

Xrs =

{

1 if edge r belongs to community s
0 otherwise

(4)

for r = 1, 2, . . .m and s = 1, 2 and

Yi1 =

{

1 if vertex i belongs to community 1
0 otherwise, i.e. if vertex i belongs to community 2

(5)

for i = 1, 2, . . . n. Two sets of variables Xr1 and Xr2 are needed as an edge may belong to the first community,

or to the second one, or be a bridge between both of them. One set of variables Yi1 suffices as any vertex

which does not belong to the first community must belong to the second.

Moreover, we impose for consistency that any edge r = {vi, vj} with end vertices indiced by i and j can only
belong to community s if both of its end vertices belong also to that community:

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E
Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E

(6)

and
Xr2 ≤ 1− Yi1 ∀r = {vi, vj} ∈ E
Xr2 ≤ 1− Yj1 ∀r = {vi, vj} ∈ E.

(7)

Furthermore, we exploit the following expressions in terms of variables X and Y for the number of edges of

each of the two communities and the sum of vertex degrees of the first one:

ms =
∑

r

Xrs ∀s ∈ {1, 2}, (8)

d1 =
∑

i∈V1

kiYi1. (9)

The sum of vertex degrees of the first community only is needed, because of expression (2).

Maximizing modularity (3) subject to constraints (6)-(7) and (8)-(9) gives a quadratic convex mixed-

integer program that can be solved by CPLEX [27]. Indeed, this model contains a single nonlinear but concave

term, i.e., −d2
1
/2m2, in the objective function, which is to be maximized. Hence, its continuous relaxation,

obtained by removing the integrality constraints on the variables, is a convex quadratic program and easy to

solve.

Note that in Xu et al.’s [55] model a number of other constraints are imposed. For instance, constraints

are used to express that community s can be nonempty only if community s − 1 is so, and lower and

upper bounds on the cardinality of the modules are added as an option. Furthermore, symmetry-breaking

constraints avoid the computation of equivalent alternative optimal solutions.
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3 Heuristics

In this section, we first recall the hierarchical agglomerative heuristic of Clauset, Newman and Moore [11]
(CNM), and the hierarchical divisive spectral heuristic of Newman [38] (divisive spectral), to which we compare

the heuristic of the present paper. We then describe the new heuristic itself.

The CNM heuristic fits into the general scheme for hierarchical agglomerative heuristics of cluster analy-

sis [37]. It can therefore be implemented with a complexity of O(n2 logn) in worst case. However, a careful
exploitation of sparsity of the graph under study reduces its worst-case complexity to O(m logn) and its

complexity in practice to O(n log2 n), which is close to linear time. Results in terms of partitions and the

dendrograms obtained are the same for both implementations. The CNM heuristic proceeds from an initial

partition with n clusters each containing a single entity. Then, it merges iteratively the two clusters in the

current partition for which the modularity increases the most. The formula

∆Qij =

{

1/2m− kikj/(2m)2 if vi, vj are connected
0 otherwise

is used initially, then the ∆Qij for all edges are updated each in constant time. Mergings take place as long

as the best of them increases modularity (or, in other words, there is a positive ∆Qij).

Two remarks are in order. First, in hierarchical agglomerative heuristics, errors, i.e., assignment of two
entities to the same cluster while they should be in different clusters in the (or all) optimal partition(s), are

never corrected. Second, as n is usually much larger than the number of clusters in the optimal partition,

there are close to n mergings before reaching the best partition obtained by the heuristic and hence many

occasions of error.

The hierarchical divisive heuristic of Newman proceeds from an initial partition containing all entities by

iteratively splitting one of its clusters, as long as this operation increments modulatity. Two questions have

to be answered to specify this heuristic: which cluster should be selected for splitting at each iteration and

how should the splitting be made. The answer to the former question is unimportant as the best partition

obtained does not depend on the order of the splittings but only on the way they are performed. The second
question is difficult: indeed, finding the optimal, i.e., modularity maximizing, splitting of a cluster contains

the problem of maximum modularity bipartition, which, as shown by Brandes et al. [8], is NP-hard.

For large instances, splitting will have to be done in a heuristic way. Newman [38] proposes two ways to

do so. The first is based on spectral graph theory. The first eigenvector of the modularity matrix B = (bij)
with

bij = aij − kikj/2m

is computed. The entities corresponding to positive components of this eigenvector form one community and

the remaining ones the other.

Results of splitting according to the first eigenvector can be improved by a variety of heuristics. Newman

suggests the use of the Kernighan-Lin heuristic [28]. This heuristic proceeds from an initial bipartition to

a sequence of re-assignments of one entity from a community to the other. At each step the re-assignment
which improves most, or deteriorates least, the objective function value, is selected, performed and further

re-assignments of the moved entity forbidden. Once no more re-assignments are allowed, the best partition

found among the n partitions considered in the sequence is selected as new initial partition. The whole

procedure stops when a full sequence of n re-assignments does not lead to any improvement.

Again two remarks are in order. First, errors, i.e., assigning two entities to different communities when

both belong to the same community in the optimal partition are never corrected. Second, as the number of

communities in the optimal partition tends to be small, few splittings will take place and thus there are few

occasions for errors to be made.

The heuristic of the present paper proceeds along the same lines as the hierarchical divisive heuristic of
Newman. The difference is that the exact bipartitioning method of Sect. 2 is used for the splitting step.

Due to the difficulty of this subproblem and present limitations of nonlinear integer programming, the exact
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bipartitioning could be applied only to small or medium-size networks with up to 4941 vertices. The proposed

heuristic is locally optimal in that the splitting step is done optimally, but not globally optimal in that the

new heuristic is a greedy one, i.e., each splitting step is done without considering the consequences on further
steps, but better results might be obtained if this was done. Note that there are some cases where a greedy

heuristic is optimal, the best known one in the field of cluster analysis being the single-linkage algorithm

which maximizes the split (or minimum dissimilarity between pairs of entities in different communities) of the

partitions obtained at all levels [21, 14]. This is not the case for the proposed hierarchical divisive heuristic,

as shown by an example in Sect. 4.

4 Computational results

In all experiments, we considered a set of 12 well known problems from the literature. They are listed

together with their order n and size m in the first three columns of Table 1. They are all undirected and

unweighted networks without loops. All data are available on sites listed in [45]. Optimal solutions of these

test problems are given in [2]. The bipartition subproblem is solved using CPLEX [27]. Other solvers for
convex mixed-integer quadratic programs did not perform as well in preliminary tests.

In a first series of experiments, we compared the maximum modularity values and the corresponding

number of clusters for the hierarchical agglomerative heuristic of Clauset et al. [11], and for the locally optimal

divisive heuristic of the present paper. We also list maximum modularity and number of clusters obtained

by an exact algorithm of [2], when possible, i.e., for datasets from 1 to 11. The modularity obtained by the
proposed divisive heuristic for the 12th dataset is 0.9394. This appears to be the best value currently known

for this dataset. Indeed, using the best heuristic from the extensive comparison by Noack and Rotta [45],

gives a value of 0.93854.

In the following, we refer to the locally optimal divisive heuristic of the present paper as divisive CHL.

It appears that:

• the locally optimal hierarchical divisive heuristic CHL always gives partitions with smaller modularity

than the exact algorithm. The difference, however, is moderate and goes from 0.18018% to 2.36603%

of the optimal value. The average error is 0.82540%.

• The agglomerative heuristic always gives partitions with smaller modularity than the divisive one and,
by transitivity, than the exact one. The difference this time is much more substantial and goes from

1.21494% to 12.9848%, relative to the exact solution. The average error is 5.52342%. The error between

the divisive and the agglomerative heuristics goes from 0.780214% to 10.9013% of the value obtained

by the divisive heuristic. The average error is 4.75179%, which is again substantial.

• The divisive heuristic CHL gives a partition with fewer communities than the exact one in 3 cases out

of 11, the same number in 3 cases and a larger number in the remaining 5 cases. The average number

of communities obtained with the divisive heuristic is 9.27273 vs. 8.81818 for the exact method, so it

is slightly in excess.

• The agglomerative heuristic gives a partition with fewer communities than the exact one in 7 cases

out of 11, a partition with the same number of communities than the exact one in 2 cases out of 11,

and a partition with more communities in the remaining 2 cases. The average number of communities

obtained with the agglomerative heuristic is 8 vs. 8.81818 for the exact method, so somewhat smaller.

In a second series of experiments we compared the divisive heuristic CHL of the present paper with the
previous divisive heuristic of Newman [38]. To better understand the performance of Newman’s heuristic, we

consider three versions of it. In the first one, the bipartition at each iteration is done solely on the basis of

the leading eigenvector of the modularity matrix. In the second one, the Kernighan-Lin heuristic is applied

at each iteration to a randomly generated solution. In the third one, the Kernighan-Lin heuristic is applied
at each iteration to the solution given by the leading eigenvector. Results are presented in Tables 2, 3, 4. It

appears that
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Table 1: Comparison of results of Clauset et al.’s heuristic (CNM), the proposed locally optimal divisive
heuristic (divisive CHL), and an exact algorithm for modularity maximization [2] (exact) on real world
datasets. M denotes the number of communities and Q the modularity value of the best solution found.
error(%) denotes the percentage error for the two heuristics with respect to the exact algorithm. Average
values are given for the first 11 datasets as the 12-th one cannot be solved exactly in reasonable time. n and
m are the number of vertices and the number of edges of the networks. We consider Zachary’s karate club
dataset [56] describing friendship relationships between members of a club, Lusseau’s dolphins dataset [33]
describing communications between dolphins in Doubtful Sound New Zealand, Hugo’s Les Misérables dataset
describing characters in Victor Hugo’s masterpiece and their interactions, compiled by Knuth [29], a dataset
(A00 main) on classes and relationships from a software project related to Graph Drawing [22], a network
dealing with protein interactions [13], Krebs’ political books dataset [30], a dataset representing the schedule
of football games between American college teams [20], another dataset on classes and relationships from a
software project [22], a network dealing with connections between US airports [46], a dataset on a coauthorship
network of scientists working on network theory and experiment, compiled by M. Newman [40], a network
describing electronic circuits [52] and a network representing the topology of the Western States Power Grid
of the United States [54].

dataset n m agglomerative CNM divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 3 0.38067 9.31895 4 0.41880 0.23583 4 0.41979
dolphin 62 159 4 0.49549 6.24953 4 0.52646 0.38977 5 0.52852
les miserables 77 254 5 0.50060 10.6087 8 0.54676 2.36603 6 0.56001
A00 main 83 135 7 0.52394 1.31098 7 0.52806 0.53494 9 0.53090
p53 protein 104 226 8 0.52052 2.73018 7 0.52843 1.25203 7 0.53513
political books 105 441 4 0.50197 4.79288 4 0.52629 0.18018 5 0.52724
football 115 613 7 0.57728 4.51395 10 0.60091 0.60539 10 0.60457
A01 main 249 635 12 0.59908 5.34366 15 0.62877 0.65255 14 0.63290
usair97 332 2126 7 0.32039 12.9848 8 0.35959 2.33840 6 0.36820
netscience main 379 914 19 0.83829 1.21494 20 0.84702 0.18619 19 0.84860
s838 512 819 12 0.80556 1.68904 15 0.81663 0.33805 12 0.81940
power 4941 6594 39 0.93402 – 40 0.93937 – - –
average 8 0.55125 5.52342 9.3 0.57525 0.82540 8.8 0.57957

• the first version always gives partitions with substantially smaller modularities than the divisive heuris-

tic of the present paper or the exact algorithm. The error relative to the partition given by the exact

algorithm goes from 5.81428% to 18.5189%. The average error is 10.7419%. The error relative to the

partition given by the divisive heuristic of the present paper goes from 5.63859% to 18.0227%. The
average error is 9.99712%.

• The second version gives results even worse than those of the first version. The error relative to the

partition given by the exact algorithm goes from 5.95934% to 28.6442%. The average error is 14.5856%.

• The third version gives better results The error relative to the partition given by the exact algorithm

goes from 0.09863% to 6.07995%. The average error is 3.02627%. The error relative to the partition

given by the divisive heuristic of the present paper goes from −0.081704% to 5.46305%. The average

error is 2.21592%. Observe that in the case of the political books instance, the modularity obtained
with the divisive spectral + KL heuristic, i.e., 0.52672, is slightly better than that one obtained with the

heuristic of the present paper, i.e, 0.52629. This is not a numerical error but illustrates, as mentioned

above, that the proposed heuristic is locally but not globally optimal. The observation that version 3

is better than version 1 and that version 1 is better than version 2 was already made by Newman [38].

• Computing times of the heuristic proposed in this paper and an exact column generation algorithm

for modularity maximization of [2] are given in Table 5. As the computers used are not the same for

the two cases, these results should only be considered as indicative. Ratios between these computing

times are given in the penultimate column and similar ratios, corrected by dividing those times by the

clock frequency of the computer used, in the last column. The time of the heuristic CHL is less than
the time of the exact algorithm in 9 cases over 12 and in several cases very substancially so. Moreover,

the heuristic could solve the last problem, which is about 10 times larger than the penultimate, in

reasonable time, while the exact algorithm could not.
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• Currently, it is not possible to solve very large instances with the heuristic of the present paper or

large ones with the exact column generation algorithm for modularity maximization of [2]. One cannot

therefore be sure that the differences in performances between the heuristics described above and/or the
exact algorithm extend to the resolution of large instances, except in a few cases. A comparison between

the agglomerative heuristic CNM and the complete version of the divisive heuristic of Newman is part

of Table 1 of [38]. The corresponding columns are reproduced in Table 6, together with the percentage

errors in the modularities obtained. This confirms that the agglomerative heuristic of Clauset et al.

gives poor results for small as well as for large instances.

Table 2: Comparison of results of Newman’s spectral divisive heuristic (divisive spectral), the proposed
locally optimal divisive heuristic (divisive CHL), and an exact algorithm for modularity maximization [2]
(exact) on real world datasets. M denotes the number of communities and Q the modularity value of the
best found solution. error(%) denotes the percentage error for the two heuristic with respect to the exact
algorithm. Average values are given for the first 11 datasets as the 12-th one cannot be solved exactly in
reasonable time. n and m are the number of vertices and the number of edges of the networks.

dataset n m divisive spectral divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 4 0.39341 6.28409 4 0.41880 0.23583 4 0.41979
dolphin 62 159 5 0.49120 7.06123 4 0.52646 0.38977 5 0.52852
les miserables 77 254 9 0.51383 8.24628 8 0.54676 2.36603 6 0.56001
A00 main 83 135 4 0.46082 13.2002 7 0.52806 0.53494 9 0.53090
p53 protein 104 226 8 0.49152 8.14942 7 0.52843 1.25203 7 0.53513
political books 105 441 5 0.46718 11.3914 4 0.52629 0.18018 5 0.52724
football 115 613 8 0.49261 18.5189 10 0.60091 0.60539 10 0.60457
A01 main 249 635 8 0.53755 15.0656 15 0.62877 0.65255 14 0.63290
usair97 332 2126 8 0.31666 13.9978 8 0.35959 2.33840 6 0.36820
netscience main 379 914 15 0.79926 5.81428 20 0.84702 0.18619 19 0.84860
s838 512 819 18 0.73392 10.432 15 0.81663 0.33805 12 0.81940
power 4941 6594 11 0.53516 – 40 0.93937 – - –
average 8.36 0.51710 10.7419 9.3 0.57525 0.82540 8.8 0.57957

Table 3: Comparison of results of the divisive Kernighan-Lin based heuristic (KL), the proposed locally
optimal divisive heuristic (divisive CHL), and an exact algorithm for modularity maximization [2] (exact)
on real world datasets. M denotes the number of communities and Q the modularity value of the best found
solution. error(%) denotes the percentage error for the two heuristics with respect to the exact algorithm.
Average values are given for the first 11 datasets as the 12-th one cannot be solved exactly in reasonable time.
n and m are the number of vertices and the number of edges of the networks. Note that values of Q and
error percentage are given with less digits that elsewhere in this paper due to the fact that the Kernighan-Lin
heuristic depends upon the random partition to which it is applied.

dataset n m KL divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 2 0.372 11.43 4 0.41880 0.23583 4 0.41979
dolphin 62 159 4 0.477 9.745 4 0.52646 0.38977 5 0.52852
les miserables 77 254 3 0.489 12.73 8 0.54676 2.36603 6 0.56001
A00 main 83 135 3 0.450 15.31 7 0.52806 0.53494 9 0.53090
p53 protein 104 226 11 0.402 24.83 7 0.52843 1.25203 7 0.53513
political books 105 441 4 0.496 5.959 4 0.52629 0.18018 5 0.52724
football 115 613 5 0.538 11.048 10 0.60091 0.60539 10 0.60457
A01 main 249 635 6 0.512 19.023 15 0.62877 0.65255 14 0.63290
usair97 332 2126 6 0.339 7.992 8 0.35959 2.33840 6 0.36820
netscience main 379 914 8 0.606 28.644 20 0.84702 0.18619 19 0.84860
s838 512 819 5 0.707 13.726 15 0.81663 0.33805 12 0.81940
power 4941 6594 8 0.649 – 40 0.93937 – - –
average 5.2 0.48970 14.5856 9.3 0.57525 0.82540 8.8 0.57957
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Table 4: Comparison of results of Newman’s spectral divisive heuristic with the Kernighan-Lin refinement
(divisive spectral + KL), the proposed locally optimal divisive heuristic (divisive CHL), and an exact
algorithm for modularity maximization [2] (exact) on real world datasets. M denotes the number of commu-
nities and Q the modularity value of the best found solution. error(%) denotes the percentage error for the
two heuristics divisive spectral + KL and divisive with respect to the exact algorithm. error div(%) denotes
the percentage error for the divisive spectral + KL with respect to the proposed locally optimal heuristic.
Average values are given for the first 11 datasets as the 12-th one cannot be solved exactly in reasonable time.
n and m are the number of vertices and the number of edges of the networks. Note that values of Q and
error percentage are given with less digits that elsewhere in this paper due to the fact that the Kernighan-Lin
heuristic depends upon the random partition to which it is applied.

dataset n m divisive spectral + KL divisive CHL exact

M Q error div(%) error(%) M Q error(%) M Q

karate 34 78 4 0.419 0 0.236 4 0.41880 0.23583 4 0.41979
dolphin 62 159 5 0.508 3.415 3.792 4 0.52646 0.38977 5 0.52852
les miserables 77 254 7 0.538 1.533 3.862 8 0.54676 2.36603 6 0.56001
A00 main 83 135 7 0.527 0.199 0.733 7 0.52806 0.53494 9 0.53090
p53 protein 104 226 6 0.518 1.930 3.158 7 0.52843 1.25203 7 0.53513
political books 105 441 4 0.527 -0.081 0.099 4 0.52629 0.18018 5 0.52724
football 115 613 8 0.579 3.638 4.221 10 0.60091 0.60539 10 0.60457
A01 main 249 635 16 0.594 5.463 6.080 15 0.62877 0.65255 14 0.63290
usair97 332 2126 7 0.358 0.501 2.827 8 0.35959 2.33840 6 0.36820
netscience main 379 914 23 0.820 3.191 3.371 20 0.84702 0.18619 19 0.84860
s838 512 819 13 0.779 4.587 4.910 15 0.81663 0.33805 12 0.81940
power 4941 6594 8 0.791 – 40 0.93937 – - –
average 9.09 0.560731 2.21592 3.02627 9.3 0.57525 0.82540 8.8 0.57957

Table 5: Comparison of times for the proposed locally optimal heuristic and an exact algorithm for modularity
maximization. All results are in seconds of CPU. Solutions given by the proposed heuristic were obtained on
a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM shared by three other similar CPU running Linux.
Solutions given by the exact algorithm were obtained on a dual processor computer Intel Pentium with 3.20
GHz, 3GB RAM running Linux. In the penultimate column, ratios between computing times of the proposed
heuristic and the exact algorithm are reported. In the last column, ratios between these computing times are
corrected by dividing CPU times by the clock frequency of the computer used.

dataset n m time divisive CHL time exact CHL/exact (CHL/exact)’
karate 34 78 0.42 0.34 1.2353 1.6471
dolphin 62 159 1.40 7.75 0.1806 0.2409
les miserables 77 254 4.52 7.26 0.6226 0.8301
A00 main 83 135 0.89 3.66 0.2432 0.3242
p53 protein 104 226 7.81 11.60 0.6733 0.8977
political books 105 441 12.09 45.65 0.2648 0.3531
football 115 613 338.19 249.41 1.3559 1.8979
A01 main 249 635 656.54 1014.48 0.6472 0.8629
usair97 332 2126 33157.85 16216.77 2.0447 2.7262
netscience main 379 914 22.84 1615.14 0.0141 0.0188
s838 512 819 38.37 7655.56 0.0050 0.0067
power 4941 6594 4498.21 – – –

5 Conclusions

In this paper we presented a hierarchical divisive heuristic for modularity maximization which is locally

optimal, i.e., such that the bipartition obtained at each iteration is guaranteed to be optimal. This heuristic

can be used for two purposes: approximate modularity maximization of general networks or modularity

maximization of networks which are known to correspond to some hierarchy either natural or man made. In
the former case, experimental results show that the partitions obtained with the proposed divisive heuristic

tend to have a modularity value close to that of optimal partitions (recall that the average error observed

in our experiments is 0.82540%). So, the partition found can be considered as a fairly good approximation
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Table 6: Comparison of results [38] of the Clauset et al.’s agglomerative heuristic (agglomerative CNM)
and Newman’s spectral divisive heuristic with the Kernighan-Lin refinement (divisive spectral + KL). Q
denotes the modularity value of the best found solution. error(%) denotes the percentage error for the first
heuristic with respect to the second one. n is the number of vertices. Jazz dataset describes musicians which
worked together [47], metabolic dataset describes chemical reactions as well as the regulatory interactions
that guide these reactions in C. elegans [3], e-mail dataset describes e-mail interchanges between members
of a university [25], key signing (PGP) datadset describes the giant component of the network of users of
the Pretty-Good-Privacy algorithm for secure information interchange [7], physicists (cond-mat) dataset
describes a collaboration network of scientists posting preprints on the condensed matter archive [43].

dataset n Q agglomerative CNM Q divisive spectral + KL error(%)

jazz 198 0.439 0.442 0.67873
metabolic 453 0.402 0.435 7.58621
e-mail 1133 0.494 0.572 13.6364
key signing 10680 0.733 0.855 14.269
physicists 27519 0.668 0.723 7.6072
average 0.5195 0.5743 8.8078

of the optimal one, or at least as a tentative solution to be improved upon by various local improvement

heuristics.

Our experiments also show that modularity maximization with the hierarchical agglomerative heuristic

of Clauset, Newman and Moore tends to have a much larger error (with an average error of 5.52342% for our

experiments).

It is for the latter case that our heuristic is tailored. We therefore compared it with three versions of the
divisive heuristic of Newman. As observed by that author, a two-phase method in which a first bipartition is

made in a splitting step on the basis of the first eigenvector of the modularity matrix followed by application

of the Kernighan-Lin heuristic gives the best results. Still, the proposed heuristic appears to be even better,

indeed the average error relative to the exact solution is reduced more than threefold, i.e., from 3.02627% to
0.82540%.
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