
HAL Id: hal-00934535
https://enac.hal.science/hal-00934535

Submitted on 29 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Nets trained by genetic algorithms for collision
avoidance

Nicolas Durand, Jean-Marc Alliot, Frédéric Medioni

To cite this version:
Nicolas Durand, Jean-Marc Alliot, Frédéric Medioni. Neural Nets trained by genetic algorithms for
collision avoidance. Applied Intelligence, 2000, 13 (3), pp 205-213. �10.1023/A:1026507809196�. �hal-
00934535�

https://enac.hal.science/hal-00934535
https://hal.archives-ouvertes.fr


Applied Intelligence 13, 205–213, 2000

c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Neural Nets Trained by Genetic Algorithms for Collision Avoidance

NICOLAS DURAND AND JEAN-MARC ALLIOT

Centre d’Etudes de la Navigation Arienne

durand@recherche.enac.fr

alliot@recherche.enac.fr

FRÉDÉRIC MÉDIONI

Centre de Mathématiques Appliquées de l’Ecole Polytechnique

Abstract. As air traffic keeps increasing, many research programs focus on collision avoidance techniques. For

short or medium term avoidance, new headings have to be computed almost on the spot, and feed forward neural

nets are susceptible to find solutions in a much shorter amount of time than classical avoidance algorithms (A∗,

stochastic optimization, etc.) In this article, we show that a neural network can be built with unsupervised learning

to compute nearly optimal trajectories to solve two aircraft conflicts with the highest reliability, while computing

headings in a few milliseconds.

Keywords: air traffic control, collision avoidance, neural networks, genetic algorithms

1. Air Traffic Control (ATC)

and Collision Avoidance

As air traffic keeps increasing, the ATC system over-

load becomes a serious concern. For the last twenty

years different approaches have been tried and many

solutions proposed, originating with the AERA-II and

AERA-III projects [1–3]. In a few words, all theses

solutions are between the two following extreme

positions:

On the one hand, we can imagine an ATC system

where each aircraft would follow its planned trajectory

with a perfect accuracy.With such a system, no reactive

system would be needed as conflicts1 could be solved

before aircraft take off. This solution is close to the

ARC-2000 hypothesis, which has been investigated by

the Eurocontrol Experimental Center [4].

On the other hand, there could be an ATC system

where trajectories are not planned. Each aircraft flies

its own way, and all collisions are to be avoided by

reactive systems. Each aircraft would be in charge

of its own safety. This could be called a completely

free flight system. The free flight hypothesis is cur-

rently seriously considered for all aircraft flying “high

enough”.

Of course, no ATC system will ever totally rely on

only one of these two hypothesis. It is quite easy to un-

derstand why. A completely planned ATC is impossi-

ble, as no one can guarantee that every trajectory would

be perfectly followed; there are many parameters that

can not be perfectly forecasted such as meteorolog-

ical conditions (storms, winds, etc.), breakdowns in

aircraft engines, flaps or other problems (closing of

landing runaway on airports, etc.). On the other hand,

a completely reactive system looks difficult to handle;

it would only perform local optimizations for trajecto-

ries. Moreover, in the vicinity of departing and landing

areas, the density of aircraft is so high that trajectories

generated by this system could soon become Brownian

movements.

An ATC system can be represented by a set of fil-

ters, or shells. A classical view of the shells in an ATC

system could be:

1. As many aircraft are simultaneously present in the

sky, a single controller is not able to manage all of

them. So, airspace is divided into sectors, each of

them being assigned to a controller. Airspace design

aims at designing the air network and the associated

sectoring.



206 Durand, Alliot and Médioni

2. Air Traffic Flow Management (ATFM) (strategic

planning, a few hours ahead): With the increasing

traffic, many pilots choose the same routes, generat-

ing many conflicts over the beacons inducing over-

loaded sectors. Traffic assignment aims at changing

aircraft routes to reduce sector congestion, conflicts,

and coordinations.

3. The coordination planning (a few minutes before

entering in the sector) guarantees that each new air-

craft entering a control sector does not overload the

sector.

4. Tactical control in ATC centers (up to 20 minutes

ahead): At this level, controllers solve conflicts

between aircraft.

5. Collision avoidance systems (a few minutes before

collision): This shell is activated only when the

previous one has failed. It is not supposed to be

activated in normal situations.

Each level has to limit and organize the traffic it

passes to the next level, so that this one will never be

overloaded.

In this paper, we present a problem solver that can

handle the collision avoidance problem (level 5 filter)

with reactive techniques. This problem solver is based

on a neural network, which is built by a genetic algo-

rithm. Building neural networks with GA has already

been done.Application quite similar can be found in the

literature such as car parking [5], or chromatography

[6].

2. Existing Reactive Techniques

The most well known concept on reactive collision

avoidance is certainly the ACAS2 concept. It is al-

ready implemented in its two first versions (TCAS-I

and TCAS-II) and only implements manoeuvre in the

vertical plane (extensions to the horizontal plane [7]

were inconclusive). It is a very short term collision

avoidance system (less than 60 seconds). It should only

be thought as the last security filter of an ATC system.

Using TCAS to control aircraft would probably end in

serious problems. The TCAS algorithm is based on the

application of a sequence of filtering rules, which give

the pilot a resolution advice.

Another simple technique has been investigated by

[8]. The idea is to consider each aircraft as positive

electric charges, while the destination of the aircraft

is a negative charge. Each aircraft creates a repulsive

force proportional to the inverse of the square of the

distance, while the destination behaves like an attrac-

tor. This technique has a serious drawback. Symme-

tries can not be broken. This problem was solved by

[9–11]. The general idea is to add non symmetrical

force: a force which has the direction of the repulsive

force+90 degrees, and a module which is a small frac-

tion of the module of the repulsive force is added to

the repulsive force. This system solves the symmetri-

cal problem. However, there are still some drawbacks:

the different parameters of the attractive and repulsive

forces are arbitrarily set, and it is unclear to define how

to find optimal values. Moreover, the shape itself of the

forces is also arbitrarily set. But the main problem of

this system is that it forces aircraft tomodify their head-

ings, but also their speeds. Unfortunately, the range of

available speeds is very limited for aircraft flying at

their requested flight level. Moreover, it is technically

very difficult to change aircraft speedwith a continuous

command because it can damage aircraft engines.

Our system only allows heading modification and

solves very complex two aircraft conflict, with almost

optimal trajectories. Moreover, the system is very fast,

as soon as the neural network has been built.

3. Mathematical Complexity

If we consider the two aircraft problem, it can be

proved, using the residue theorem [12], that the min-

imized function is convex, but the set of conflict free

trajectories is not. It is not even connected. If trajec-

tories don’t loop, the set of conflict free trajectories

has two connected components. In one of the two sets,

one of the aircraft always lets the other one on its right

side, whereas in the other set, it lets it on its left side.

For a conflict involving n aircraft there may be 2n con-

nected components in the free trajectory space which

strongly suggests that any method which requires

exploring every connected component is NP.

In each connected component, Optimal Control the-

ory can be used to optimize aircraft trajectories. How-

ever, for the collision avoidance problem, an improved

version of the Pontriaguine maximum principle is

required to take the separation constraint into account.

Durand detailed in [12] the conflict resolution problem

using the Optimal Command theory [13, 14]. This led

to the following conclusions:

1. if aircraft speed is not constrained, an analytical so-

lution can be found (however, this hypothesis on

aircraft speed is not realistic).



Neural Nets 207

2. if aircraft speed is constrained, at the optimum, as

long as the separation constraint is not saturated,

aircraft fly in straight line. When saturating the con-

straint, aircraft start turning, and as soon as the sep-

aration constraint is freed, aircraft fly straight again.

3. when moving only one aircraft, trajectories are also

regular and do not include discontinuous points.

Moreover, the length of the trajectory increases

when the angle of incidence between the two air-

craft decreases, the speed ratio gets close to 1, or

aircraft are closer to the conflict point when the

resolution starts.

For a conflict involving 2 aircraft, local optimization

tools such as LANCELOT3 [15] can solve the col-

lision avoidance problem. However LANCELOT is

quite slow and can not be used for a real time appli-

cation. For more than 2 aircraft, LANCELOT can not

be used and other techniques have to be investigated

[16, 17].

4. Modeling the Problem

The problem we want to solve is the following. An air-

craft flying at a constant speed detects another aircraft

flying at the same altitude (more or less 1000 feet) in

a 20 nautical miles diameter disk. We want to build a

neural network that modifies the heading of this air-

craft when there is a conflict. The heading must not

be changed of more than 45 degrees per 15 seconds

for operational reasons. The other aircraft is supposed

to have the same embarked system so that it also de-

tects the first aircraft and reacts using the same neural

network with different inputs.

The system uses an on board radar to detect other air-

craft. Consequently, all the inputs of the neural network

must be given by the on board radar information.

The horizontal separation standard is noted nh and

is equal to 4 NM.

5. Using a Neural Network

Conflict avoidance takes place on a time period of

length tf. The position of an aircraft at time t = 0 is

called its initial position, its position at time t = tf is

called its final position, or its destination. In our prob-

lem, it seems clear that if no conflict occurs, no neural

network is needed to solve it. Consequently, at each

time step, we first check if both aircraft can connect

their destination without changing their headings and

without generating conflicts. In that case, we do not

modify aircraft headings.

5.1. The Inputs

Nine inputs are used by the neural network (see Fig. 1).

An important data to define these inputs is the heading

an aircraft should follow to go directly from its current

position to its destination. This heading is called the

direct heading. Aircraft are noted ai , for i ∈ {1, 2}. The

speed of aircraft ai is noted vi , its heading is noted hi ,

its direct heading is noted hdi . The difference between

these two heading is αi = hdi − hi . The relative speed

of aircraft ai with respect to aircraft a j is noted vi, j .

We describe the inputs used by the neural network that

modifies the trajectory of aircraft a1:

• sinα1 and cosα1; we use both sinα1 and cosα1 to

represent α1, to maintain continuity of the function

when planes cross the 360 degrees boundary

• v2−v1
v1

• 1
δd
, with δd = max(60; ‖d − nh‖, 1), where d is the

distance between the two aircraft and is expressed,

as well as nh , in nautical miles.

•
v2,1

vmax−vmin
where vmax and vmin are the bounds of the

possible values of the speed of the aircraft.

• sin γ2 and cos γ2, where γ2 = h2 − hd1.

•
β

360
, where β is the converging angle of the trajecto-

ries (in degrees).

• A bias set to 1.

5.2. The Neural Network Structure

The neural network structure used is as simple as possi-

ble. A 3 layers network is used (see Fig. 2) and returns

a heading change of 45 degrees maximum (for a time

Figure 1. The neural network inputs of aircraft 1.



208 Durand, Alliot and Médioni

Figure 2. The neural network structure.

step of 15 seconds). The activation function used is the

following:

act(s) =
1

1+ e−s

The first layer has the 8 inputs described above plus the

bias. The second layer holds 25 units, while the third

layer holds the output unit.4

5.3. Learning the Neural Network Weights

Classical back propagation of gradient can not be used

in our case because conflict free trajectories are not

known in every configuration. They could be calculated

for conflicts involving n= 2 aircraft, but the problem is

not solvable for n> 2. As we plan to extend our system

to more than two aircraft, we decided to use unsuper-

vised learning with GA. However, we compare the re-

sults of our networkwith optimal trajectories computed

by LANCELOT to validate our hypothesis.

6. Genetic Algorithms

Figure 3 describes the main steps5 of GAs that are used

in this paper: first the problem is coded and a popula-

tion of points in the state space is randomly gener-

ated. Then, we compute for each population element

the value of the function to optimize, which is called

fitness. Then the selection process reproduces elements

according to their fitness. Afterwards, some elements

of the population are picked at random by pairs. A

crossover operator is applied to each pair and the two

Figure 3. GA principle.

parents are replaced by the two children generated by

the crossover. In the last step, some of the remaining

elements are picked at random again, and a mutation

operator is applied, to slightly modify their structure.

At this step a new population has been created and we

apply the process again in an iterative way. The differ-

ent steps are detailed in the following.

6.1. Coding the Problem

Here, each neural network is coded by a matrix of

real numbers that contains the weights of the neural

network.

6.2. Computing the Fitness

One of the main issues is to know how to compute the

fitness of a chromosome. The constrained problem to

solve takes the following criteria into account:

• Aircraft trajectories must be conflict free.

• Delay due to deviation must be as low as possible.

• The fitness of a network which leads to trajectories

that do not respect the separation constraints should

always be lower than the fitness of a network that

leads to trajectories that respect these constraints.

To compute the fitness, a panel of N different conflict

configurations6 is created randomly (cf. Section 6.6).

For these N configurations, we define C as the

total number of time steps for which one separation



Neural Nets 209

constraint is violated and µ as the quadratic mean of

delays. Fitness7 is defined by:

If C �= 0:

fa =
1

1+ C
(1)

If C = 0:

fa = 1+
1

1+ µ
(2)

6.3. Selection

“Stochastic Remainder Without Replacement” [18] is

used for selection, alongwith ranking. After the rawfit-

ness f ri of the n elements of the population is computed,

these fitnesses are scaled; the elements of the popula-

tion are ranked, according to their fitness: the best ele-

ment gets rank 1, and the worst one gets rank n. The

rank of an element is noted ri . The scaled fitness is de-

fined by: f si = n−ri
n
. Each element is reproduced ⌊pi⌋

times in the new population, with pi = n× fi/
∑

j f j .

Then we compute ri = pi − ⌊pi⌋, and the population

is randomly completed by choosing elements with the

probability ri/
∑

j rj. Number of elements is 500.

6.4. Crossover

The arithmetic crossover is used: 2 parents are re-

combined by choosing randomly α ∈ [−0.5, 1.5] and

creating child 1 (resp child 2) as the barycentre

of some randomly chosen weight of (parent1, α)

(resp (parent1, 1− α)) and (parent2, 1− α) (resp

(parent2, α)). Crossover probability is 60%.

6.5. Mutation

The mutation operator adds a Gaussian noise to one

of the weights of the neural network. The mutation

probability is set to 15%.

6.6. The Learning Examples

The learning set contains N = 50 conflict configura-

tions. These configurations are generated randomly and

remain unchanged throughout learning (fixed learning

test). The position of an aircraft at time t = 0 is its initial

position; its position at time t = tf, if it is not deviated,

is called its final position. The configurations generated

are such that:

• The distance between two aircraft at time t = 0 is

equal to an alert distance noted da.

• If aircraft are not deviated, a conflict occurs between

t = 0 and t = tf, but aircraft are separated again at

time t = tf.

Two configurations are considered to be equal if it is

possible to get from one to the other through a transla-

tion or a rotation (the inputs of the neural network use

only relative positions of aircraft). Configurations are

generated in order to represent as much as possible all

relative positions and all relative headings at the begin-

ning of the conflict. The speed of the aircraft ranges

between vmin = 300 kts and vmin = 500 kts.

7. Numerical Results

7.1. Preliminary Results

To evaluate the performance of the neural network, we

have tested it on a large number (10000) of non learned

conflict configurations. These conflict configurations

are generated randomly. The neural network generated

conflict free trajectories for 9612 out of 10000 config-

urations (4% failure). In most cases, the violation of

the separation constraint is not very important: for 152

configurations, the minimal distance between the two

aircraft is higher than 3.75 NM, it is between 3 and

3.75 NM for 195 configurations, and never gets below

2NM.Themean delay of aircraft (on the configurations

for which conflict free trajectories are found) is 5.1 sec-

onds. The delay of aircraft is lower than 10 seconds for

7802 configurations, higher than 30 seconds for only

10 configurations, and never higher than 1 minute. On

the average, an aircraft is in conflict every 30 minutes.

So, the average delay is 0.3%.

7.2. Improving Results

The reliability of the neural network that learned on a

fixed learning test is quite good (4% failure), but is not

perfect. To improve it we have used a renewed learning

set, along with a different way of computing the fitness

of a network.

The conflict configurations of the learning set are re-

newedat eachgenerationof the genetic algorithm.They



210 Durand, Alliot and Médioni

are replaced by other conflict configurations, randomly

generated.

A neural network, if it survives for several gener-

ations, has been confronted to different learning sets.

These different learning sets are used to compute the

network fitness. We modify the definitions of C and µ.

We define C ′, the mean value, on the different learning

sets to which the neural network has been confronted,

of the total number of time steps on which aircraft are

not separated (for the N conflict configurations of each

learning set), and µ′ the mean value on these differ-

ent learning sets of the quadratic mean value of the

sum of the delays of the two aircraft on the N conflict

configurations of each learning set.

We also use a reliability factor, adapted of a con-

cept used to train a program designed to play Othello

games [19]. This program was evaluated by counting

the number of victories against a reference program.

The reliability of a program depends on this number,

but also on the number of games already played. A pro-

gram that won 46 games out of 48may bemore reliable

than one that won 6 games out of 6.

Let us suppose that the probability that the program

wins a game is p. The probability that it winsm games

out of n is then:

P(p,m, n) =

(

n

m

)

pm(1− p)(n−m) (3)

Let us suppose that the program has won m games out

of n. It can be then shown that for pf ∈ [0, 1], p is

higher than a certain value pm,n,pf with probability pf,

with the following implicit definition of pm,n,pf :

∫ 1

pm,n,pf

P(p,m, n)dp =
pf

n + 1
(4)

Let ns be the number of successive learning sets for

which the network generated only conflict free trajecto-

ries.We define sr as the reliability factor of the network:

sr = pns,ns, pf

with pf= 0.95. The different values of sr for the dif-

ferent possible values of ns (here 1–1000, which is the

maximal number of generation, and thus of learning

sets) are computed once before the genetic algorithm

is run.

The reliability factor sr of a network is used to com-

pute its fitness:

If C ′ �= 0:

fa =
1000

1+ C ′
(5)

If C ′ = 0:

fa = 1000+ s
1000

1+ µ′
(6)

7.3. Results with the Renewed Learning Set

Results are excellent. The new network has been tested

on 10000 configurations, and generated conflict free

trajectories for all of them. In terms of delays, the

results are a little less satisfying: the mean delay is then

7.5 seconds (it is 5.1 seconds for the fixed learning set),

the delay of aircraft is lower than 10 seconds for 6838

configurations, between 10 and 30 seconds for 3019

configurations, between 30 seconds and 1 minute for

132 configurations. The delays are higher than 1minute

in 18 cases, but never higher than 2 minutes.

So, there is a minimal loss of performance regard-

ing delays, but separation is now enforced. Neural net-

works learned with renewed learning sets are much

better than the ones learned with a fixed set.

7.4. Comparison with LANCELOT

Optimal solutions to the different configurations are

calculated using gradientmethod such as LANCELOT.

LANCELOT has the great advantage to find the opti-

mal solution to our problems but requires much more

time (one hour on HP720). Controlling aircraft in real

time with this technique is not possible. However,

it is interesting to compare optimal solutions found

by LANCELOT to solutions computed by the neural

network.

The configurations used to compare the neural net-

work to optimal solutions are not learned configura-

tions. For each solution, we give the mean lengthening

of the trajectories in percentage:

• Figure 4 gives an example of conflict at 90 degrees in

which aircraft have the same speed. Neural network

(1.08%) and optimal solution (0.26%) are similar.

The NN solution mean lengthening is worse than

the optimal solution lengthening.

• Figure 5 gives an example of a 15 degrees conflict

where aircraft have the same speed. Such a conflict is



Neural Nets 211

Figure 4. Neural network solution (left), optimal solution (right).

Figure 5. Neural network solution (left), optimal solution (right).

particularly difficult to solve. Solutions are different,

but for such a difficult conflict, the neural network

(2.30%) gives a solution that is robust and quite as

good as the optimal solution (2.23%). This conflict is

the most difficult conflict to solve (in the 5 examples

presented). It is interesting to see that the difference

of lengthening is the smallest.

• Figure 6 gives an example of aircraft at different

speeds (400 and 500 knots) with crossing at a small

angle (30 degrees). The neural network solution

(1.32%) appears very similar to the optimal solution

(0.28%) but it is less efficient.

• Figure 7 gives an example of aircraft crossing on

the same route. This problem is easy to solve and

solutions are similar. The NN solution (1.18%) is

robust but worse than the optimal solution (0.25%).

Figure 6. Neural network solution (left), optimal solution (right).

Figure 7. Neural network solution (left), optimal solution (right).

Figure 8. Neural network solution (down), optimal solution (up).

• Figure 8 gives an example of aircraft flying on par-

allel routes at different speeds. This problem is easy

to solve. Solutions are similar. The NN solution

(1.02%) is robust but worse than the optimal solution

(0.21%).

These 5 examples show that, if solutions are obvi-

ously less optimal, the loss of optimality is not sig-

nificant (the delay induced by the neural network is

always less than 4 times the minimal delay found with

LANCELOT, which is generally very small). Tests



212 Durand, Alliot and Médioni

done on non-learned situations gave results as good

as tests done on learned configurations.

8. Conflicts Involving 3 Aircraft

We wanted to test the possibility of extending resolu-

tion to more than 2 aircraft. The three following tech-

niques to solve conflicts involving 3 aircraft are used:

Closest intruder: a neural network such as described in

section 5 is used. At each time step, the inputs are

computed by considering only the closest of the two

other aircraft. Aircraft take a direct heading towards

their final position as soon as all aircraft can do it

without conflict.

Threatening intruder: at each time step, each aircraft

computes its direct trajectory to its destination and

finds the closest aircraft that would be in conflict

if they all follow direct routes. Inputs of the net-

work are then computed regarding only this aircraft.

An aircraft takes a direct heading towards its destina-

tion as soon as it is not in conflict if all aircraft fly a

direct route.

Two intruders: a larger neural net is used, which takes

15 inputs. It uses the same first 9 inputs as in

Section 5, but 6 more inputs are computed regard-

ing the second aircraft in conflict (they are similar to

the ones described in Section 5). The hidden layer

is extended to 30 neurons. An aircraft takes a di-

rect heading towards its final position as soon as all

aircraft can do it without conflict.

These three techniques have been used, with a fixed

and a renewed learning set. With the fixed learning set,

results are good, for the three techniques on learned

configurations: conflict free trajectories are generated

for all learned configurations, delays are reasonable,

though more important than for two aircraft (mean

delays around 30 seconds for the three techniques, with

a light advantage for the closest intruder technique).

Statistical results are quite bad on non learned config-

urations (10% failure).

Results with the renewed learning set are not totally

satisfying either:

Closest intruder: conflict free trajectories are gener-

ated for 9983 out of the 10000 non learned con-

figurations (0.2% failure). But delays are large: 53

seconds mean delay, between 3 and 10 minutes for

296 configurations, larger than 10 minutes for 15

configurations.

Threatening intruder: the failure rate is less than 0.4%,

but results are better regarding delays: 40 seconds

mean delay, delay exceeding 3 minutes for 144 con-

figurations, never larger than 10 minutes.

Two intruders: the failure rate is very low: 0.06%, but

delays are even larger: they exceed 3 minutes for

800 configurations, and exceed 10 minutes for 54

configurations.

9. Conclusion

Using a simple neural network to solve a conflict be-

tween 2 aircraft gives very good results. The neural

network can be easily learned by a genetic algorithm

without knowing the optimal solutions. Robustness of

the NN can be improved if new conflict configurations

are used at each generation of the genetic algorithm.

Extending the problem to conflicts involving more

then 2 aircraft is much more difficult. The closest in-

truder and closest threatening intruder techniques are

advantageous because they can be extended to more

than 3 aircraft. But they seem less robust to non learned

configurations than the two intruders technique. The

latter gives good results regarding the robustness to

non learned conflicts but delays are quite important.

Furthermore, extension to more than 3 aircraft would

make the size of the NN increase and the learning more

difficult.

These results are not surprising; as many reactive

techniques, NN must be considered as an intermediate

filter between the TCAS and tactical resolution tech-

niques. As such, they will operate on simple (mainly 2

aircraft), short/medium term conflicts. For such appli-

cations, they are an excellent system, as they combine

very fast, real time, computation of new headings and

a great reliability and efficiency.

Notes

1. Two aircraft are said to be in conflict if their altitude difference

is less than 1000 feet (305 meters) and the horizontal distance

between them is less than 8 nautical miles (14800 meters). These

two distances are respectively called vertical and horizontal stan-

dard separation.

2. Airborne Collision Avoidance System.

3. Large And Nonlinearly Constrained Extended Lagrangian Opti-

mization Techniques.

4. Different number of units were tried. With less than 25 units,

results were not satisfactory. With more than 25 units, results



Neural Nets 213

show no evidence of improvements, while training times were

longer.

5. We use classical Genetic Algorithms and Evolutionary Compu-

tation principles such as described in the literature [18, 20].

6. N represents the number of conflict configurations onwhich each

element of the population is tested while n represents the number

of elements in the population.

7. The GA is not very sensitive to the exact form of the fitness

function. The one choosen is both simple and efficient.

References

1. E.M. Schuster, F.R. Petroski, R.K. Sciambi, and M. Mc Stokrp,

“AERA2 functional design and performance description,” Tech-

nical Report, MITRE, September 1983. MtR-83W136.

2. W.P. Niedringhaus, “A mathematical formulation for planning

automated aircraft separation for AERA3,” Technical Report,

FAA, 1989. DOT/FAA/DS-89/20.

3. W.P. Niedringhaus, “Automated planning function for AERA3:

Manoeuver Option Manager,” Technical Report, FAA, 1989.

DOT/FAA/DS-89/21.

4. F. Krella et al., “Arc 2000 scenario (version 4.3),” Technical

Report, Eurocontrol, April 1989.

5. M. Schoenauer, E. Ronald, and S. Damour, “Evolving nets for

control,” Technical Report, Ecole Polytechnique, 1993.

6. A. Fadda, “Utilisation de techniques neuro-genetiques pour

la resolution de problemes inverses,” Ph.D. Thesis, Ecole

Polytechnique de Paris, 1998.

7. TCAS-III collision avoidance algorithms, Version 3, Technical

Report, The MITRE Corporation, November 1990.

8. H. Gruber, Comparaison de diverses méthodes d’Intelligence

Artificielle pour la résolution de conflit en contrôle de trafic

aérien, Rapport de Stage, Centre d’Etudes de la Navigation

Aérienne, 1992.

9. K. Zeghal, “Vers une thèorie de la coordination d’actions, appli-

cation à la navigation aérienne,” Ph.D. Thesis, Université Paris

VI, 1994.

10. K. Zeghal, “A reactive approach for distributed air traffic

control,” in International Conference on Artificial Intelligence

& Expert Systems, Mai, 1993.

11. K. Zeghal, “A comparison of different approaches based on

force fields for coordination among multiple mobile,” in IEEE

International Conference on Intelligent Robotic System, IROS,

Mai, 1993.

12. N. Durand, “Optimisation de Trajectoires pour la Résolution de

Conflits en Route,” Ph.D. Thesis, ENSEEIHT, Institut National

Polytechnique de Toulouse, 1996.

13. Bryson and Ho, Applied Optimal Control, Hemisphere Publish-

ing Corporation: New York, 1975.

14. R.F. Hartl, S.P. Sethi, and R.G. Vickson, “A survey ot the

maximum principles for optimal control problems with state

constraints,” SIAM Review, 1995.

15. A.R. Conn, N. Gould, and Ph.L. Toint, “A comprehensive des-

cription of LANCELOT,” Technical Report, IBM T.J. Watson

Research Center, 1992. Report 91/10.

16. N. Durand, J.M. Alliot, and J. Noailles, “Automatic aircraft con-

flict resolution using genetic algorithms,” in Proceedings of the

Symposium on Applied Computing, Philadelphia, ACM, 1996.

17. N. Durand and J.M Alliot, “Optimal resolution of en route

conflicts,” in 1 ST U.S.A/EUROPE ATM R & D Seminar, Mai

1997.

18. D. Goldberg, Genetic Algorithms, Addison Wesley: Reading,

MA 1989: ISBN: 0-201-15767-5.

19. J.M. Alliot, “A genetic algorithm to improve an othello pro-

gram,” in Artificial Evolution 95, Springer: Berlin, 1995.

20. Z. Michalewicz, Genetic algorithms + data structures=

evolution programs, Springer-Verlag: Berlin 1992, ISBN:

0-387-55387-.

Nicolas Durand graduated from the Ecole Polytechnique de Paris

in 1990 and from the Ecole Nationale de l’Aviation Civile (ENAC)

in 1992. He has been a design engineer at the Centre d’Etudes de

la Navigation Aérienne (CENA) since 1992 and has completed a

Ph.D. in computer science on “Computing Optimal Trajectories for

Conflict Resolution”.

Jean-Marc Alliot graduated from the Ecole Polytechnique de Paris

in 1986 and from the Ecole Nationale de l’Aviation Civile (ENAC)

in 1990. He also holds a Ph.D. in computer science (1992). He is

currently in charge of the global optimization laboratory of CENA

and ENAC in Toulouse.

Frédéric Médioni graduated from the Ecole Polytechnique de Paris

in 1992 and from the Ecole Nationale de l’Aviation Civile (ENAC)

in 1994. He is currently completing a Ph.D. in computer science.


